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Abstract The paper concerns the Michell-like cantilevers
transmitting a point load to a straight segment of a support.
The feasible domain is of trapezoidal infinite shape, as in the
previous parts of the paper. The ratio of allowable stresses in
tension and compression is arbitrary, not necessarily equal to
1. The present, last part of the paper includes detailed geomet-
ric and static analyses of the optimal cantilevers for various
admissible data, thus providing new benchmarks of topology
optimization. All results are found by using analytical meth-
ods developed in the previous parts of the paper. Particular at-
tention is put on the force field distribution within the fibrous
domains. These force fields turn out to be defined in certain
subdomains forming a static division. The volumes of the
optimal cantilevers are computed in two manners: by direct
integration of the density of fibres and summing it up with the
volume of the reinforcing bars of finite cross sections, and by
using the kinematic formula of Michell according to which
the volume is proportional to the virtual work. The examples
analysed prove that both approaches lead to identical results
of the volumes, thus showing that the possible duality gaps
vanish. The analytical solutions are verified by considering
appropriately chosen sequences of trusses of finite number
of joints converging to the exact Michell cantilevers.

1 Introduction

Like in the limit load theory of structures, where two methods
of assessing the limit load, static and kinematic, should pro-
vide the same limit load, any Michell-like solution is viewed
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as correct if both the primal (see (I.2.8)1) and dual (see
(I.2.12)) formulae for the weight of the optimal cantilever
yield exactly the same results. Usually, the latter formula is
used in the literature because it requires only the knowledge
of the virtual displacement fields. Finding this field is usu-
ally easier than finding the force fields involved in (I.2.8).
In fact, the force fields depend heavily on the position of the
point load, while the virtual displacement field is independent
of the loading. Moreover, (I.2.8) involves integration, while
(I.2.12) is algebraic, at least in the considered case of point
loads. Even in the relatively simpler (than considered here)
case of the Michell cantilever supported on a circle, the inte-
gration in (I.2.8) turns out to be fairly difficult and has been
analytically performed only recently, see Graczykowski and
Lewiński (2005). Nevertheless, any Michell solution should
be checked by both formulae (I.2.8 and I2.12) to be sure that
the solution is valid. Despite this obvious requirement called
vanishing of the duality gap, this verification is remarkably
rare in the literature; some simplest plane structures were
verified in Hemp (1973), the cantilever supported on the cir-
cle has been verified by the present authors as noted above
and the Michell sphere and other surfaces of revolution have
been verified in Hemp (1973) and Lewiński (2004). Let us
nonetheless note that neither of Chan-like solutions of the
plane cantilevers supported on a straight segment reported
in Hemp (1973), Chan (1967) and Lewiński et al. (1994a,b)
have been verified till now. One of the aims of the present
paper is to fill up this gap in the literature. The verification
could not always have been done analytically, yet a numerical
verification is reported in all the cases.

The present paper makes use of the geometric, kinematic
and static results reported in the previous parts of the work.
Knowledge of distribution of the Lamé coefficients A, B, of
the force fields T1, T2 and of the longitudinal forces in the
reinforcing bars makes it possible to determine the density
of fibres function h, integration of which gives the volume of
the material used for construction of the fibrous parts of the
optimal cantilevers.

1 Equations of the previous parts of this paper (see Graczykowski
and Lewiński 2006a,b,c), are referred to with Roman numerals (see
conventions adopted in the Introductions to parts I and II).
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We note that by (III.2.2),

|NI | = T1
/

B, |NII | = −T2
/

A, (1.1)

since T1>0 and T2<0, and by (I.2.13), the density function
should be computed by

h(α, β) =
T1(α, β)

σT B(α, β)
−

T2(α, β)

σC A(α, β)
. (1.2)

The volume of the material used for the reinforcing bars is
computed by appropriate line integrals. The total volume is
found by summing up the volumes of the material used for
constructing the bars and the fibrous domains. Obviously, the
volume found should not be misinterpreted as a volume of
the domain occupied by the structure; nevertheless, for the
sake of brevity, the shorter notion, the volume of the structure,
will also be used sometimes. The selected solutions are veri-
fied by comparing the exact results with those corresponding
to sequences of trusses (of finite number of joints) tending to
the exact solutions. This verification method has been used
already by Prager (1978a,b) and is used here for more com-
plicated layouts. It turned out that the exact results compare
favorably with those results for approximating trusses. Lastly,

let us mention that the problems discussed in the present pa-
per have been recently analysed by Gilbert et al. (2005) by
new, highly advanced numerical techniques.

The examples reported can serve as benchmarks of topol-
ogy optimization software. That is why not only the essential
information but some particular, technical results will also
be given to make the benchmarks complete. The conventions
of notation and references adopted in parts I–III apply here.

2 Prager–Hill cantilevers

If the point load is applied within the domain ABDC in
Fig. I.10, an optimal cantilever is composed of two fans,
Prager–Hill region ABDC and of two reinforcing bars (see
sections I.6, II.5 and III.5. The aim of this section is to find
the volume of such cantilevers by summing up the volumes
of their parts, or by (I.2.8), and then verify this result by
computing the virtual work using (I.2.12).

The density h of the fibres (see (I.2.13)) will be found by
the formulae of sections I.6 and III.5. The density of fibres
in the Hill–Prager domain ABDC is expressed by (1.2), with
the force fields given by (III.5.5b and 5.6), and A,B given by
(I.6.7 and I.6.8):

h(α, β) =
−FC G0

(
αp − α, βp − β

)
+ FT G1

(
αp − α, βp − β

)
σT [r2G0(β, α)+ r1G1(α, β)]

−
−FT G0

(
αp − α, βp − β

)
+ FC G1

(
βp − β, αp − α

)
σC [r1G0(α, β)+ r2G1(β, α)]

, (2.1)

where FC=FC (P), FT=FT (P) (see (III.5.1)) and r2 = κ1/2r1
(see (I.4.10)).

In the lower circular fan we have (see (I.5.4) and
(III.5.7))

h(α, β1) = −
T2

σC A
= −

−FT G0
(
αp − α, βp

)
+ FC G1

(
βp, αp − α

)
σCr1β1

(2.2)

In the upper circular fan we have (see (I.5.2) and (III.5.8))

h(α1, β) =
T1

σT B

=
−FC G0

(
αp, βp − β

)
+ FT G1

(
αp, βp − β

)
σT r2α1

.

(2.3)

Let us compute the volume of fibres and bars of the particular
parts of the cantilever. The volume of fibres of the Hill–Prager
domain (ABDC) is subsequently computed as follows:

VABDC =

αp∫
0

βp∫
0

h(α, β)A(α, β)B(α, β)dαdβ

or

VABDC =
1

σT

αp∫
0

βp∫
0

[
−FC G0

(
αp − α, βp − β

)
+ FT G1

(
αp − α, βp − β

)]
· [r1G0(α, β)+ r2G1(β, α)]dαdβ

+
1

σC

αp∫
0

βp∫
0

[
FT G0

(
αp − α, βp − β

)
− FC G1

(
βp − β, αp − α

)]
· [r2G0(α, β)+ r1G1(α, β)]dαdβ (2.4)

.
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The integrals above can be expressed in terms of Lommel
functions by using (a.31–a.36)2 (I.A.6), which results in

2 Equations (a.31–a.36) mean (31–36) in Lewiński et al. (1994a).

VABDC =
FT

σT

{
βp (1 + κ)

[
r1G2

(
αp, βp

)
+ r2G1

(
αp, βp

)]
+ r2

[
1 − G0

(
αp, βp

)]}
+

(
−FC

σT

){
αp(1 + κ)

[
r2G2

(
βp, αp

)
+ r1G1

(
βp, αp

)]
+ r1κ

[
1 − G0

(
αp, βp

)]}
. (2.5)

The volume of fibres in the lower circular domain NAC is
subsequently computed using (a.4) as follows:

VNAC =

αp∫
0

1∫
0

−

(
T2

σC
B

)
dαdβ1

=
FT r1

σC

αp∫
0

1∫
0

G0
(
αp − α, βp

)
dαdβ1

−
FCr1

σC

αp∫
0

1∫
0

G1
(
βp, αp − α

)
dαdβ1

=
1

σT

(
κ ·FT r1G1

(
αp, βp

)
+κFCr1−κFC G0

(
βp, αp

))
.

(2.6)

The volume of fibres in the upper circular domain RBA is
similarly computed with using (a.4) as follows:

VRBA =

βp∫
0

1∫
0

(
T1

σT
A

)
dα1dβ

=
−FCr2

σT

βp∫
0

1∫
0

G0
(
αp, βp − β

)
dα1dβ

+
FT r2

σT

βp∫
0

1∫
0

G1
(
αp, βp − β

)
dα1dβ

=
1

σT

(
−FCr2G1

(
βp, αp

)
−FT r2+FT r2G0

(
αp, βp

))
.

(2.7)

The volume of the tension-reinforcing bar equals:

VT =
FT

σT

 αp∫
0

A
(
α, βp

)
dα + r2

, (2.8a)

where A(α, βp) is given by (I.6.7). Integration gives

VT =
FT

σT

(
r1G1

(
αp, βp

)
+ r2G0

(
βp, αp

))
. (2.8b)

In a similar way, we compute the volume of the
compression-reinforcing bar

VC = −
FC

σC

 βp∫
0

B
(
αp, β

)
dβ + r1

 (2.9a)

and find

VC = −
κ · FC

σT

(
r2G1

(
βp, αp

)
+ r1G0

(
αp, βp

))
. (2.9b)

The sum of the volumes of the material used in all the parts
of the cantilevers is expressed as

V =
FT

σT
·
[(

r2 + (κ + 1)r1αp
)
· G0

(
αp, βp

)
+αp(κ + 1)r2G1

(
βp, αp

)]
−

FC

σT
·
[(
κr1 + (κ + 1)βpr2

)
G0

(
βp, αp

)
+ (κ + 1)βpr1G1

(
βp, αp

)]
. (2.10)

By using (II.5.11 and II.5.6) for the virtual displacements at
the node of application of the point load, one can rearrange
the formula above as follows:

V =
FT

σT
· u

(
αp, βp

)
+

FC

σT
· v

(
αp, βp

)
. (2.11a)

Substitution of (III.5.1) gives

V =
P

σT
·
[
u
(
αp, βp

)
sin (ψ + ϕ)−v

(
αp, βp

)
cos (ψ+ϕ)

]
.

(2.11b)

We note that the expression (2.11b) has the meaning of the
virtual work given by (I.2.12). Thus, both (I.2.12) and (I.2.8)
give the same results. We conclude that the duality gap van-
ishes. The equivalence of both formulae proves that all the
results concerning geometry of fibres, Lamé coefficients, vir-
tual displacements, forces in the reinforcing bars and the
forces within the fibrous domain are correct.

Let us look more closely at selected examples. Their
analyses will include computation of volumes of the mater-
ial used (weights) of all their parts, graphs of the density of
fibres function h and force fields within the designs.

Example 2.1 Consider the problem of Fig. 1 for the case of
κ=1. Then we write σT=σC=σ. The force P is directed such
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b
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d

e
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g

Fig. 1 a The first structure. The force P is tangent at D=P to the BD bar; b The plot of the force field T1; c The plot of the force field T2; d The
plot of the density function h. The values of the non-dimensional quantity hrσT/P are shown; e Exemplary truss of 108 members; f Truss of 374
members; g Change of longitudinal forces (divided by P) in the upper external members of the truss of Fig. 1e

that the lower reinforcing bar DC does not work, which cor-
responds to the case ϕ=π/10; we remember that this angle
is measured between the RN direction and the force direc-
tion, counterclockwise. The whole force is transmitted by the
bar RBD: FT=P; in the bar NCD we have FC= 0. Position
of point P is given by Cartesian coordinates with respect to

the (x, y) frame: xP=2.738747132r; yP=0.9680382174r, or
by the values αp =

2π
5 ; βp =

π
4 characterizing also the an-

gles of the lower and upper fans. Distance of the point P to
the supporting line is d=|x0(P)|=3.32819983r. Parameteri-
zation of the domains RBA, NAC and ABDC is described in
Figs. III.1 and III.2.
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By using (III 5.7 and 5.8) we compute the reactions at the
upper supporting node R:

Hg =

βp∫
0

T RB A
1 (α1, β) sin

(π
4

+ β
)

dβ + FT sin
(π

4
+ βp

)
= 2.119128363P

Vg =

βp∫
0

T RB A
1 (α1, β) cos

(π
4

+ β
)

dβ + FT cos
(π

4
+ βp

)
= 0.5035531419P

and at the lower supporting node N

Hd =

αp∫
0

T NAC
2 (α, β1) sin

(π
4

+ α
)

dα

+FC sin
(π

4
+ αp

)
= −1.810111369P

Vd =

αp∫
0

(−T NAC
2 (α, β1)) cos

(π
4

+ α
)

dα

−FC cos
(π

4
+ αp

)
= 0.4475033745P

.

The reactions Hg, Hd are directed opposite to x0, and Vg, Vd
are directed along y0.

Notation Vd, Vg should not be misinterpreted as vol-
umes. The non-dimensional volume is defined by V =

V/V0, V0=Pr/σ. We compute the volumes of the fans
NAC, RBA: VNAC = 1.987586823, VRBA = 1.258902591.
The volume of the Prager–Hill domain ABDC equals
VABDC = 3.565259273. The total volume of fibres in the
fibrous domains is VS = 6.811748687. We compute the
volumes of the reinforcing bars: the tension bar, VT =

4.246489413; and the compression bar, VC = 0. The total
volume of the reinforcing bars is VK = 4.246489413. The to-
tal volume of the material of the structure is V = VS + VK =

11.05823810. The volume of the structure by Michell’s
formula (I.2.12), V = 11.05823810, is given by the same
number.

The force field T1 suffers a jump along AC, while the force
field T2 has a jump along the line AB. Both lines AB and AC
are the lines of discontinuity of the field h, since along these
lines, at least one of the fields A, B, T1, T2 suffers a jump. The
big values of the function h at the neighbourhood of point A
are caused by small values of Lamé coefficients A and B in
this domain. Function h grows to infinity at points N and R;
one of the Lamé coefficients vanishes there.

The example considered here is specific because the force
is applied such that the force in the tension bar is equal to
the force applied, while the compression bar does not work.
This makes it possible to figure out how the internal force
fields T1 and T2 satisfy the boundary conditions: the boundary
condition along the compression bar reads T1=−FC, but here,
T1=0 (see Fig. 1b). The boundary condition for T2 along the

tension bar assumes the form T2=−FT (see Fig. 1c), showing
that the values of T2 are constant along the tension bar.

The optimal cantilever found becomes a discrete–
continuous structure; it can be viewed as a limit of a sequence
of trusses of finite number of joints. We show below that the
optimal cantilever can indeed be constructed by forming an
appropriate sequence of trusses and passing to the limit. To
this end we consider the sequence of trusses of joints lying
at the selected points of intersection of the parametric lines.
The trusses are formed for arbitrary values of the fan angles,
for arbitrary number of nodes and for arbitrary (yet admissi-
ble) force direction. All the trusses constructed are statically
determinate—just as this is the crucial feature of this design
sequence, enabling a direct determination of cross sections
by the values of the forces in the members and, consequently,
enabling for computation of the total volume.

The exemplary truss (Fig. 1e) approximating the Michell
cantilever of Fig. 1 possesses 108 members and 56 joints.
By assuming that the members are fully stressed we fix
the cross sections and compute the volume of the
truss as 11.08633976V0. Volume of the external bars
is 4.780978146V0. Volume of the internal bars is
6.305361614V0. Volume of the lower (compression) external
members is 0.2826225365V0. Volume of the upper (tension)
external members is 4.498355609V0.

The volume of the truss turns out to be bigger than the
volume of the Michell structure by about 0.25%. A bigger
difference is visible in the division of the volume into the
volumes of the external and internal parts. The volume of
the internal members of the truss is 92.56% of the volume of
the fibrous domain of the optimal cantilever. Moreover, we
note that the volume of the external compressed members
of the truss is not zero, as in the optimal solution, but is
nevertheless much smaller than the volume of the external
tension members.

The values of forces in the external members are bigger
than a constant value predicted in the optimal solution. The
biggest is the force in the member at the support—it is bigger
by 10% than the force in the member at node P. The variation
of the values of the forces in the external tension members
is caused by interaction with internal members which form
acute angles (they cannot form right angles in the optimal
solution) with external members; the external members can
only approximate the trajectory of virtual deformations.

Consider now a truss of larger number of members loaded
as before (see Fig. 1f ). It has 374 members and 189 joints.
Volume of the truss is 11.06524488V0. Volume of external
members is 4.508915026V0. Volume of internal members
is 6.556329854V0. Volume of external (lower) compression
members is 0.1392986978V0. Volume of external (upper) ten-
sion members is 4.369616328V0.

The total volume of the truss differs from the volume of
the Michell structure by only 0.063%. The volume of the
external members becomes smaller. The volume of the inter-
nal members of the truss is now 96.1% of the volume of the
Michell structure. The variation of the values of longitudinal
forces in the external members is now smaller; the deviation
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from the exact constant value of the force is now smaller than
5%.

3 Chan-like cantilevers

3.1 The point load at the boundary BH

The cantilever considered is augmented with Chan-like do-
main. The volume of fibres in this domain is computed by an
iterated integral. The force in the upper external bar varies
along the boundary, and its volume is computed by appro-
priate line integration. The analysis of the properties of such
an optimal cantilever will be shown by a concrete example
(see Fig. 2).

We have here r1 = |AN| = a/2, r2 = |RA| = a
√

3/2,
a=|RN|, κ=3. The angle of the upper circular fan is θ2=

2π/9. Coordinates of the point P are αp=7π/18; βp=11π/18.
Direction of the force is ϕ=π/5. The Cartesian coor-
dinates of point P=H, measured in the (x,y) frame are

xP= 1.593994062 a; yP= 2.064201430 a. Distance of point
P to the supporting line RN is d= 3.017660610 a. We can
compute the forces in the reinforcing bars at node P=H:
FT (P)=0.8290375726P; FC(P)=−0.5591929034P

Reactions at the upper supporting node R is Hg

=2.383536711P, Vg=1.284829035P
Reactions at the lower supporting node N is Hd=

−1.795751459P, Vd=−0.4758120425P

The non-dimensional volume is defined by V = V/Ṽ0
with Ṽ0 = Pa/σT . The volumes of fibres in the fibrous
domains are

V NAC = 2.186540186, V RB A = 0.9237368385,

VABDC = 3.750368950, V BDH = 1.633409910.

The total volume of fibres in the fibrous domains is V S =

8.494055884.

R 
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A 

N 

D 

0
x

0
y

x

y

gH  

dV  

dH  

gV  
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H=P 
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A 
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P 

N 

D 

a c

db

Fig. 2 a The cantilever loaded at the line BH. Here, P=H; b The force field T1; c The force field T2; d Density of fibres h
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We compute the volume of reinforcing bars. Volumes
of the tension bar and of the compression bars are VT =

4.146566250 and VC = 5.796540063, respectively. Total
volume of the reinforcing bars is VK = 9.943106313. Total
volume equals V = VS + VK = 18.43716220.

The same total volume, but computed by (I.2.12), equals
V = 18.43716218.

The force field T1 suffers a jump along the line AC or
along the boundary between Hill’s domain (III) and the cir-
cular domain IId (see Fig. III.4) . This force is continuous
along BD, where the Hill domain touches Chan’s domain
IV. Moreover, the force T1 is constant along the compression
bar. The force field T2 suffers a jump along AB or along the
boundary between Hill’s domain (III) and the upper circular
domain. The force T2 is continuous along BD, similarly as
T1 and vanishes along the straight boundary BH.

Every line of the geometric division is a line of disconti-
nuity of the effective density of fibres h because this quantity
depends both on Lamé coefficients and force fields. The den-
sity of fibres h tends to infinity at points where one of the
Lamé coefficients vanishes. This holds at points N and R and
along the whole line BH. Indeed, the lines α go to BH tan-
gentially, which means that the area density of these lines
around BH must be infinite.

It is worth emphasizing here that this infinitely dense
package of fibres along BH is not sufficient to strengthen
the boundary. This boundary must be additionally reinforced
by a bar of finite cross section.

3.2 The point load applied within domain BDH

To be specific we consider a concrete example, cf. Fig. 3. The
entities are the same as in Section 2.

The ratio of allowable stresses is κ=1. We write σT=

σC=σ. The angle of the upper fan is θ2 =
2π
5 . Curvilinear

coordinates of point P are αp =
3π
10 ; βp =

3π
5 . Angle between

the force direction and the supporting line RN is ϕ =
π
5 .

Cartesian coordinates (x, y) of point P are xP=0.706548421r;
yP=4.347572630r. Distance between the point P and the sup-
porting line is d=4.2809100497r.

The forces in the reinforcing bars are FT= 0.4539904998
P and FC=−0.8910065242 P.

Reaction forces at the upper supporting node R are Hg=

3.812906196 P and Vg=0.1353238651 P.
Reaction forces at the lower supporting node are Hd=

−3.225120945 P and Vd=0.6736931261 P.

The non-dimensional volumes are defined as in example
2.1. Volumes of material within the fibrous regions

V NMC = 0.8003150410, V NAM = 1.774085275,
V RBA = 3.001533208, V MQ DC = 2.835794214,
V ABQM = 4.567136096, V ZPDQ = 1.261828008,
V BZQ = 0.8789743173.

The total volume of the material within the fibrous domain
is V S = 15.11966616.

Volumes of the reinforcing tension and compres-
sion bars are V T = 3.518088666 and V C = 5.697963659,
respectively.

The total volume of the reinforcing bars: V K =

9.216052325.
The total volume of the material within the whole struc-

ture is V = V S + V K = 24.33571848.
The total volume of the material within the whole struc-

ture computed by (I.2.12) is V = 24.33571848.
The graph of T1 is similar to the case of the point load

being applied at the boundary of Chan’s domain IVg. Along
PC the force T1 is constant and equal (up to the sign) to
the longitudinal force in the compression bar. The force T1
achieves a maximal constant value on the straight segment
RA. On the lower circular fan the force T1 vanishes. Thus,
the arc AC is the only discontinuity line for this force field.

The graph of the force T2 has a specific shape not occur-
ring up till now. Along the segment PZ of the boundary of
the region IV (see Fig. III.6), this force assumes the absolute
value equal to the longitudinal force in the tension bar. On
the other hand, this force vanishes along the segment ZB of
the boundary of the Chan-like domain. A discontinuity of this
force occurs at point Z, where the natural boundary condition
changes its character. This discontinuity extends towards the
domains IV, III and II along the line ZQMN. The value of
the jump is constant along this line and equals FT (P); this is
just the value of T2 along ZP. The values of T2 increase from
the boundary of Chan’s domain IVg towards the beginning
of the parametric line along which this force is acting. The
maximum is achieved on the straight line AN.

Thus, the discontinuity lines of the density function h are

BD, the interface between Hill’s domain III and Chan’s do-
main IVg (there A jumps);
ZN, the interface between the domains of type 1 and 2 (there
the force T2 jumps);
AB, there both A and T2 suffer jumps; AC, there B and T1
suffer jumps.

We note that the subdomains of continuity of function h
appear as a result of the overlapping of the static and geo-
metric subdivision. This leads to a complicated form of the
graph of function h. This function tends to infinity along the
straight segment BZ and at the supporting nodes N and R. A
highly irregular behaviour of function h is observed around
point A.

The analytical results are checked by analysis of trusses of
finite number of joints. We consider first a truss of 162 mem-
bers and 83 nodes, see Fig. 3e. We assume that the members
are fully stressed and compute the volume of the material of
the truss, 24.39800388V0, while the volume of the external
members is 10.24421848V0, and the volume of the internal
members equals 14.15378540V0. Volume of the upper exter-
nal tension members is 3.790527422V0, and the volume of the
lower external compression members equals 6.453691055V0.
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Fig. 3 a The cantilever considered. The segment BZ is straight, as lying along the boundary of the feasible domain �0; b The force field T1;
c The force field T2; d Effective density of the fibres h; e A truss with 83 nodes at the intersection points of the Hencky net; f The truss of 1091
joints; g graph of the force in the upper external bars of the truss of Fig. 3f; h graph of the force in the upper reinforcing bar RBZP of the optimal
Michell structure; i Graph of the force in the lower external members of the truss of Fig. 3f

The volume of the truss is bigger than the volume of the
material used for the Michell structure by 0.256%. The in-
ternal members contribute to 58.012% of the total volume,
whilst for the optimal cantilever, this contribution equals
62.129%.

While analysing variation of the longitudinal force in the
upper tension bars, one observes an almost constant value of
the force in the first three members counting from point P: in
the two members along α line and in the first additional bar.

This is because the internal members are almost orthogonally
linked with the external ones there. In the four next members
the force increases 2,5 times, which is caused by the appear-
ance of the almost tangent members. On the other hand, the
change of the force in the external compression members is
very small (not bigger than 15%) because no tangent mem-
bers are present there.

We consider now the truss of a larger number of joints,
1,091 and of 2,178 members, see Fig. 3f. Now, the volume of



Michell cantilevers constructed within trapezoidal domains 121

Fig. 3 (Continued)

the material of the truss is 24.33960822V0; volume of exter-
nal members is 9.458673821V0; volume of internal members
is 14.88093440V0. The volume of the upper external tension
members is 3.580848790V0 and the volume of the lower ex-
ternal tension members is 5.877825031V0.

The volume of the material used for constructing the truss
of Fig. 3e is almost the same as the volume of the material of
the Michell structure; the difference is 0.016%. Contribution
of the internal members is greater now (61.139% of the total
volume); the contribution of the external members is smaller
than in the previous approximation. The force in the tension
members is practically constant in the first nine members
counting from point P. It then increases, achieving the value
1,243 P at the supporting node R. The analogous value in the
Michell structure equals 1,214 P. Thus, the graph 3g shows
coincidence with the theoretical prediction in Fig. 3h of the
tension force in the upper reinforcing bar. The longitudinal
forces in the compression bar are not constant. Their increase
is about 3.69%.

4 The cantilevers associated with the force applied
within domain DHJG

4.1 Case of κ=1

The geometric division of the feasible domain �0 is shown
in Fig. I.19. If the point load P is applied within DHJG, then

the optimal cantilever will be included within RBHJGCN.
Position of the point load introduces the external boundaries:
RBZSgP and NCZ′SdP (see Fig. 4). The intervals BZ and CZ′

are straight. The aim of this section is to analyse the static
work of the optimal cantilever by using the results concerning
geometry of Hencky nets (section I.8), virtual displacement
fields (section II.7) and force fields (section III.8). To be spe-
cific we assume concrete data to fix geometry of the feasible
domain, the position and direction of the concentrated force
of magnitude P:

θ1 = θ2 =
3π

10
, xP = 4.346573703r ;

yP = 3.737498915r, ϕ = −
π

10

where |RN| = r
√

2; coordinates xP, yP are referred to the
(x, y) system, as in Fig. 1. Then

d = 6.423409349r , αp =
11π

20
, βp =

π

2
.

By using the methods of section III.8 we compute the forces
in the reinforcing bars:

FT = 0 .5877852524 P , FC = −0.8090169943 P ,

the reactions at R are Hg=4.259331967 P and Vg=

0.4880608891 P, and the reaction forces at N are Hd=

−4.568348964 P and Vd=0.4629956217 P. These reactions
are directed along (−x0) and y0. Having the Lamé coefficients
(section I.8) and the force fields (section III.8) we know the
distribution of the density function h by (1.2). Appropriate
integration gives the non-dimensional volumes V = V/V0
of the material within the subdomains shown in Fig. 4; here,
V0=Pr/σ; σ=σ T=σC.

V NAM = 1.77494717, V NMC = 0.9002697526,

V RM ′ A = 2.163813476, V RBM ′ = 0 .4821436945,

V AM ′WM = 3.126098073, V MWQ′C = 1.898471189,

V BQWM ′ = 0.7987535187, V CQ′ Z ′ = 1.785009056,

V BZQ = 1.221821872, V QDQ′W = 0.5861877908,

V Q′ DSd Z ′ = 0.979949195473, V Z Sg DQ = 1.583623832,

V DSg P Sd = 3.180358924

Thus, the total volume of the material within the fibrous do-
mains equals V S = 20.48144755. Then we compute the vol-
umes of the tension (T) and compression (C) bars

V T = 6.180644310,
V C = 7.831983019,
V K = V T + V C = 14.01262733.

The volume of the material used for the whole structure is
V = V S + V K = 34.49407488 . The same volume can be
computed by the alternative formula (I.2.12). Using the re-
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sults of section II.7 one finds V = 34.49407452, which con-
firms the previous result based on the force field analysis.

Distribution of the force field T1 is seemingly similar to
that of example 7, where the point load is applied within
Chan’s domain IVd. Then the main part of the cantilever was
divided into two subdomains of the static division. The situa-
tion now is more complicated. The main part of the cantilever
(without circular fans) is divided into four subdomains of the
static division, separated by the lines MZ and M′Z′ (see Fig.
III.9). In each subdomain the force field T1 is determined by
different formulae. Along the line Z′Q′WM′R we note the
jump of T1 equal to FC(P). Along MWQZ the force T1 is
continuous; that is why this line is not visible in the graph
in Fig. 4b. The graph of T2 is similar to that of the example
in sec. 3.2, where the point load was applied within Chan’s

domain IVg. Now the jump of value FT (P) occurs along MZ,
while along M′Z′, the internal force T2 is continuous.

The graph of the density of fibres function h is constructed
by overlapping the graphs of Lamé coefficients and the in-
ternal forces T1 and T2. Six discontinuity lines appear: two
discontinuity lines of the force fields ZN and Z′R, the lines
of geometric division CSg and BSd, and the circular arcs AC
and AB.

Let us note that all these lines appeared already in the
examples in which the point P lay within Chan’s domains
(upper and lower); these domains are now extended. Thus,
the optimal cantilever considered is composed of 13 subdo-
mains in which density h is appropriately determined, the
internal boundaries being the discontinuity lines of h. Four
subdomains of the final division appear on the two circular
domains, four on the Hill’s domain, two of them lie on Chan’s
upper domain and two on Chan’s lower domain; one subdo-
main appears in domain V (see Fig. III.9). Thus, the density
function graph is fairly complicated (see Fig. 4d).

The results presented above will be verified by consid-
ering two trusses (1,2) of finite number of joints fixed at the
selected intersection points of the Hencky net of our problem.
The truss (1) of 214 and truss (2) of 2,998 members are shown
in Fig. 4e. One can prove that both these trusses are statically
determinate. This property makes it easy to fix the cross sec-
tions to saturate the stress level. The results of computations
are set up in Table 1, where V S for trusses represents the total
volume of internal members.

Let us analyse distribution of the longitudinal forces in
the external members and compare them with distribution of
the forces FC and FT in the reinforcing ribs of the Michell
structure (see Fig. 4f–i). The nonlinear behaviour of FT
along BZ and of FC along CZ′ is approximated stepwise (see
Fig. 4f, h). Let us note that truss (2) is heavier than the optimal
cantilever by 0.015%.

The volume of the truss is bigger than the volume of the
material used for Michell-like cantilever by 0.244%. Con-
sider now the volumes of the external and internal members.
The latter members occupy 56.125% of the total volume;
let us remind that this contribution is 59.376% in the optimal
cantilever. Thus, we note a discrepancy much larger than that
concerning approximation of the total volume.

The force in the tension-reinforcing bar is constant in the
first eight members, then it increases up to the value 2,094
P. This increase is brought about by tangent members going
from within the interior. A similar phenomenon is observed

Table 1 Truss approximation results

Truss 1 Truss 2 Michell structure

Number of members 214 2,998 Infinite
Number of joints 109 1,501 Infinite
V 34.57834674 34.49933802 34.49407
V T 6.851381387 6.336352716 6.1806443
V C 8.319861742 7.94368072 7.831983
VK 15.17124313 14.28003344 14.012627
VS 19.40710361 20.21930458 20.481447
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in the external line of compression members: the force is
constant in the first six members, and then its absolute value
increases and achieves the maximal value 2,345 P at the sup-
porting node.

The truss is heavier than the optimal cantilever by
0.015%. The internal members contribute to 58.61% of the
total volume. The longitudinal force in the upper external ten-
sion members varies from 0.604P to 1,911P, while the force
in the compression external members varies from −0,821P to
−2,189P. The corresponding values of the optimal cantilever
are from 0,587P to 1,856P and from −0,809P to −2,141P.
The graphs of the force distribution in the external mem-
bers compare favorably with their counterparts in the optimal
cantilever.

4.2 Case of κ=3

To be specific we assume concrete data, see Fig. 5a

θ1 =
π

6
; θ2 =

5π

12
, xP = 1.557879337 a;

yP = 2.994292715 a, ϕ =
π

8
,

where a=|RN|; coordinates xP, yP are referred to the (x,y)
system (as in Fig. 1). Then

d = 3.805085930 a, αp =
π

2
, βp =

π

2
.

By using the methods of section III.8 we compute the forces
in the reinforcing bars:

FT = 0.6087614290 P; FC = −0.7933533403 P

and compute the reactions at R as Hg=3.363139403 P, Vg=

0.5613526265 P and the reaction forces at N as Hd=

−3.74582283 P, Vd=0.3625269006 P. These reactions are
directed along (−x0) and y0. Having the Lamé coefficients
(section I.8) and the force fields (section III.8), we know the
distribution of the density function h by (1.2). Appropriate
integration gives the non-dimensional volumes V = V/Ṽ0 of
the material within the subdomains shown in Fig. 5a; here,
Ṽ0 = Pa/σT ;

V NAM = 1.03291971, V N MC = 1.095218421,

V RM ′ A = 1.738224285, V RBM ′ = 0 .5492020058,

V AM ′W M = 1.957767017, V MW Q′C = 2.749061275,
V BQW M ′ = 0.3951255746, V C Q′ Z ′ = 4.825841085,

V BZQ = 0.1280375442, V QDQ′W = 0.7147046372,

V Q′ DSd Z ′ = 2.807816353, V Z Sg DQ = 0.3647799660,
V DSg P Sd = 1.823721477.

Thus, the total volume of the material within the fibrous
domains equals V S = 20.18241935. Then we compute the
volumes of the tension (T) and compression (C) bars

V T = 3.086166189,

V C = 14.67228125,

V K = V T + V C = 17.75844744.

The volume of the material used for the whole structure
is V = V S + V K = 37.94086679. The same volume can be
computed by the alternative formula (I.2.12). Using the re-
sults of section II.7 one finds V = 37.94086663, which con-
firms the previous result based on the force field analysis.

We note that T2=const along PZ, then it vanishes along
ZBR (see Fig. 5b). Along ZM this force field jumps. Its max-
imum is attained along NC.

5 The case of the concentrated force applied at a point
within JH2J2G2

Now we consider a longer cantilever, transmitting the point
load applied within JH2J2G2 to the supporting line RN. We
assume that σ=σT=σC (or κ=1) and θ1=θ2=θ=3π/10. The
key to the solution of the equilibrium problem of Fig. 6 is to
figure out the division of the cantilever domain, which is a
result of an overlapping of the kinematic division explained
in Fig. I.19, denoted by Roman numerals (I,II,...,VII), and
of the static division of Fig. III.11, denoted by Arabic num-
bers (1,2,...,7), as superscripts. The indices g and d mean the
upper or lower domain, respectively. This example is fairly
complicated, but since it could serve as a benchmark, the
indispensable details will nevertheless be reported.

Thus, the domain of the cantilever is divided into the
following 23 subdomains:

RAM′
= II7

g, NAM = II7
d ,

AM′WM = III7, RBM′
= II6

g,

BM′WQ = III6, BQZ = IV6
g,

NMC = II5
d , CMWQ′

= III5,

CQ′Z′
= IV5

d , WQDQ’ = III4,

Q′DZ′

1Z′
= IV4

d , QZZ1D = IV4
g,

DZ1W1Z′
= V4, Z′Z′

1G = IV3
d ,

GZ′

1W1Zd = V3, GQ′

1Zd = VI3
d ,

ZZ1H = IV2
g, Z1W1Q1H = V2,

HQ1Zg = VI2
g, W1Q1D1Q′

1 = V1,

Q′

1D1H1Zd = VI1
d , Q1D1G1Zg = VI1

g,

D1G1PH1 = VII1.
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Fig. 5 a The cantilever considered; b Graph of the force field T2; c Graph of the density of fibres function h

The vertices of these domains have the following curvilinear
coordinates (α, β):

P =
(
αp, βp

)
, B = (0, θ),

M′
=

(
0, βp − 2θ

)
, A = (0, 0),

M =
(
αp − 2θ, 0

)
, C = (θ, 0),

W =
(
αp − 2θ, βp − 2θ

)
, Q′

=
(
θ, βp − 2θ

)
,

Q =
(
αp − 2θ, θ

)
, D = (θ, θ),

Z =
(
αp − 2θ, αp − θ

)
, Z′

=
(
βp − θ, βp − 2θ

)
,

G = (2θ, θ), Z′

1 =
(
βp − θ, θ

)
,

Z1 =
(
θ, αp − θ

)
, H = (θ, 2θ),

W1 =
(
βp − θ, αp − θ

)
, Q1 =

(
βp − θ, 2θ

)
,

Q′

1 =
(
2θ, αp − θ

)
, D1 = (2θ, 2θ),

Zg =
(
βp − θ, βp

)
, Zd =

(
αp, αp − θ

)
,

G1 =
(
2θ, βp

)
, H1 =

(
αp, 2θ

)
.

We shall report the results corresponding to the following
data:

αp =
17π

20
;βp =

4π

5
;ϕ =

π

10
; d = 13.01824557r.

Not all the details of the analysis will be given. The re-
sults below follow from numerous formulae reported in
the previous parts of the paper. We start with Cartesian
coordinates [referred to (x,y) frame of Fig. 1] of point P:
xP=9.188744886r; yP=8.221834561r. We compute the
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Fig. 6 Subdivision of the optimal cantilever into the domains of static
and geometric divisions. Case of point P lying within the domain VII

forces in the reinforcing bars at node P as FT(P)=
0.9510565165 P; FC(P)=−0.3090169938 P. Reaction forces
at the upper supporting node are computed as follows:

Hg =

βp−2θ∫
0

T IIg7
1 (1, β) sin

(π
4

+ β
)

dβ

+

θ∫
βp−2θ

T IIg6
1 (1, β) sin

(π
4

+β
)

dβ+FT (B) sin
(π

4
+ θ

)
,

where FT (B) is given by (III.9.17b) for α=0; T1
IIg7 (or T1

IIg6)
means T1 within domain II7

g (or IIg
6);

Vg =

βp−2θ∫
0

T III 7
1 (1, β) cos

(π
4

+ β
)

dβ

+

θ∫
βp−2θ

T III5
1 (1, β) cos

(π
4

+β
)

dβ+FT (B) cos
(π

4
+θ

)
,

which gives Hg=8.759863521 P and Vg=0.4486582529 P.
Reaction forces at the lower supporting node are computed
as follows:

Hd =

αp−2θ∫
0

T II d7
2 (α, 1) sin

(π
4

+ α
)

dα

+

θ∫
αp−2θ

T II d5
2 (α, 1) sin

(π
4

+α
)

dα+FC(C) sin
(π

4
+θ

)
,

where FC(C) is given by (III.9.18b) for β=0;

Vd = −

αp−2θ∫
0

T II d7
2 (α, 1) cos

(π
4

+ α
)

dα

−

θ∫
αp−2θ

T II d5
2 (α, 1) cos

(π
4

+α
)

dα−FC(C) cos
(π

4
+θ

)
,

which gives Hd=−8.450846479 P and Vd=0.5023981407 P.
The volumes of the material within the fibrous domains

are denoted according to the notation of Fig. III.11 and Fig. 6.
To make the analysis complete we shall put forward all the
formulae for the volumes of the subdomains into which the
structure is divided.

The volume of the lower circular internal fan NAM (see
Fig. 6) is

V II d7
=

1∫
0

αp−2θ∫
0

AII d7(α, β1)B
II d7(α, β1)h

II d7(α, β1)dαdβ1;

V II d7
= 3.475700031V0,

where V0 = Pr/σ . The volume of the lower circular external
fan NMC is

V II d5
=

1∫
0

θ∫
αp−2θ

AII d5(α, β1)B
II d5(α, β1)h

II d5(α, β1)dαdβ1;

V II d5
= 0.6455328237V0.

The volume of the upper circular internal fan RAM′ is

V IIg7
=

βp−2θ∫
0

1∫
0

AIIg7(α1, β)B
IIg7(α1, β)h

IIg7(α1, β)dα1dβ;

V IIg7
= 2.780971414V0.

The volume of the upper circular external fan RBM′ is

V IIg6
=

θ∫
βp−2θ

1∫
0

AIIg6(α1, β)B
IIg6(α1, β)h

IIg6(α1, β)dα1dβ;

V IIg6
= 1.345820099V0.

The volume of Hill’s region AM′WM of the static division 7
is

V III 7
=

βp−2θ∫
0

αp−2θ∫
0

AIII 7(α, β)B III 7(α, β)h III 7(α, β)dαdβ;

V III 7
= 4.997932218V0.
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The volume of Hill’s region BM′WQ of the static division 6
is

V III 6
=

θ∫
βp−2θ

αp−2θ∫
0

AIII 6(α, β)B III 6(α, β)h III 6(α, β)dαdβ;

V III 6
= 2.944450720V0.

The volume of Hill’s region CMWQ′ of the static division 5
is

V III 5
=

βp−2θ∫
0

θ∫
αp−2θ

AIII 5(α, β)B III 5(α, β)h III 5(α, β)dαdβ;

V III 5
= 1.094712407V0.

The volume of Hill’s region WQDQ′ of the static division 4
is

V III 4
=

θ∫
βp−2θ

θ∫
αp−2θ

AIII 4(α, β)B III 4(α, β)h III 4(α, β)dαdβ;

V III 4
= 0.7912442817V0.

The volume of Chan’s lower domain CQ′Z′ of the static di-
vision 5 is

V IV d5
=

βp−2θ∫
0

θ+β∫
θ

AIV d5(α, β)B IV d5(α, β)h IV d5(α, β)dαdβ;

V IV d5
= 1.949485842V0.

The volume of Chan’s lower domain Q′DZ′

1Z′ of the static
division 4 is

V IV d4
=

θ∫
βp−2θ

βp+θ∫
θ

AIV d4(α, β)B IV d4(α, β)h IV d4(α, β)dαdβ;

V IV d4
= 2.613805605V0.

The volume of Chan’s lower domain Z′Z′

1G of the static di-
vision 3 is

V IV d3
=

θ∫
βp−2θ

θ+β∫
βp−θ

AIV d3(α, β)B IV d3(α, β)h IV d3(α, β)dαdβ;

V IV d3
= 0.7153223805V0.

The volume of Chan’s upper domain BQZ of the static divi-
sion 6 is

V IV g6
=

αp−2θ∫
0

θ+α∫
θ

AIV g6(α, β)B IV g6(α, β)h IV g6(α, β)dαdβ;

V IV g6
= 3.345627065V0.

The volume of Chan’s upper domain QZZ1D of the static
division 4 is

V IV g4
=

θ∫
αp−2θ

αp−θ∫
θ

AIV g4(α, β)B IV g4(α, β)h IV g4(α, β)dαdβ;

V IV g4
= 1.715672751V0.

The volume of Chan’s upper domain ZZ1H of the static divi-
sion 2 is

V IV g2
=

θ∫
αp−2θ

θ+α∫
αp−θ

AIV g2(α, β)B IV g2(α, β)h IV g2(α, β)dαdβ;

V IV g2
= 0.1564714358V0.

The volume of the domain V of the static division 4 or
DZ1W1Z′ is

V V 4
=

αp−θ∫
θ

β−θ∫
θ

AV 4(α, β)BV 4(α, β)hV 4(α, β)dαdβ;

V V 4
= 6.338378990V0.

The volume of the domain V of the static division 3 or
GZ′

1W1Zd is

V V 3
=

αp−θ∫
θ

2θ∫
βp−θ

AV 3(α, β)BV 3(α, β)hV 3(α, β)dαdβ;

V V 3
= 3.543679041V0.

The volume of the domain V of the static division 2 or
Z1W1Q1H is

V V 2
=

2θ∫
αp−θ

βp−θ∫
θ

AV 2(α, β)BV 2(α, β)hV 2(α, β)dαdβ;

V V 2
= 1.213272591V0.

The volume of the domain V of the static division 1 or
W1Q1D1Q′

1 is

V V 1
=

2θ∫
αp−θ

2θ∫
βp−θ

AV 1(α, β)BV 1(α, β)hV 1(α, β)dαdβ;

V V 1
= 0.7663860998V0.

The volume of the second lower Chan’s domain GQ′

1Zd of
the static division 3 is

V VI d3
=

αp−θ∫
θ

θ+β∫
2θ

AVI d3(α, β)BVI d3(α, β)hVI d3(α, β)dαdβ;

V VI d3
= 3.211119411V0.
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The volume of the second lower Chan’s domain Q′

1D1H1Zd
of the static division 1 is

V VI d1
=

2θ∫
αp−θ

αp∫
2θ

AVI d1(α, β)BVI d1(α, β)hVI d1(α, β)dαdβ;

V VI d1
= 1.350077647V0.

The volume of the second upper Chan’s domain HQ1Zg of
the static division 2 is

V VIg2
=

βp−θ∫
θ

θ+α∫
2θ

AVIg2(α, β)BVIg2(α, β)hVIg2(α, β)dαdβ;

V VIg2
= 1.969535422V0.

The volume of the second upper Chan’s domain Q1D1G1Zg
of the static division 1 is

V VIg1
=

2θ∫
βp−θ

βp∫
2θ

AVIg1(α, β)BVIg1(α, β)hVIg1(α, β)dαdβ;

V VIg1
= 2.286771699V0.

The volume of the domain VII of the static division 1, or
D1G1PH1 is

V VII 1
=

βp∫
2θ

αp∫
2θ

AVII 1(α, β)BVII 1(α, β)hVII 1(α, β)dαdβ;

V VII 1
= 4.911550402V0.

The total volume of the material used for the fibrous domains
equals VS=54.16352037V0.

We compute the volumes of the reinforcing bars. The
tension-reinforcing bar along the domain RBM′ is V IIg6

k =

σ−1·F 6
T (B)·r; V II 6

k =5.039527441V0. The volume of the
tension-reinforcing bar along the domain BQZ is

V IVg6
k = σ−1

αp−2θ∫
0

AIV g6(α, α + θ)F6
T dα;

V IVg6
k = 7.772438081V0.

The volume of the tension -reinforcing bar along the domain
ZZ1H is

V IVg2
k = σ−1

θ∫
αp−2θ

AIV g2(α, α + θ)F2
T dα;

V IVg2
k = 1.629394719V0.

The volume of the tension-reinforcing bar along the domain
HQ1Zg is

V VIg2
k = σ−1

βp−θ∫
θ

AVIg2(α, α + θ)F2
T dα;

V VIg2
k = 4.37933693V0.

The volume of the tension-reinforcing bar along the domain
Q1D1G1Zg is

V VIg1
k = σ−1

2θ∫
βp−θ

AVIg1
(
α, βp

)
FT dα;

V VIg1
k = 1.853498369V0.

The volume of the tension-reinforcing bar along the domain
D1G1PH1 is

V VII1
k = σ−1

αp∫
2θ

AVII 1
(
α, βp

)
FT dα;

V VII1
k = 4.714622429V0.

The total volume of the tension-reinforcing bar is VT=

5.38881797V0.
The volume of the reinforcing compression bar along the

domain NMC is

V IId5
k = −σ−1

· F5
C(C) · r; V IId5

k = 4.733490212V0.

The volume of the reinforcing compression bar along the
domain CQ′Z′ is

V IVd5
k = −σ−1

βp−2θ∫
0

B IV d5(β + θ, β)F5
C dβ;

V IVd5
k = 5.711466545V0.

The volume of the reinforcing compression bar along the
domain Z′Z′

1G is

V IVd3
k = −σ−1

θ∫
βp−2θ

B IV d3(β + θ, β)F3
C dβ;

V IVd3
k = 2.753625735V0.

The volume of the reinforcing compression bar along the
domain GQ′

1Zd is

V VId3
k = −σ−1

αp−2θ∫
θ

BVI d3(β + θ, β)F3
C dβ;

V VId3
k = 3.43389751V0.

The volume of the reinforcing compression bar along the
domain Q′

1D1H1Zd is

V VId1
k = −σ−1

2θ∫
αp−θ

BVI d1
(
αp, β

)
FC dβ;

V VId1
k = .3160621721V0.



Michell cantilevers constructed within trapezoidal domains 129

The volume of the reinforcing compression bar along the
domain D1G1PH1 is

V VII1
k = −σ−1

βp∫
2θ

BVII 1
(
αp, β

)
FC dβ;

V VII1
k = 1.363841418V0.

The total volume of the compression reinforcing bar is VC=

18.31238360V0.
The total volume of the reinforcing bars is VK=

43.70120157V0.
The total volume of the material used for the structure is

V=VS+VK=97.86472194V0.
The same volume computed by the alternative formula

(I.2.12) is V=97.86471582V0.

6 Final remarks

The analyses of concrete examples of Michell cantilevers
presented in the paper show complexity of the emerging in-
ternal force fields and the density of fibres. Equivalence of the
formulae for the optimal weight (I.2.6 and I.2.12) is proven
analytically or, in more complicated cases, by numerical in-
tegration of the analytical formulae. The paper shows by ex-
amples that the static problems of Michell structures can be
approximated by static problems of specific statically deter-
minate trusses with finite number of joints with arbitrary ac-
curacy. This property of the Michell structures can be proven
mathematically. It is sufficient to rearrange the equilibrium
equations (III.2.4) to their variational form

∫∫ [
T1

(
∂u

∂α
+ v

)
+ T2

(
∂v̄

∂β
+ u

)]
dαdβ = f (u, v)∀ u,

v kinematically admissible,
(6.1)

where f (.,.) is a linear form representing the virtual work of
the loading and the integration extends over admissible val-
ues of parameters. The above variational equation, possibly
augmented with boundary integrals as in (I.2.5), can be ob-
tained from the conditions of equilibrium of approximating
trusses∑
tension members

NK1K +

∑
compression members

NK1K = QT q ∀ q ∈ Rn
;

(6.2)

by appropriate passage to the limit: n→∞. Here, K indexes
the members, NK are longitudinal forces in the members,

1K = 1K (q) are elongations of members associated with
virtual displacements of nodes q and Q represents the col-
umn of the point loads applied at the nodes. The passage from
(6.2) to (6.1) can also be performed in the case of the sim-
ply supported beam of Michell, which confirms the recent
analytical result by Zhou and Li (2004).

The plane Michell cantilevers, subjected to point loads,
are reinforced by bars of finite cross sections. By analogy,
possible spatial Michell structures should be reinforced by
membrane coatings if subjected to line loadings and, addi-
tionally, by reinforcing cables (i.e. bars with no bending) if
subjected to point loads. Consequently, the optimal designs
will comprise all possible structures developed in structural
mechanics: special composites, membrane shells and cables,
capable of transmitting stresses without shearing. Let us cher-
ish our hope here that these questions will be cleared up in
the near future.
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