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Topological insulators are frequently also one of
the best-known thermoelectric materials. It has been
recently discovered that in three-dimensional (3D)
topological insulators each skew dislocation can
host a pair of one-dimensional (1D) topological
states—a helical Tomonaga–Luttinger liquid (TLL).
We derive exact analytical formulae for thermoelectric
Seebeck coefficient in TLL and investigate up to what
extent one can ascribe the outstanding thermoelectric
properties of Bi2Te3 to these 1D topological states.
To this end we take a model of a dense dislocation
network and find an analytic formula for an overlap
between 1D (the TLL) and 3D electronic states. Our
study is applicable to a weakly n-doped Bi2Te3 but
also to a broader class of nano-structured materials
with artificially created 1D systems. Furthermore, our
results can be used at finite frequency settings, e.g. to
capture transport activated by photo-excitations.

1. Introduction
Thermoelectricity, on a fundamental level, gives us a
valuable insight into interactions in a system. On the
applications side it gives us hope to harvest electric
energy from waste heat. The sensitivity to interactions
manifest itself in the Mott relation, S ∼ (∂ωσ (ω))/σ (ω),
which links thermoelectric Seebeck coefficient S and
electric conductivity σ in the adiabatic regime but also
reveals how hard it is to describe (and improve) S
from the application viewpoint. In the single-particle
picture when σ (ω) ∼ LDOS(ω), thanks to a singularity
in the derivative of its density of states, the one-
dimensional (1D) metal could give rise to a huge
Seebeck coefficient [1]. This fact has been extensively
used in thermoelectricity enhancement by engineering of

2020 The Author(s) Published by the Royal Society. All rights reserved.
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low-dimensional nano-structures [2] but the results of these attempts simply proved that
unavoidably one needs a full description of electron–electron interactions in these systems. Bi2Te3,
the first discovered strong three-dimensional (3D) topological insulator [3] is also one of the best-
known thermoelectric materials at ambient conditions [4]. When it was discovered [5] that in such
3D topological insulator each dislocation will host a pair of counter-propagating 1D topological
states, a helical Tomonaga–Luttinger liquid (TLL), there was momentarily an excitement that the
outstanding thermoelectric properties of Bi2Te3 can be finally explained [6]. However, several
fundamental obstacles prohibit this simplistic picture. For the case of non-interacting fermions,
or in a hydrodynamic liquid with an infinite cut-off, the thermoelectric transport coefficients are
zero [7–9], which implies that a meaningful theory that predicts a substantial signal must include
interactions and cut-off’s in a non-perturbative manner. Furthermore, in order to achieve a non-
zero Seebeck coefficient, a mechanism that will induce curvature and backscattering of the 1D
states is needed. This is particularly difficult in helical TLL, where backscattering requires a spin
flip. Incorporating a uniform spin–orbit coupling in the model, although it modifies the definition
of Kramers-invariant variable, is insufficient as it does not allow for backscattering to occur [10].

A series of recent results paved the way to overcome this stalemate. Most importantly it
has been recently shown that a new type of Rashba-like spin–orbit coupling is present on a
dislocation [11]. The coupling has been shown to be momentum k-dependent, so it can be
spatially inhomogeneous. If one now considers a periodic modulation of the Burgers vector
(possibly accompanied by a local electric field) then the new Rashba term will be also periodically
modulated in space. Such modulation can be induced by lattice distortion corresponding to a
transverse optical (TO) phonon mode. This, and inelastic character of phonon processes [12,13],
is exactly the kind of term [10] required to cause the desired spin-flip process and overcome the
topological protection against backscattering [14]. This shall produce finite resistivities and in
effect a finite Seebeck coefficient.

Experimentally, it has been recently shown that each twin boundary in Bi2Te3 consists of a
long chain of lattice dislocation [15–17]. This proves that: (i) dislocations are common in Bi2Te3
and material may host dense networks of dislocations that may turn the topological effect into a
volume effect, (ii) one can in principle control distances between dislocations by changing angle
between crystal grains. Developments in experiment/numerics have quantified relationship
between dislocation and local strain field [18], while emerging field of dislons [19,20] (quanta
of dislocation motion) builds a link between the local strain and phonon–phonon interactions on
dislocations [21]. Finally, complex band structure of Bi2Te3 has been explored by advanced DFT
methods (GW) [22] and confirmed by ARPES experiments [23,24]. A consensus has emerged that
Bi2Te3 is an indirect narrow gap semiconductor with a bottom of a conduction band slightly off
the Brillouin zone centre [22].

These achievements, in seemingly unrelated areas, have set up the following challenge for
many body theory: to compute Seebeck effect in a helical TLL in a strong interaction, strong
lattice anharmonicity regime accounting for the fact that the helical TLL states exist only in a
finite-energy window (of order Λ0 ≈ 0.25 eV) where they do not decay into energy-momentum
matching bulk states. One also needs a good description of a dense network of dislocations to
assess the feasibility of our theoretical proposal. In this paper, we give an analytical formula
for the strength of Seebeck coefficient due to network of helical 1D states at arbitrary frequency
and temperature. The calculation proceeds in two stages: in the first stage, we compute Seebeck
coefficient of a single TLL state on a dislocation, while in the second stage we compute tunnelling
probability between 3D states (with a given Fermi momentum k3D

F ) and the states localized on 1D
dislocations’ array.

2. Model
Our system consist of three parts: the 3D dilute electronic liquid from bulk conduction band with
free fermion Hamiltonian H3D =∑

k E(3D)
DFT(k)c†(k)c(k), the helical TLL H1D

TLL(from the topological
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states on dislocation) and the TO phonons described by Hph. The 1D theory is written in terms of
collective modes, the canonically conjugate bosonic fields φν (x) and θν (x), with Πν (x) = ∂xθν (x).
These fields are directly related to the respective densities ∂xφν (x) = −πρν (x). Then the TLL
Hamiltonian reads:

H1D
TLL =

∑
ν

∫
dx
2π

[
(vνKν )(πΠν )2 +

(
vν

Kν

)
(∂xφν )2

]
, (2.1)

where vν , Kν are velocity and TLL parameter for each collective ν-mode that constitutes our
hydrodynamic liquid. For the helical TLL, because fermion spin and chirality are locked, there
is only one mode so we drop the ν index in the following. Electron–electron interactions that
have purely forward character (due to the topological protection) are incorporated in K =√

(1 − g)/(1 + g) where g = VCoul(q → 0).
The TO phonon branch, considered here, in Bi2Te3 has the following properties: (i) local boson

density is well-defined quantity as it corresponds to an amplitude of a local atomic oscillation
within a unit cell; (ii) these oscillations modify locally Burgers distortion and so the ‘new-Rashba’
term; (iii) resonant bond character of the crystal lattice vibrations [25] softens ω0(q = 0); (iv) when
a TO phonon is being emitted/absorbed, causing electron backscattering from +kF to −kF, then
the dispersion ω(q0 ≈ 2kF) falls in the linear dispersion range (because of a typical available kF for
our specific TLL). Hence the conditions to use the TLL theory for bosons are fulfilled and their
Hamiltonian is:

Hph =
∫

dx
2π

[
(vphKph) (πΠph)2 +

(
vph

Kph

)
(∂xφph)2

]
, (2.2)

where ∇φph describes the density of the local Bi − Te oscillations in a given, xith, unit cell and the
key advantage of using the TLL formalism is that any anharmonicity (which one expects to be
large on the dislocation [19,20]) can be captured by an appropriate choice of the TLL parameter
Kph. In the following, we take Kph ≈ 1 which corresponds to hard-core bosons. The electron–
phonon coupling reads:

HR = gR

2πa

∫
dx∂φph(x) exp(ıφ(x)), (2.3)

where we assumed, in accordance with the discussion in the Introduction, that the phenomenon
is proportional to the amplitude of distortion ≡ density (spectral weight) of the TO phonons at
a given point nph = ∂φph(x). The amplitude of the process gR = VR/Λ where VR has to be found
from material specific ab-initio calculation, in analogy with those in [11]. We note that VR is of the
same order as spin–orbit coupling in a given material and in Bi2Te3 while the spin–orbit coupling
is also the underlying reason of band gap opening �b. Since �b determines the Λ UV-cut-off of
the 1D hydrodynamics, the gR is expected to be not far from one. The filling of the system is
incommensurate so we do not expect equation (2.3) to open 1D many-body gap at EF, for a finite
ω0 (non-adiabatic regime) the coupling is marginal [26].

3. Results for a single helical TLL
This situation described in the previous section is ideally suited to employ memory function
formalism [27,28] where a single well-defined perturbation breaks the perfect conductivity of
TLL. The charge/heat conductivities matrix is then expressed as:

σ̂ (q,ω; T) = χ̂ (T) (−iωχ̂(T) + M̂(q,ω))χ̂(T), (3.1)

where M̂(q,ω) and static susceptibilities χ̂ (T) are 2 × 2 matrix as there are two forces (∇Ex

and ∇T) and two currents (electric and heat). The off-diagonal, thermoelectric conductivities,
are equal by Onsager relation. The entries of M̂(q,ω) are memory functions, i.e. meromorphic
functions each equal to a correlator of force-operators Mi,l(q,ω) = (〈FiFl〉|q,ω − 〈FiFl〉|0,0) where
the 〈〉 are computed for HTLL. The force-operator Fi(x, t) = [ji(x, t), Htot(x, t)], where Htot = H1D

TLL +
Hph + HR, selects the term in the Hamiltonian that does not commute with the respective
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current, i, l = σ , κ . The Seebeck coefficient, defined in a stationary situation where both currents
are zero (compensating forces), can be expressed as a ratio of the off-diagonal thermoelectric
conductivity term σσκ and electric conductivity σσ . Usually from the TLL description only the
asymptotic behaviour at T,ω→ 0 is extracted. However, for the purpose of this study, to be able
to make a valid comparison with experiments, a full functional description valid at intermediate
temperatures and frequencies is necessary. Explicit analytic expressions for Fi(x, t) are given in
appendix A. We used conformal field theory transformation to obtain the expressions valid at
finite temperatures. In order to substitute these to equation (3.1), we need the Fourier transforms.
Finding analytic form of the hyperbolic functions’ transforms is the key outcome of our study.
The

∫
exp(i(q′x + ωt)〈Fi(x, t)Fl(0, 0)〉 can be expressed as a convolution of electronic and phononic

parts and for the uniform response q′ → 0 is an integral:

Mσκ (ω′, T) = M(0)T2K+2+1−3
∫

dq dw

×
[
Π (ph)

(
−vphq + (w − ω′)

T
, Kph

)
Π (ph)

(
vphq + (w − ω′)

T
, Kph

)

×
(
Γ (el)

(
w − qVF

T
, K + 1

)
Π (el)

(
qVF + w

T
, K
)

+Γ (el)
(

qVF + w
T

, K + 1
)
Π (el)

(
w − qVF

T
, K
))]

(3.2)

and

Mκκ (ω′, T) = M(0κ)T2K+2+2−3
∫

dq dw

×
[
Π (ph)

(
−vphq + (w − ω′)

T
, Kph

)
Π (ph)

(
vphq + (w − ω′)

T
, Kph

)

×
(
Γ (el)

(
qVF + w

T
, K + 1

)
Γ (el)

(
w − qVF

T
, K + 1

)

+ Γ
(el)

Q

(
w − qVF

T
, K
)
Π (el)

(
qVF + w

T
, K
)

+ Γ
(el)

Q

(
qVF + w

T
, K
)
Π (el)

(
w − qVF

T
, K
)

+Π (el)
(

qVF + w
T

, K
)
Π (el)

(
w − qVF

T
, K + 2

)

+ Π (el)
(

qVF + w
T

, K
)
Π (el)

(
w − qVF

T
, K + 2

))]
(3.3)

where the Fourier transforms of hyperbolic functions are Π (el)(z, Kr) = 2Kr β
√
v

2π B(0,exp(−ξUV
tr T))

(πKr+iz
2π , 1 − Kr), Π (ph)(z, Kr) = 21 β

√
vph

2π B(exp(−ξ IR
tr T),1.0)(

πKr+iz
2π , 1 − Kr) and:

Γ (el)(z, Kr) = 2Kr+1 β
√
v

2π
B(0,exp(−ξUV

tr T))

(
πKr + iz

2π
, −Kr

)

+ 2Kr+1 β
√
v

2π
B(0,exp(−ξUV

tr T))

(
πKr + iz

2π
+ 1, −Kr

)

Γ
(el)

Q (z, Kr) = 2Kr
β
√
v

2π
(e/2)−Kr−2

(Kr − iz)
(
1 + e2

)2
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Figure 1. Seebeck coefficients calculated for 1D helical TLL subjected to Rashba-type non-uniform spin–orbit coupling VR. It
is given in natural units and should be multiplied by g2R where gR = VR/Λ. Here we compare the strength of thermoelectric
effect for two different values of TLL parameter K = 0.3 (a) and K = 0.7 (b). (Online version in colour.)

× F1

(
1
2

(Kr − iz); −2, Kr + 2;
1
2

(Kr − iz + 2);

− 1

exp(−2(exp(−ξUV
tr T)))

,
1

exp(−2(exp(−ξUV
tr T)))

)
(3.4)

where Bx1,x2 (a, b) indicates the generalized incomplete Beta function and F1(a; b; c; d; x1, x2) is the
Appell hypergeometric function. The temperature independent amplitudes M(0), M(0κ) are given
in appendix A. This result generalizes well-known single-mode TLL susceptibilities in two ways:

(i) it incorporates IR and UV transport cut-off’s −ξUV,IR
tr which in our problem are very close to

the considered temperature/frequency range; (ii) we have here Fourier transforms of the ‘vertex’
functions1 ∼∂xGTLL(x, t).

By substituting this into equation (3.1), we obtain a closed analytical formula for the Seebeck
coefficient of TLL. We plot the result in figure 1. Since in our calculations we took h̄ = e = kB = 1,
then the Seebeck coefficient is given in its natural units 1n.u. = 28.6 (μV/K)g2

R. Hence, if indeed
gR ∼ O(1), then the amplitude of the effect induced by dislocations can be quite substantial
103 μV/K which is on a par with the best thermoelectric materials. On both panels, we observe an
increasing trend with temperature and a broad maximum as a function of frequency. Remarkably,

1We introduce here notion of the ‘vertex’ by using electron–phonon Ward identities definition, while in a pure electronic
system that obeys Dzyaloshinskii–Larkin theorem the standard (non-transport) vertex functions are zero in TLL because RPA
is exact and the chiral densities are conserved.
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Seebeck effect increases (by an order of magnitude) when the TLL K parameters decreases, i.e.
electron–electron interactions are stronger. Since the main factor that decreases K are long-range
Coulomb-type interactions then, assuming that the typical length of dislocation is large, it will be
screening that determines the TLL parameter. This depends on the density of 3D carriers. We then
predict that the Seebeck effect of dislocations will dramatically increase as the chemical potential
approaches the conduction band minimum (CBM).

4. A network of dislocations
We can now move to the realistic setting where a network of dislocation is present in a
weakly n-doped Bi2Te3 (figure 2). Here we assume the following transport mechanism [29]:
an external electrode is connected to the 3D bulk states and these electrons, as they propagate
through the sample, tunnel into the 1D dislocation states where the large thermoelectric
coefficient can be harvested. We now incorporate the tunnelling Hamiltonian into our description
Htun =∑

i ttun(c†(3D)(r⊥i)c(1D)(r⊥i) + h.c.). From the standard procedure of constructing a second
quantization Hamiltonian, the ttun ≡ probability of tunnelling, is equal to an overlap between
3D and 1D wave functions on a given dislocation

∫
dr⊥ψ∗3D(r⊥ − r⊥i)ψ1D(r⊥ − r⊥i). Taking

ψ1D(r⊥) = 0 if r⊥ >R and constant inside this cylinder, implies that ttun is proportional to
an amplitude of the 3D wave at the dislocation. The 3D electrons are primarily in the
conduction band Bloch plane-wave states Ψ 3D

1st (r) ∼∑
k∈kFi

exp(ikr), but while the Dirac 1D state
is present around the Γ point,2 the CBM is located ≈π/6BZ away. The quasi-momentum
conservation inhibits direct tunnelling from the primary wave when k(3D)

⊥ (CBM) �= k(1D)
⊥ (Γ )

because the two envelopes do not match. There are however also secondary ψ3D
2nd(r⊥),

localized waves present due to multiple electron’s wave scattering from the dislocations
network.

We take a plane wave coming from a pure crystal and compute multi-site diffraction pattern
on cylindrical obstacles. The size of dislocations, distances between them and the Bloch wave-
length are all comparable so one cannot consider a point-type wave-scattering but instead needs
to use Fresnel diffraction of electronic waves. Such tunnelling problem between 3D wave and 1D
localized states has been solved in a closed analytical form in [30]. The solution for the Fresnel
diffraction on a circular aperture can be expressed as [31]:

ψ2nd(r) =
∑

ki

(sin(N2
F̄
(1 + (r/R)2)/2) + U1(2NF̄, 2NF̄r/R))

− i(cos(N2
F̄
(1 + (r/R)2)/2) − U2(2NF̄, 2NF̄r/R)) (4.1)

here R is the radius of the dislocation, r is a distance within the plane perpendicular to dislocation,
NF̄(ki) = R2/(λΛ−1) is the Fresnel number, with λ= π/ki a wavelength of a Bloch-electron. To
sum over ki we take two kF’s at two sides of CBM along the direction of line of dislocations
(presumably along the twin grain boundary). U1,2 are Lommel functions of two arguments,
Un(w, z) ≈∑∞

m=0(w/z)n+2mJn+2m(z), here Jn+2m(z) is a Bessel function of the first kind, they have
a damped (weakly aperiodic) oscillatory behaviour. Superposition of waves scattered on all
dislocations gives the total amplitude Ψ2nd(r) =∑

j ψ2nd(r + jd) since each 1D system (with radius
R) scatters electronic waves and hence becomes a source of an electronic wave ψ2nd(r). Since
we are working at the very bottom of the conduction band we need to include Sommerfeld
expansion for the temperature dependence of chemical potential.3 As a result the kF does depend
on temperature and in this indirect way temperature enters also equation (4.1).

2If we take moderately anharmonic lattice then 1D electronic wave function in r⊥ plane is a combination of Hermite
polynomials which can be approximated by a Box(r⊥/R0) function and whose Fourier transform is Sinc(q⊥), negative for
q⊥ ≈ π/R0, so an overlap with any wave-packet at momentum of a fraction of BZ will be suppressed.
3In addition, there are DFT results for temperature dependence of the gap [32], that lead to similar effect.
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k

E

Figure 2. Schematic model for the problem of tunnelling of 3D electrons into 1D dislocation states. The plane perpendicular to
the dislocation axis is shown. The incoming primary bulk waveΨ 3D

1st (yellow dashed lines indicating its nodes) is scattered on a
chain of dislocations (green circles for the cross-section of cylinders) that is present on a crystalline twin-boundary. As a result of
electronic wave diffraction a secondary waveΨ 3D

2nd is produced (red dashed lines). Inset shows a sketch of Bi2Te3 band structure
with 1D states shown in green and bottom of conduction band shown in yellow to match the colour scheme on the main panel.
(Online version in colour.)

We can now combine equation (3.1) (with equations (3.2)–(3.4)) and equation (4.1) to find
the full temperature dependence of the Seebeck coefficient. The result of this calculation is
shown in figure 3. We see that instead of monotonically increasing S(T) (as in figure 1) we
have a broad maximum which appears at around 0.25Λ0/2 ≈ 350 K which is in a reasonable
agreement with experiments. Remarkably, we also observe an evidence of the electronic
waves interference phenomena—the dependence on a distance between the dislocation is not
monotonically increasing, as one would naively expect, but instead there is a complicated
dependence with a well pronounced minimum at smaller distances. This is valuable information
for the experimentalist: if an experiment is performed such that density of dislocation is varied
in a controllable manner then one may find the system in a counter-intuitive regime where
increasing the density reduces the Seebeck signal. We show here that this should not disprove the
fact that there is a substantial contribution to Seebeck coefficient from dislocation. We also note
that for the realistic parameters taken from experiment [15] the amplitude of the effect is massively
reduced, it becomes of order of 10 µV K−1. This is in agreement with the amplitudes that were
experimentally reported. The bottleneck of the transport mechanism is not an intrinsic property of
Seebeck effect on a dislocation (which is by itself large) but instead it is suppressed by the extrinsic
tunnelling amplitude. This can be in principle modified by engineering methods. To explore this,
we propose a hypothesis that the drastic suppression of the tunnelling amplitude is related to
two electronic waves kCBM ± k(3D)

F destructively interfering. To validate it we perform another
calculation where one of the amplitudes is enlarged with respect to another. This is achievable,
in our particular case, since kCBM − k(3D)

F ≈ 1/6BZ so adding a superstructure with ×6 periodicity
can increase one of the amplitudes. An extra level of complexity that needs to be accounted here
is due to an appearance of higher harmonics with momenta kn = kCBM − k(3D)

F + n · 1/6BZ. The
result of this calculation is shown on the bottom panel. We see that large values of Seebeck
coefficient are recovered. This suggest the realistic way to harvest massive Seebeck coefficient
from the dislocations.
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Figure 3. Seebeck coefficients, shown as a function of temperature and the inter-dislocation distance, calculated for a network
of 1D dislocation embedded in a dilute 3D electron gas. In panel (a) we take realistic parameters for Bi2Te3 while in panel (b) we
tune the valley position to optimize the tunnelling probability (see text). (Online version in colour.)

5. Conclusion
To conclude, firstly we have derived the exact analytic expressions for Fourier transforms of
generalized correlation functions, equation (3.4), and for conductivity tensor, equations (3.2) and
(3.3), in TLL. The results of these show a dramatic departure from the prediction based on the
Mott relation—σ (ω) ∼ωa �⇒ S(ω) ∼ 1/ω, which shows that our formalism is able to capture
profoundly non-adiabatic effects. Secondly, we have derived analytic formulas for tunnelling
between 3D electron liquid and a network of 1D TLLs. These are necessary ingredient in any
transport device based on the 1D nano-structured states. Altogether the analytic solution allowed
us to quantify the importance of topological states in thermoelectricity, provide an interpretation
of recent experiments [15–17] in Bi2Te3 and a pathway for future nano-structuring improvements
that are available to be harvested.

With analytical formulae derived here we provide a tool that can be used to model various
experimental settings. Our study gives a key ingredient, the Seebeck coefficient of the entire array
of 1D dislocations, to compute the thermoelectric properties of polycrystalline Bi2Te3, or more
generally any 3D topological insulator. This is the basic unit through which the thermoelectricity
is harvested in an extremely weakly doped material. Considering a polycrystal as a huge
network of grain boundaries consisting of such basic units opens the way for large-scale physics
and engineering simulations that shall give numerical estimates for various polycrystalline
realizations. We hope that our study will inspire such future advancements.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 D

ec
em

be
r 

20
21

 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200088

...........................................................

Data accessibility. This article has no additional data.
Competing interests. I declare I have no competing interest.
Funding. This work was financially supported by the Department for Economy NI and SFI (Ireland) under
grant no. 15/IA/3160.
Acknowledgements. I would like to thank T. Giamarchi for teaching me about applications of memory matrices
and Beta functions in finite temperature low dimensional systems. I would like to thank Atomistic Simulation
Center QUB for providing a stimulating environment to pursue and complete this work.

Appendix A. Derivation of the memory function Fourier transforms
The ‘force operators’ have the following form in the bosonization language:

Fσ (x, t) = −igR2KVF

2πa

∫
dx(∂φph(x) exp(iφ(x)) − h.c.) (A 1)

and

Fκ (x, t) = −igR2V2
F

2πa

∫
dx(∂φph(x)∂φ(x) exp(iφ(x)) − h.c.) (A 2)

The correlation functions of force operators are computed for HTLL + Hph theory and are known.
With the help of CFT, by the mapping a 2D z = x ± iτ plane onto a finite size stripe z →
Exp[−2πz/τ0] with τ0 = β, one can compute their finite temperature correlation functions on the
(x, t) plane:

Mσκ (x, t) = M(0)T2K+2+1(Sinh(ξ−ph)Sinh(ξ+ph))−Kph

× [Sinh(ξ−)−KCosh(ξ+)Sinh(ξ+)−(K+1) + (ξ+ ↔ ξ−)] (A 3)

and

Mκκ (x, t) = M(0κ)T2K+2+2(Sinh(ξ−ph)Sinh(ξ+ph))−Kph

× [K{Coth2(ξ−)Sinh(ξ−)−KSinh(ξ+)−K + (ξ+ ↔ ξ−)}
+ KCoth(ξ−)Sinh(ξ−)−KCoth(ξ+)Sinh(ξ+)−K

+ Sinh(ξ+)−(K+2)Sinh(ξ−)−K + (ξ+ ↔ ξ−)], (A 4)

where M(0), M(0κ) are temperature-independent amplitudes M(0) = (g2
R2K2V3

F(πa)2K+1(πaph)2)/
(2πvpha)2 and M(0κ) = (g2

R2KV4
F(πa)2K+2(πaph)2)/(2πvpha)2. These expression are equivalent to

those in Ref. [28] but re-written in a form more amenable to perform the Fourier transforms.
We introduced variables ξ±(,ph) = T(x ± v(,ph)t).

A comment has to be made on the validity of using the TLL correlations for the phonon
system. Conventionally, bosonization method is not used for phonons. One problem is to define
what the density ∇φph ∼ ρph(x) should physically correspond to. A second problem comes from
difficulty of reaching the hydrodynamic regime. Phonons are inherently interacting particles
because when we define a lattice oscillation in a parabolic potential then the energy of N phonons
in the q-mode and N + 1 phonons in the q-mode are different, the difference equals ωq. Then for
the phonon exchange process b†

q+δqbqb†
q′−δqbq′ the amplitude is proportional to δq which favours

high momentum processes. Large momentum Umklapp processes invalidate the hydrodynamic
description and moves the system into the diffusive regime. On a more fundamental level
Uph−ph ∼ δq corresponds to ∇x in real space, a manifestation of phonon’s genuinely non local
character – the acoustic phonons (which are those with linear dispersion) are in fact Goldstone
bosons (pure phasons) corresponding to crystal lattice formation transition and it is conceptually
difficult to imagine a density of an object that is generically defined in a non-local manner (as a
relative motion in different cells). In our case, we study optical phonons where the density can
be assigned to an amplitude of a local, intra-cell, vibration. Optical phonons are usually non-
dispersive, but in Bi2Te3, resonant-band compound [25], a long-range vibron–vibron interactions
have two effects: (i) lower the frequency ωTO(q → Γ ) making the branch dispersive; (ii) change the
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character of interaction by a factor 1/q making it q-independent (hence overall a purely local hard-
core bosons model with Kph = 1). It should be noted that the Kph = 1 is also expected for weakly
doped system of boson’s band-insulator a regime that we expect to reach for large TO phonon
density. Our description can be further improved by including interaction with the strain field.
Recently, a concept of dislons has been introduced [19,20] that captures a quantized fluctuations
of dislocation. It is expected that finite-q phonons will entertain dislon mediated phonon-phonon
∼q2, a further contribution to the long range lattice anharmonicity.

On general grounds we expect the following effects for the phonon dynamics [19]: for the
uniform excitations (q ≈ 0) since the strength of atomic forces close to dislocation is reduced the
frequency ω0 will go down to zero (in bulk Bi2Te3 the energy of the lowest optical phonon [33]
≤1 THz). On the other hand we know that at high q there are phonon modes that due to
confinement have frequencies higher than in the bulk. Finally, at intermediate frequencies the
dislons [20] can mix various TO phonon branches leading to a continuous spectrum (and such
closing of spectral gaps has been indeed observed). Finally, the resonant band effects, that are
ascribed [25] to a non-local electronic polarization, shall be enhanced by the presence of TLL
with collective χTLL. Hence an expectation is that a quasi-continuous TO branch with larger
bandwidth [33] will emerge.

A second issue is whether phonons can form 1D system on a dislocation. Recent molecular
dynamics studies [34,35] found that these phonons are susceptible to dislocation as they can
scatter on the strain field [18,21], as intuitively expected, and the anharmonic effects are enhanced
close to a dislocation [20]. This has three implications: firstly, the phonon frequencies in the
vicinity of dislocation are modified [19] (and their eigenvectors may be different as well) which
reduces a direct hybridization between inner and outer crystal oscillations [35]; secondly, along
the dislocation direction we need to include phonon-phonon anharmonic interaction effects;
thirdly, in the directions perpendicular to a dislocation (more precisely a network of dislocations)
the translation invariance of a pure crystal lattice is strongly broken and Bloch plane waves are not
any longer a good eigenstates basis for the phonon system. This assertion, that the TO phonons
are effectively trapped in a perpendicular direction, is an experimentally confirmed fact [2,15],
and has been phenomenologically ascribed to interference effects between the dislocations [36]
in agreement with our modelling, see equation (4.1) in the main text. As a result, their group
velocity perpendicular to dislocation is much reduced [34]. We can then take the 1D formulae for
the phonon correlation functions (hence original paper [28], not the erratum [37]).

The Fourier transforms are computed separately for electronic and phononic contributions.
For each we perform the change of variables, which splits the integrals into functions of two
independent variables ξ± = (x ± VF,pht)/T. These describe the ‘light-cone’ evolution of the system.
The integrals themselves can be now completed using the following identities:

∫
dzExp(izq)Sinh−K(z) = − exp(z(iq + K))2F1(K, (K + iq)/2, 1 + (K + iq)/2, exp(z))/(K + iq)

∫
dzExp(izq)Cosh(z)Sinh−K(z)

= (− exp(z(iq + K))2F1(1 + K, (K + iq)/2, 1 + (K + iq)/2, exp(z))/(K + iq))

+ (− exp(z(iq + K))2F1(1 + K, (2 + K + iq)/2, 1 + (2 + K + iq)/2, exp(z))/(2 + K + iq))

∫
dzExp(izq)Coth2(z)Sinh−K(z) =

(
e−2x − 1

)−K
(
−e−4x (e2x − 1

)2)K+1
sinh−K−2(x)(

e2x + 1
)2

AppellF1[1/2(K − iq), −2, 2 + K, 1/2(2 + K − iq), − exp(−2x), exp(−2x)](K + iq) (A 5)

where an identity − exp(z(iq + K))2F1(b, a, 1 + a, exp(z))/a|z=∞
z=0 = B(a, 1 − b) can be used to simplify

the results into a standard form of Beta functions. To generalize the hyperbolic function transforms
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to account for a finite limits we use the following integral formula:
∫Z2

Z1

dzza(1 − z)b = B{z1,z2}(a + 1, b + 1), (A 6)

where in our case a = iβ(ω ± Viq) + K/2, b = 1 − K, z = exp
(
− 2πTξ±

Vi

)
with Vi the velocity of

either electronic of phononic particles. In a standard setting z1 = 0, z2 = 1 (which in the original
ξ language translates into ξ1 = ∞, ξ2 = 0 limits) and the above integral reduces to a standard
Beta function. We see that by introducing the generalized incomplete Beta function we are able
to selectively pick the zones of interest within the light cones distance domain. For instance,
as described above the TO phonons fulfil the conditions of hydrodynamic regime only for
the intermediate q-values, while the long-range (small q) part of a wave-packet may loose its
quantum coherence (turn into diffusive region) due to interactions with dislons [20]. Then we
need to exclude correlation between backscattering events that took place at distant light-cones.
To capture it, we introduce a finite IR cut-off in ξph integral. We take ξ IR

tr = vph(ω0)−1 For the
electronic liquid, the situation is opposite, while close to the EF the TLL is well defined, away from
it the electrons can recombine with 3D carriers upon phonon absorption, the process becoming
more intense with increasing ω. So the back-scattering events for electrons cannot take place with
to high frequency, the light-cones that are close to each other should be taken in bundles. To
capture this effect we introduce a cut-off for smallest available ξ in the integral that gives the
Fel correlations. Note, that this is despite the fact that there is a much larger UV cut-off for the
existence of the TLL itself (of order of a fraction of eV), here we introduce an extra cut-off that
characterizes transport properties ξUV

tr = VF(�d)−1, where�d is a difference between CBM (where
we put the chemical potential) and the convergence point of the Γ point band with the TLL
dispersion (so the difference between orange minimum and the point where green and dashed
line converge in figure 2). Following [23], we take �d ≈ 0.15 eV.
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