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ABSTRACT The area affected by the earthquake is vast and often difficult to entirely cover, and the
earthquake itself is a sudden event that causes multiple defects simultaneously, that cannot be effectively
traced using traditional, manual methods. This article presents an innovative approach to the problem
of detecting damage after sudden events by using interconnected set of deep machine learning models
organized in a single pipeline and allowing for easy modification and swapping models seamlessly. Models
in the pipeline were trained with a synthetic dataset and were adapted to be further evaluated and used with
unmanned aerial vehicles (UAVs) in real-world conditions. Thanks to the methods presented in the article,
it is possible to obtain high accuracy in detecting buildings defects, segmenting constructions into their
components and estimating their technical condition on the basis of a single drone flight.

INDEX TERMS Structural health monitoring, machine learning, defect detection, synthetic dataset

I. INTRODUCTION

EARTHQUAKES are sudden and violent disasters that
cover huge areas of land in a very short period of time.

They have been known to mankind since ancient times and
invariably pose one of the most serious threats to the lives
of people concentrated in large cities. The scale of their
destructive power can be seen in the number of nearly two
million earthquake victims in the 20th century alone [1], or in
the most devastating events, which could claim up to nearly
a million lives [2]. At the same time, the map of seismically
active areas largely overlaps with densely populated areas,
particularly in North America, Europe and Asia [3], which
focuses researchers on this type of hazard and methods of its
mitigation.

Studies conducted to date have assessed the effects of
earthquakes both in terms of the impact on housing and
infrastructure, and the performance of public services in
repairing damage or improving traffic flow in the affected
area [4, 5]. This works have led to concepts of cities in
which such events will no longer have a critical impact

on the lives of residents, but with the cost of monitoring
the condition of structures even after seemingly harmless,
small earthquakes to take corrective action immediately after
damage occurs [6]. This, however, requires the use of mod-
ern methods of construction monitoring to reduce the labor
intensity of the entire process, without which the end goal is
impossible to achieve.

In this paper, we present our step towards building au-
tonomous systems that can bring this goal closer. Using a
synthetic dataset containing models of earthquake-damaged
buildings observed from unmanned aerial vehicle (UAV)
like perspective, we created a robust, yet easily modifiable
pipeline featuring multiple machine learning models that can
be applied in real-life scenarios. The models we have trained
allow us to detect close objects, segment them into their
component parts, and finally detect their defects and evaluate
their condition. In our work, we also described the specifics
of working with a synthetic dataset and the possibilities for
extending our solution that could improve its accuracy.

The rest of this paper is organized as follows. In Sec-
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Żarski et al.: Computer Vision based inspection on post-earthquake with UAV synthetic dataset

tion II we present works related to the main topics of the
article, including earthquake-induced structural defects, de-
fect detection and the use of UAVs along with synthetic
dataset. In Section III we describe our approach starting with
dataset description. Then we cover in detail each task of our
approach together with our solution and develop our final
pipeline. Section IV provides discussion of our solution. in
which we suggest ways to improve it. Lastly, in Section V
we summarize the progress achieved in the work.

II. RELATED WORKS
Although the topic is extremely broad, four primary themes
present in the related literature and research papers can
be isolated from it. These topics include earthquake-related
damage to structures, detection and management of this
damage, the use of UAVs for this purpose, and the use of
synthetic datasets for machine learning algorithms.

On the subject of damage to buildings caused by earth-
quakes, many scientific works focus on the analysis of spe-
cific cases of disasters [7, 8], or individual constructions [9]
affected by earthquake. Related to them are works on estimat-
ing possible future damage in a given area [10] and building
general models of damage caused by earthquakes [11, 12]
or management strategies. There are also works describing
the assessment of the accuracy of currently used methods
of seismic measurements in relation to the damage recorded
on buildings [13], or novel systems of seismic data collec-
tion [14].

The field of detection and management of identified faults
is also rich in research. In the detection of defects, methods
employing, among others, dynamic response of the struc-
ture [15] or laser scanning are used [16], but for a long time
there has also been a significant increase in the number of
works devoted to the use of computer vision, also with regard
to earthquakes [17]. In this sub-field, classical methods of
computer vision [18] are currently being replaced by methods
that derive from machine learning, using convolutional [19]
and fully convolutional [20] neural networks, LSTM [21]
networks or other techniques combining [22] or improv-
ing [23] upon these methods. However, it should be noted that
only a few systems have been dedicated to detecting more
than a single type of defect. Similarly, the field of identified
damage management is still evolving, using, inter alia, BIM
models [24] and mobile applications [25].

The use of UAVs is extremely closely related to the de-
tection of damage to buildings, as they have been used for
this purpose for a long time, not only in the form of flying
vehicles, but also self-propelled rovers [26]. Flying vehicles
were used to detect damage on various surfaces, such as
pavements [27], railroads [28] and public infrastructure fa-
cilities [29], also with additional sensors [30].

The last field – the use of synthetic data sets in train-
ing machine learning algorithms also has a long history
of research related to it. Synthetically generated data sets
do not necessarily have to be images and have been used
in many areas, ranging from sociology [31], finance [32],

medicine [33], to the issues related to computer vision. Due
to the fact that sets of correctly labeled data are necessary in
the training of ML algorithms, and their manual collection is
extremely time-consuming, automatic generators of synthetic
data were also developed, thus further reducing laboriousness
of building a data sets [34].

III. OUR APPROACH
In our approach we focused on putting various computer
vision and machine learning techniques to the test in order
to find the optimal solution to the problem at hand. We used
various models of Convolutional Neural Networks for the
task of image recognition and semantic segmentation, and
decision trees, random forests and naive Bayes algorithm
for the classification task. While developing our solution
we used ready-made state-of-the-art models with transfer
learning technique for feature recognition as well as our own
models and algorithms, developed exclusively for the task
and trained from scratch.

In conclusion we managed to develop a robust pipeline
that can perform the tasks of segmenting construction com-
ponents, their defects and assessing each of the elements’
condition in the single run of the algorithm, while delivering
satisfactory accuracy. It has to be noted however, that the pre-
sented solution was validated only with the given, synthetic
dataset, and for the practical usage, the models should be fine
tuned also on the real-world datapoints.

All of the scripts needed to replicate the obtained results
are provided in our repository [35]. The experiments de-
scribed in this paper were performed on machine equipped
with Intel Core i7 3.80 GHz CPU, Nvidia GeForce RTX
3080Ti GPU and 64 GB of RAM.

A. DATASET DESCRIPTION AND INITIAL MANAGEMENT

Dataset description

The provided dataset [36] consisted of 4 808 images of
1920 × 1080px size from artificially-generated drone flight
in 3D urban surroundings and depicted multi-story apartment
buildings with hardly noticeable defects along with similarly-
looking backgrounds. Out of all images, 3 804 were labeled
into tasks of component, defect (cracking, spalling and ex-
posed rebar), and damage state recognition. Additionally,
separate labels were provided for depth channel of the im-
ages.

However, we found the direct usage of the dataset proved
to be difficult, as it came with a set of problems that had to
be resolved in the first step of data preparation. The most
important problem was the presence of conflicting labels in
the task of defect recognition. The total number of images
with colliding labels along with label-to-label collision mark-
ing is summarized in Tab. 1. This problem prevented the use
of a single model for defect recognition, as it would have to
yield the probabilities of occurrence of three separate labels.
This problem was solved by training three separate models
for each of the defect class.
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TABLE 1. Occurrences of label collisions in the dataset

Collision: Number of images where
collisions occurred:

Cracking - Exposed rebar 559
Cracking - Spalling 3660
Exposed rebar - Spalling 1931

Next, we discovered that the defect labels themselves make
up only a small fraction of the whole labeled image, which
was most noticeable for the exposed rebar class. The pixels
marked as exposed rebar occupied a maximum of only 1%
of the label image, with occurrences of as few as only one
labeled pixel per image (less than one hundredth of a percent
of all pixels in image). Furthermore, it was found out that
many of the images do not contain any of the class labels,
again, with exposed rebar class not present on nearly half of
the training images. To mitigate this problem, we introduced
step-by-step approach, in which at first the building in image
was split into its components and only then the defects were
sought in the area of segmented out components.

The last identified problem concerned the buildings visible
in the background. While such image alignment is realistic,
it does not coincide with the assigned labels, as they cover
only the building in the foreground, and thus would be
misleading for the classifier during its training (eg. wall in
the more distant building would be considered background
while similarly looking wall in the building nearby would be
classified accordingly to its class). Moreover, the provided
depth channel cannot be used directly by the models, as
this data is not provided for the evaluation dataset (although
RGB-D sensors are already in use with UAVs [37]). To avoid
this problem along with the need to estimate depth maps
with ML algorithms like in already existing works [38], we
decided to train a simple segmentation model to differentiate
between background and foreground in the initial step of the
image analysis.

Initial dataset management

Before developing, training and testing our algorithms,
a series of modifications to the dataset had to be done,
accordingly to the issues described above. First one was to
split it into training and testing datasets to avoid overfit-
ting of the trained algorithms and allow for reliable metrics
checking. We split the dataset randomly in 4:1 ratio, where
20% of the dataset was intended for testing, thus yielding
3 043 datapoints for training and 761 for testing. In order
to preserve the split and be able to repeat it with the same
outcome, it was initiated with the known seed for the random
algorithm.

After splitting the dataset, we prepared it for the task of
detecting objects in the foreground and masking unwanted
background ones. To include this step in the single, continu-
ous pipeline of performing all of given tasks in one algorithm
run, we added it as Task 0. In order to prepare the dataset,
we provided simple, binary image mask labels for classes

background and foreground, where all of the objects from
component segmentation task were counted as foreground
class. This way, the data prepared for classifier could differ-
entiate only between whole, close and distant set of objects
instead of each object distance type separately. The sample
images from the dataset and their reworked counterparts are
depicted in the Fig. 1. Apart from Task 0, images reworked
for this dataset, albeit with different labels, would be then
later used also for the rest of the tasks.

Next, for the task of detecting defects, we prepared a new
dataset that could help us with the problem of small number
of labeled pixels for the defects and their complete absence
from some of the images. In order to do so, we used labels
for detecting components from Task 2 to make rectangular
crops containing single element and its immediate surround-
ings. We repeated the same operation on label images, thus
obtaining dataset containing higher number of smaller than
initial images, but to greater extent filled with labeled pixels.
In this step we also excluded all of the image parts, where the
defects were not visible in order to slightly counteract biasing
the classifiers towards background class. The final yield of
images for every class in both training and testing datasets
for defect detection along with the total sum of damaged
elements is summarized in Tab. 2.

TABLE 2. Datapoints extracted for defects classes after the dataset
modification

Class Training set Testing set Total damaged
components

Cracking 11771 5072 16843
Spalling 15681 5030 20711
Exposed rebar 1394 355 1749

For the component segmentation task, we mostly used
the initial dataset provided with the task. The only modifi-
cations that we made were the use of images modified for
the background-foreground segmentation and re-coding the
labels’ numbers to integers – this way, as image labels we
obtained images containing only single channel.

Lastly, we also modified the dataset for the last task – the
damage state assessment. This task however proved to be
more demanding, as additional problems occurred. Some of
the elements while having their state decreased (by implica-
tion by the defects occurring on them), had no visible defects
that were indicated by provided labels. Other had conflicting
damage state designations even though the entire component
should have been classified to a single state. Furthermore, the
dataset containing structure elements did not separate their
individual segments (for instance segmentation task), even
though two segments of the same element may have differed
in condition. The latter two of the problems are depicted in
Fig. 2.

The problems described are beyond the ability to solve
them using dataset manipulation or even an elaborate ML
algorithm and are a direct result of the way the dataset was
constructed. As these were human errors made during the
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FIGURE 1. Initial dataset images (top) and reworked images by background removal (bottom)

FIGURE 2. Example of damage state marking problems: contrasting markings
on a single element (top), no clear division of component segments (bottom)

development of the dataset, possibly due to work fatigue,
this draws all the more attention to the need for careful
preparation of training data. However we still attempted to
solve them by approaching them in more general way. Rather
than focusing on elements’ defects themselves we decided
to focus on their surfaces, and assess them by their general
appearance.

In order to do so, we once again focused on extracting
surface images from single elements. This time however,
to retain as much information about the surface of a single
element as there was, we extracted them with their minimum
area, rotated rectangular bounding boxes and warped them
into square shape of 224 × 224px. An example of such
transformation is depicted in Fig. 3. Such rectangular images
were then used as an input to image classifier, where the class
was indicated by elements’ damage state. The final yield of
textures used for training is summarized in Tab. 3. While
considering the dataset, it is important to notice, that in this
task there are large inequalities between classes that when
mishandled, can affect the classifier.

FIGURE 3. Surface images warped to square shape

TABLE 3. Datapoints extracted for damage state classes after the dataset
modification

Damage
state

Training
dataset

Testing
dataset

Total extracted
components

No damage 1025 254 1279
Light damage 21811 5325 27136
Moderate damage 35762 8825 44587
Severe damage 2462 613 3075

The impact of dataset management

While the purpose of the modifications that we did to the
dataset may be unclear at first, they have greatly assisted us in
achieving high accuracy of the models we trained. Although
in the next sections we’ll be focusing on our most successful
models developed with the data modified as described above,
we will still provide the results from our other models that
used the dataset directly or through simple extraction of data
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for additional comparison.

B. TASK 0 – DETECTING FOREGROUND OBJECTS
As mentioned previously in Section III-A, we added the
initial task marked as Task 0 in order to differentiate be-
tween objects in background and foreground more easily. To
perform the segmentation we used the previously prepared
dataset along with model trained with Detectron 2 frame-
work, taken from Detectron 2 model ZOO repository [39].
Our choice of framework was based on the multiplicity of
training options, choices of available architectures, and the
ease of inference with the model. Detectron also allows for
changing the type of task (eg. object detection, semantic
segmentation etc.) with only minimal changes to the code,
for the ease of testing different approaches.

During our tests we found out that the model giving us op-
timal results considering both accuracy and inference speed
was the Faster R-CNN [40] based on ResNet 50 model [41]
with additional fully convolutional head as feature proposal
network, trained initially for 12 epochs on ImageNet [42]
dataset. We fine tuned the model for 15 additional epochs
using learning rate of 2.5e − 4 with batches containing two
images each and no additional learning rate decay.

The metrics of the model we obtained after training, in-
cluding both – mean values and values per class of IoU
and accuracy per pixel, are presented in Tab. 4. We found
them satisfactory, as masks resulting from inference with the
model hardly differ from the ones we manually prepared
for training, and can be used in subsequent tasks without
additional modifications.

TABLE 4. Metrics of foreground detection model

Metric Value [%]
mean IoU 98.88
mean pixel accuracy 99.28
IoU - foreground 99.46
IoU - background 98.30
Foreground pixel
accuracy 99.87

Background pixel
accuracy 98.70

C. TASK 1 – DETECTING DEFECTS
Similarly to Task 0, Task 1 also focuses on image semantic
segmentation with intention to detect cracks, spalling and
exposed rebar on the surface of the structure. This time
however, the objects sought in the image are much smaller
and more sparse across the dataset. As stated previously
in Section III-A, we attempted to mitigate this problem by
extracting only those parts of the dataset, where defects were
present. Also, due to the collisions of labels described in the
description of dataset, we had to train one model per defect
separately.

With such prepared dataset and task, we used the same
architecture as in Task 0 for three models, as it again proved

FIGURE 4. Example predictions for each model: cracking (top), spalling
(bottom left) and exposed rebar (bottom right)

to provide the best balance between accuracy and infer-
ence time. In order to achieve the best results we changed
training parameters – this time each model was fine tuned
for additional 50 epochs with learning rate decaying from
initial 2.5e− 4 by 2.5e−4

50 every epoch. The resulting metrics
(IoU and pixel accuracy per defect) calculated on the testing
dataset after training are presented in Tab. 5, and sample
images from model inference are depicted in Fig. 4. Tab. 5
provides also comparison between models trained with mod-
ified and unmodified dataset.

As seen in Tab. 5, our modifications to the dataset helped
with the problem of model bias towards detecting back-
ground class and made them more balanced, especially in
Exposed rebar task, where pixel accuracy increased over
eightfold. In Fig. 4 it can also be seen how small an area
the searched defect could be, especially considering the
initial, much greater size of the input image what once
again justifies the best result achieved by the largest type of
defect (spalling). The results however still are not perfect,
and other means such as random undersampling of dominant
class or training performed for image patches could also be
considered.

D. TASK 2 – SEGMENTING OUT COMPONENTS
Task 2 once again focuses on image semantic segmentation,
so we used methods similar to Task 1 and 2. We used
Detectron 2 framework to fine tune ResNet 50 with Feature
Proposal Network on dataset with background objects re-
moved. We achieved satisfactory results when the model was
trained for additional 15 epochs and learning rate an order of
magnitude greater than for the previous tasks – 2.5e− 3. We
also did not use learning rate decay schedule this time.

The resulting metrics we obtained after the training for
both datasets – the initial one and after background removal
with model from Task 0 are summarized in Tab. 6 Also,
Figs. 5 and 6 show the example results for component detec-
tion for both cases – when background is and is not removed.

As can be seen in Fig. 5, 6 and Tab. 6, removing the
background has significantly improved the performance of
the model, especially in the case of detecting slabs and
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TABLE 5. Metrics of defects detection models

Metric After dataset modification Before dataset modification

Cracking Spalling Exposed
rebar Cracking Spalling Exposed

rebar
Mean IoU [%] 64.16 89.42 64.86 63.83 88.30 51.81
Defect IoU [%] 29.73 80.12 29.81 28.57 77.45 3.62
Background IoU [%] 98.59 98.73 99.91 99.08 99.13 99.99
Mean
pixel accuracy [%] 67.51 93.69 69.58 67.39 92.58 52.25

Defect
pixel accuracy [%] 35.34 87.96 39.19 35.02 85.51 4.50

Background
pixel accuracy [%] 99.68 99.43 99.97 99.76 99.64 99.99

FIGURE 5. Example results obtained after performing initial background removal

TABLE 6. Metrics of component segmentation model

Metric Wall Beam Column Window
frame

Window
pane Balcony Slab Background Mean

After background removal
IoU [%] 91.42 89.63 84.25 82.14 97.31 96.84 90.81 99.89 91.54
Pixel accuracy [%] 98.81 93.73 86.27 87.38 97.86 98.64 94.51 99.96 94.65

Without background removal
IoU [%] 70.53 57.31 69.69 59.35 76.31 87.47 0.82 0.35 52.73
Pixel accuracy [%] 98.70 92.79 86.05 87.48 98.06 97.88 0.86 0.35 70.27

backgrounds, whereas the accuracy with visible background
was negligible. The only elements whose pixel-by-pixel de-
tection accuracy slightly increased without background re-
moval were parts of windows, and this may have been due to
their specific shape in the dataset, which windows found in
buildings in the background did not have.

At the same time, it should be noted that the model
working on images without first removing the background
still correctly recognizes the elements of objects in the back-
ground to some extent, even though they differ significantly
in appearance from those in the dataset. This indicates, on
the one hand, that the model was correctly chosen for the
task, since it was able to generalize the acquired knowledge
beyond the provided dataset, and on the other hand, the
necessity to apply the first step of the analysis – removing
the background, since the results of the actually conducted

measurements would be muddied by the occurrence of false-
positive detections.

E. TASK 3 – ASSESSING THE DAMAGE STATE
In the first attempt to solve Task 3 we intended to use
the relationship between an element, its total area, and the
relative area of each defect as a one-dimensional input vector
for a shallow machine learning algorithm. We used decision
trees with maximal depth of 59 splits, random forest with
total of 200 models and naive Bayesian algorithm with and
without data normalization. The training data we collected
came from the partitioning of the structure into elements by
the model trained for Task 2 and the damage detected using
the model from Task 1. This way we managed to gather
61 058 data points for training and 15 036 for testing. The
final vector along with its exemplary data presented itself in
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FIGURE 6. Example results without background removal

this way:

{Et, Esr, Cr, Rr, Sr} = Es (1)

eg. {3.0, 0.0245, 5.90e− 5, 3.94e− 5, 9.60e− 3} = 3.0

where :
Et : element type (mapped to int value)
Esr : element size to image size ratio
Cr : crack size to element size ratio
Rr : exposed rebar size to element size ratio
Sr : spalling size to element size ratio
Es : element damage state

However, despite vast dataset for model development, this
approach proved to be inaccurate. It was mostly due to the
component defect not visible in the frame of the image
and occasional false negative indications of the model from
Task 1. This led to many instances of data points where
even though the element had no visible defect, its state was
described as damaged. The results of models trained using
this approach are shown in Tab. 7.

To increase the accuracy of classification, we turned to
methods based on a single model that uses computer vision
to determine the damage state of elements. We called this
approach single model baseline where we used Detectron
2 directly on the visual data. Unfortunately, this approach
turned out to be ineffective, not achieving the best result in
any of the categories, as shown in Tab. 7. In Fig. 7, we also
show the result of the model inference compared to the label.

To improve damage state assessment, as stated previously
in Section III-A, we chose the method that is approaching
the problem in more general way – by image recognition
rather than inference based on defects found by other models.
Again, the part of the task related to the semantic segmenta-
tion of the structure components has been done before and we
can continue on the segmentation done with high accuracy in
Task 2 to focus on image recognition task.

In order to perform the image recognition we used KrakN
framework [43] to train 4 separate CNN models using trans-

fer learning technique with 3-fold cross validation on dataset
containing warped images of elements’ surfaces. Models we
used as feature extractors for single layer logistic regression
classifier were: VGG16 [44], Densenet [45], ResNet and
Xception [46], all of which were pre-trained on the ImageNet
dataset. The results of the training are summarized in Tab. 7 –
note that this time the only measured metrics were accuracy
per class, average accuracy and average F1 score which
describes balance between precision and recall. This time
IoU or pixel accuracy will be derived from the segmentation
performed in Task 2 and have no impact on the overall score.

As seen in Tab. 7, while shallow machine learning tech-
niques can provide near perfect accuracy for single defect
types, they tend to be highly biased and thus resulting in
low average accuracy and F1 score. On the other hand, deep
CNN models provide more balanced results across classes
and do not tend to over-promote particular predictions. At
the same time once again it is important to account for highly
imbalanced dataset. However, even with properly performed
random undersampling with the best performing models
(ResNet and Densenet), we did not manage to achieve better
results.

It is also possible to consider using model ensembles with
only slightly biased members and use voting algorithm to
pick the most probable prediction.

F. THE FINAL PIPELINE
In Fig. 8 we present the final pipeline of our solution.

First, the image retrieved by the UAV is stripped of back-
ground objects using the model trained for Task 0. Then, the
model from Task 2 performs structure segmentation to its
components. These components after additional processing
are used in further tasks. For Task 1, the segmented parts
of the structure come as rectangular frames of the image,
and then damage is detected on them using the model for
semantic segmentation. For Task 2, they are further warped
to a square shape, after which the CNN model performs an
image recognition task on them.

While the tasks performed by the pipeline are backwards
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Input frame Ground truth Predicted output

FIGURE 7. Single model approach compared to ground truth label

TABLE 7. Metrics of damage state detection model

Model Accuracy per class [%] Average
accuracy [%]

Average
F1 score [%]No

damage
Light

damage
Moderate
damage

Severe
damage

VGG16 28.74 74.25 83.13 59.11 78.06 77.83
Densenet 28.35 78.14 86.33 61.17 81.40 81.13
ResNet 28.34 77.56 86.93 58.30 81.42 81.09
Xception 19.29 75.42 85.44 57.21 79.59 79.18
Decision tree 12.89 70.61 76.61 61.96 72.98 73.19
Random forest 0.00 81.55 77.50 38.36 76.00 75.29
Naive Bayes 98.05 21.36 39.31 52.65 34.45 43.66
Naive Bayes
normed 0.00 98.62 13.97 28.73 35.73 35.87

Single model
baseline 23.68 68.66 80.40 53.02 64.67 69.12

dependent, the great advantage of this approach is to divide
one large task into a number of smaller tasks that can be
performed with greater accuracy. At the same time, this
approach allows for wider freedom in the manipulation of
the models that make up the workflow – models can be freely
exchanged or fine tuned with new batches of data as single
nodes responsible for individual tasks, thus maintaining the
integrity of the solution.

IV. DISCUSSION
Considering the phasing of successive tasks performed
by with our pipeline from Section III-F, we can expect
marginally lower accuracy of the whole workflow, albeit
thanks to nearly perfect accuracy of the first stages, the
reduction will not be significant. Also, some of the models
we presented in the pipeline can certainly be improved in the
terms of their particular accuracy. However, due to the spe-
cific nature of the dataset, much higher prediction accuracy
cannot be expected.

Still, there are methods that can aid the accuracy of the
algorithm. One is the previously mentioned use of small im-
age patches to train a model that performs damage detection.
This way the problem of highly imbalanced dataset can be
avoided, and models would not be as much biased towards
background class. This problem can also be mitigated with
the use of random oversampling techniques that could help
by expanding underrepresented classes or with the use of
weighted loss function – focal loss [47]. However while the

latter could help with the training process (although during
the performed tests, the gain was insignificant), the former
could lead to model biased towards a specific shape of defect
of single class.

The last method that can have a positive impact on the ac-
curacy of the algorithm is to transform the flat representation
of objects in the image into a 3D point cloud. This way, the
problem of defects not visible on element in single frame may
no longer be relevant since the defect detection model would
operate on the entire 3D object. The transformation could be
performed with photogrammetric methods employing RGB-
D sensors like in eg. [48]. However, this approach also has
drawbacks. First of them is the need of depth data associ-
ated with RGB images, that was not available for the task.
Second is the necessity of heavy computations performed
during preprocessing of the data, excluding this approach
from on-site usage. Also, machine learning models trained
in 3D point cloud environment require significantly more
computing power than those operating on RGB images.

V. CONCLUSIONS
The detection of earthquake caused defects to buildings is
an extremely important issue affecting both the safety of
building occupants and the efficient management and restora-
tion of the affected area. The use of UAVs for this purpose
is an important step in the desired direction by which the
effectiveness of immediate post-earthquake response can be
increased. Moreover, fully autonomous vehicles armed with
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algorithms that enable automatic and immediate assessment
of structure technical condition will allow more efficient
management of emergency services human resources and
labor intensity reduction of the whole process. However,
for that purpose vast datasets and robust machine learning
models are needed.

While real-world datasets like PEER Hub ImageNet [49]
or Mexico City [50] earthquake datasets are available, they
focus on high-magnitude earthquakes which is beyond the
scope of continuous monitoring of structures after minor
earthquakes. Other datasets that contain individual defect
types, on the other hand, do not take into account a holistic
approach to the structure monitoring problem. For this rea-
son, until actual imaging data is collected from low magni-
tude earthquakes in highly urbanized areas, synthetic datasets
are one of the best ways to pretrain neural algorithms.

In this paper we proposed a workflow along with dataset
transformations and models trained for the tasks of fore-
ground objects, defects, and structure components detection,
as well as image recognition methods for elements’ damage
state assessment. In the work we presented, we used a syn-
thetic dataset that can serve as a base for training machine
learning models and achieved satisfactory results in all four
tasks.

In the course of our work, we also identified some re-
curring issues with synthetic datasets that can significantly
affect the trained models. Although synthetic data, especially
those that simulate extremely rare and large-scale events, are
very important in building training datasets, they must be free
of errors in the objects represented and the classes given.
At the same time, even a flawlessly prepared dataset cannot
be the only source of information for a machine learning
algorithm – for this, one must also be exposed to real data
in the final training phase. With this in mind, a worthwhile
concept to consider while creating synthetic dataset is instead
of a single, homogeneous dataset, creating multiple smaller

but more diverse datasets for which the real world data would
always fit closer within the spectrum of variants.

Our work has also pointed us in possible directions for fur-
ther development of the proposed methods. As we mentioned
earlier in Section IV, a next step with holistic approach to
assessing the condition of a building would be a much needed
improvement to the overall process of structure maintenance.
It however requires creating a three-dimensional model of
the building that is faithful to the original, using RGB-D
cameras, photogrammetry methods or multi-scale approach.
At the same time, the effort should be put into developing
diverse synthetic datasets along with their real-life counter-
parts.
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