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Composite shells with interlaminar imperfections* 

Cz. Wo~niak and M. Wo2niak, Warszawa 

Summary: In this contribution the effect ofinterlaminar initial imperfections on a composite shell behavior is investigated. The 
constitutive equations for shells with initial interlaminar bonding imperfections are obtained. 

Verbundstoffschalen mit Zwischenschichtdefekten 

[lbersicht: In diesem Beitrag wird der Einflul3 von anffinglichen Zwischenschichtdefekten auf das Verhalten einer 
Verbundstoffschale untersucht und die Materialgesetze ffir solche Schalen werden anfgestellt. 

1 Introduction 

In most engineering problems a composite shell is designed as a thin laminated structure in which 
every lamina is made of a certain standardized anisotropic macro-homogeneous material. Under 
assumption of the perfect bonding between the laminae different sandwich-type shell theories have 
been taken as a basis for the analysis of a structural shell element; as a classical example we can 
mention here the approach proposed in [1]. The objective of this contribution is to propose a certain 
unified approach to the formation of 2D-theories for laminated linear elastic shells with initial 
imperfections in the interlaminar bonding. This problem, according to the authors knowledge, has 
not been yet analyzed in the recent literature on the laminated shell theories. The proposed 2D-shell 
theory takes also into account the effect of the interlaminae strain discontinuities on the shell 
behavior. The obtained result allow to achieve a better shell design specification than that neglecting 
initial bonding imperfections and interlaminae strain discontinuities. 

2 Preliminaries 

The fragment of the laminated shell under consideration is shown in Fig. 1. The region (2 in 3-space 
occupied by undeformed shell is assumed to be parameterized by the system of normal coordinates 
01, 0 2, ~, where 0 -= (01, 0 2) s / I  are coordinates on the shell midsurface (H is a regular region on R 2) 
and ~ E [ -6 /2 ,  6/2], 6 being the shell thickness. The shell is made of M + 1 laminae AA, 
A = 1 . . . .  , M + 1 ; we also define A = u AA. By ~bA, A = 1, ..., M we denote the surfaces separating 
A-th and A + 1-th laminae, the part of ~A consisting of many small initial bonding imperfections will 
be denoted by AA. By )~A we define a characteristic function of AA as a subset of ~A. The thickness of an 
arbitrary A-th lamina is constant and will be denoted by 6A, A = 1, ..., M + 1. 

We assume that: 

(i) the material of every lamina is anisotropic macro-homogeneous and linear elastic; every plane 
tangent to a coordinate surface ~ -- const is an elastic symmetry plane; 
(ii) there is an unilateral contact without a friction across every interlaminar bonding imperfection 
as well as the perfect bonding on the remaining part (hA \ Aa, A = 1 . . . . .  M; 

* The main theses of this paper have been presented on EUROMECH 292, Sept. 1992 



544 Archive of Applied Mechanics 63 (1993) 

A A 
~-~ ~ A A +  I 

~A 
A A 

Fig. 1. Fragment of a laminated shell 

(iii) the maximum characteristic length dimension of every single imperfection is small compared to 
the shell thickness 3; 
(iv) the distribution of imperfections on every interface ~bA is random; 
(v) the problem can be considered within the theory of small displacement gradients; 

without the lost of generality we neglect the body forces, restrict ourselves to static problems and 
assume that the shell is clamped on the edges. 

It can be observed that the condition of unilateral contact between laminae across imperfections 
implies a nonlinear behavior of a shell. 

Introducing 2D-theory for shells under consideration we shall deal with the following modeling 
problems: 

(i) how to include the possible displacement jumps across imperfections into a formal structure of 
2D-theory for laminated shells; 
(ii) how to describe the strain jump discontinuities across interfaces ~bA within 2D-shell theory; 
(iii) how to represent the random distribution of interlaminar imperfections within the framework of 
the deterministic 2D-theory; 
(iv) how to obtain an effective form of the elasticity tensors for laminated shells with initial 
imperfections. 

The approach starts in Sect. 3 with the well known 3D-formulation of the problem. In order to 
pass to 2D-shell theory a new kinematic shell hypothesis will be formulated in Sect. 4. In Sect. 5 an 
averaged deterministic approximation for a random distribution of interlaminar imperfections is 
proposed. Under some extra hypothesis a certain effective form of shell constitutive equations is 
derived in Sect. 6. The discussion of the obtained result in Sect. 7 ends the paper. 

2.1 Denotations 

The sub- and superscripts i, j, ... run over sequence 1, 2, 3 and are related to the normal coordinate 
system in the shell 01, 02, 03 (where 03 ~ 0;  the sub- and superscripts ~,/~ . . . .  run over 1, 2 and are 
related to the coordinates 01, 02. Index a runs over 1 . . . . .  m. The summation convention holds with 
respect to all aforementioned indexes. A single vertical line [i stands for the covariant derivative in the 
coordinate system 01, 02, 03 in the region occupied by the undeformed shell. A double vertical line 
I1~ denotes the covariant derivative on the shell midsurface. Indexes A, ... run over 1, ..., M unless 
otherwise stated. We also denote f,3 - Of/~03 = ~ f / ~  for an arbitrary differentiable funct ionf  which 
depend on ~. By Vt) we denote a gradient of an arbitrary differentiable vector field r and define the 

1 
symmetrized part of this gradient by V(O) = ~- (V~p + (vo)r). 

3 3D-formulation 

By T('), u(-) we denote stress tensor and displacement vector fields, respectively defined in 
A - O \ u ~bA. The possible jump of u across ~ba will be denoted by 

[U]A = lim u -- lim u 
~ . ~  ~ A  
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where the coordinate surface ~ = ~A coincides with the interface @A. The interlaminar stress vector 
field on 4~A will be denoted by tA('): tA = lim Tn, where n is a unit normal to a parametric surface 

= const at an arbitrary point of f2. We also denote t A  3 =~ t A " n~ t A  S = t A - -  ntA 3 as a normal and 
a tangent (shear) interlaminar stress, respectively. 

The governing relations for the shell under consideration are given by: 

(i) the principle of virtual work 
M 

tr (TI~) dv + ~ ~ tA" [li]A da = ~ p '  6 da, for every fi, 6l~n\r = 0, I~ - V(fi), (1) 
0 A=I ~A F 

where F stands for the union of boundary surfaces ~ = ~o, ~ = ~u+l, and p are the boundary loadings 
on F; 
(ii) the stress-strain and the strain-displacement relations 

T = e [ E ] ,  E = V ( u )  i n A ,  (2) 

where C is a tensor of elastic moduli; 
(iii) interlaminar conditions 

tA s = O  OnAA, [U]A=0 on~bA\AA, A =  1 . . . .  , M ,  (3) 

f (~ -- [H3]A) tA 3 da < 0, V/~ ~_ 0, [U3] A > 0 on AA, A = 1, ..., M .  (4) 
AA 

For the sake of simplicity we assume that the displacements on the shell edges 8f2 \ F are assumed to 
be known. The variational inequalities (4) together with (3h describe the unilateral contact across 
imperfections. (1)-(4) lead to the well known Signorini problem of the linear elasticity theory for the 
displacement field u(-), [2]. Until A A a r e  not known a priori then the solution to this problem can not be 
obtained. Hence, the aforementioned relations will be used only as a starting point for further 
considerations. 

4 Formation of 2D-theories 

The passage from 3D-formulation, given by (1)-(4) to the 2D-shell theory will be based on two 
hypothesis. In order to formulate the first of them we introduce two kinds of what are called shape 
functions hA(') and iA('), A = 1, ..., M, which depend on ~; their diagrams together with the diagrams of 
their first derivatives are shown in Fig. 2. Functions hA(') will be called strain jump shape functions and 
iA(') are called displacement jump shape functions. For the periodic laminated structures the 
aforementioned shape functions have a sense similar to that introduced in [3]. By ea(~), ~ ~ [ -  5/2, 5/2], 
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Fig. 2. Shape functions and their derivatives 
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c~o(0) = 0, a = 1, ..., m we also introduce functions such that ui(O, () = wi(O) + O~a( 0 dia(O) is a kinema- 
tic hypothesis related to a 3 + 3m parameter shell theory in which w~(0) are displacements of the shell 
midsurfaces and di"(O) are certain "higher order displacements". For  example setting m = 1 and 
cq(0 = ~ we arrive at the known six-parameter shell theory. In the kinematic hypothesis formulated 
below we shall introduce, independently of w~(.), di"(.), extra unknown vector fields qiA('), jiA(") defined 
on ~bA which will be referred to as strain jump correctors and displacement jump correctors, 
respectively. Moreover, by #j(0, 0 we denote the known shell shifters given by #~  --- 60 ~ - (bp~(0), 
#3 ~ = # 3  = 0, #33 = 1, where ba~(~) are components of the second fundamental tensor of the shell 
midsurface. 

Under the aforementioned denotations we formulate the following: 

1. Ex t ended  Kinematic  Hypothesis  ( E K H ) .  Every displacement field u~(.) in the laminated shell with 
initial imperfections can be assumed in the form 

ui(O, () = #i J( O, 0 W j(0) § ~a(~) dja(O) q7 hA(() qjA(o) § 2 iA(O J2A(O) , 
a=l  A=I A=I 

0 - (0 ~, 0 2) e II ,  ( e ( - 6 / 2 ,  6/2).  (5) 

The meaning of terms in (5) involving extra unknowns qia(.) and jiA(') is related to the laminated 
structure of the shell and to the presence of interlaminar imperfections. 

Let aa be the thickness of A-th lamina, A = 1, ..., M + 1, and L be the minimum characteristic 
length dimension of the shell midsurface. Setting e -- max (~a/L, treat e as a small parameter, we shall 
postulate the following: 

2. Thin Lamina  Assumpt ion ( T L A ) .  Terms of an order 0(e) will be neglected compared to terms not 
involving e. Applying the aforementioned assumptions, after some manipulations, we derive from 
(1)-(4), the 2D-formulation of the shell problem under consideration. This formulation consists of: 

(i)  field equations: 

HB=IIa - betH ~3 § p~ = O, H~3lle + b~eH,B + p3 = O, 

Moa~lla - br  3 - s~ ~ + m, ~ = 0, M,B3]Ia + b~t~M J --  Sa 3 § ma 3 = 0 ,  (6) 

a =  1 , . . . ,m;  c e i l =  1,2, 

where 

0/2 6/2 
H ~ -  ~ T ~ # ~ # d ~ ,  HB3-- S T~3#d~, ~,fl, 7 =  1,2, 

-6/2 -0/2 

6/2 a/2 
Mae~ =- I ~x.Ta~#/'# d ( ,  M a  #3 ~ I O~aTfl3# d ( ,  

-6/2 -0/2 
a/2 

�9 ~ T i3" d~ pi sa ~ - ~ ~,3 # , - pi+)#/(,5/2) + p [ _ ) # j ( - a / 2 )  
-a/2 

m, i - p{+)ot,#j(a/2) + p { _ ) ~ # / ( - 6 / 2 ) ,  i, j = 1, 2, 3, 

(7) 

where # is the surface invariant and p(+), p(_) are the loadings applied at the upper and lower shell 
boundaries, respectively. It can be observed that (6) have a form similar to that of the known 3 + 3m 
parameter shell theory, 

(ii) constitutive equations. 
The components T ~j of the stress tensor T in definitions (7) are determined by the constitutive 
relations: 

[",ijk3~ d a i"~ijk3(la ~ A . �9 A )~AIA,3Jk ) in A T ij C ijkl W(kll ) § c~,dgkt~) + "-" a,3 k + ~ "-I V'A,3Uk § . (8) 
a= l  a= l  A=I 
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(iii) interlaminar stress continuity conditions: 

[T i3]a  = 0 in ~ba, A = 1, ..., M,  

where [Ti3]A =-- lim T z 3 -  lim T i3. 
~'~A+ ~/~ ~A- 

(iv) interlaminar imperfections conditions: 

ZAtA a = O, (1 - -  ZA) j i  A = O, 

(v - j 3  A) ZAtA 3 da < 0 V v ~ O, j3 a >= 0 
eP A 

where ti A ---- lim T ~3. 
~ A  

(9) 

in@A, A = I , . . . , M ,  
(lO) 

Substituting the R H S  of (8) into (7) and then substituting the R H S  of the obtained formulae into 
(6) we arrive at the system of equations which together with (9), (10) constitutes the system of 
governing relations for laminated shells with initial interlaminar imperfections. Because the exact 
distributions of imperfections )~A are not known a priori then (6)-(10) do not lead to any well stated 
boundary value problem for wi(), dia('), qiA(") and jia('). That is why we shall pass below to a certain 
averaged 2D-formulation of the shell problem. 

5 Passage to averaged 2D-theories 

Let B(x, 6) stand for a ball with a center x - (0, 0 and a radius 3. Define BA(X) - BA(X,  (~) ~ ~a.  For  an 
arbitrary integrable field ~,(.) defined almost everywhere on @A we shall introduce its average: 

(~]>A (X) ~--- IBA(X)[ O(y) da(y) .  

BA(X) 

The passage to the 2D-theories with random distribution of imperfections will be based on two 
hypothesis: 

1. Imperfection Density Hypothesis (IDH).  There exist constants ZA, ]~Ae[0, 1) such that 
~A ~ (ZA)A (X) for every x e #A, A = 1, ..., M. The constants ~A will be called imperfection densities 
on 4~A and are assumed to be known a priori. 
2. Imperfection Averaging Hypothesis ( IAH).  Every interface #A of a laminated shell with 
micro-imperfections can be modelled as an ideal mixture of delaminated part AA and perfectly bonded 
part 4~ A \ AA. Taking into account ( IAH) we also introduce the partial j ump correctors~ A ~ (XAjiA)A 
and partial tractions (partial interlaminar stresses) tA '~  (ZAtA)A. After averaging of the shell 
governing equations (6)-(10) (according to assumptions of the ideal mixture theory) we obtain: 
(i) field equations in the form (6) with the denotations (7). 
(ii) constitutive equations for stresses 

cijk30~ d a t ' i jk3dh ~ A T U  c i j k l  W(kll) + c~ad~kll) "~ a,3 k + ~ (11) t-A,3Vlk + ia ,3 fk  A) in A. 
a=l a=I A=I 

(iii) interlaminar stress continuity conditions in the form (9). 
(iv) constitutive equations for partial tractions: 

~ 1"~ i3k3_A .1 a " 1 + ~A ~a,3Uk + C23k3(Va-1qk A-I -- qk A) in asa, (12) 

where CA i3kl =-- lira Ci3kz((), ~z,, A =_ ~,,((a), VA =- bA/3A+*. 

(v) averaged interlaminar imperfection conditions: 

tA ~ = 0 ,  ~ (V--L  A)~A 3da__<0 Vv_->0, j~A__>0 in4~a. (13) 
~A 
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It will be shown in Sect. 6 that on the basis of (9), (11)-(13) a certain effective form of shell constitutive 
equations can be derived. This form does not involve unknown corrector fields a �9 A qi ('), Ji (') and plays 
the role similar to that of the constitutive equations for 3 + 3m parameter shell theory. 

6 Effective form of constitutive equations 

In this section we are to show that under certain extra assumptions it is possible to obtain an 
interrelation of the form 

T = ll;~ff[V(w), V(d), d] (14) 

where d - (d~, ..., din), and ~Pff is called an effective elasticity tensor of multi-parameter 2D-theory for 
laminated shells with interlaminar imperfections. (14) will be referred to as the effective shell 
constitutive equation. 

Define PA ~ <T33)A as a mean pressure (averaged normal stress) acting on the interface 4~A. The 
simple physical reasoning leads to Mean Pressure Assumption (MPA) .  The following implications 
are assumed to hold 

p A > O ~ j ~ A > O  and PA < O ~ f 3  A = O  in@A, 

Conclusion." because the condition PA > 0 implies 
inequality (13) is 

A = 17..., M. (15) 

/~A 3 = 0 then the solution of the variational 

]3 A = - ( sg  pa) + [(Ca3333) -1 CA33uV(w(ul,) + ~ ead~ul,)) + ~, cq,3d3 ~ + VA-Iq3 A-1 -- q3Al. (16) 

Taking into account conclusion (16) and using (13)1, (12), (9), (11) we can eliminate correctors qa i, jA i 
from the governing equations of the averaged 2D-theory obtained in Sect. 5. The calculations are 
rather lengthy and complicated. We restrict ourselves to the final results. To this end we introduce the 
denotations 

1 if p > 0 ,  
(sgp) + =  0 if p__<0 

where p =- <T 33> (0, {) is a mean pressure on the surface ~ = const and we describe the averaged 
distribution of imperfections by means of the function 

M 

2(0 = 2 ia,3(~) ZA. 
A=I 

In order to write down the final formulae we also introduce what will be called heterogeneity 
correction tensors 

{U.pU., H J <  - C"3{H< U~ U.3}, 
I433331 C3333{HtSV, { u 3 3 u v ,  Ha 33"v,--a3 S ~ Ha I~v, Ha3}, (17) 

( u e 3 u 3 ,  Ha ~ HaC~33u3} ~ C '3u3{ t ] ,  '~a, t]a3}, 

where 
M 

Q33 
BUy __ ~ 33Uv AB hA,3[C ]B 

A,B=I 
Ha uv ~ Z h I-g'33#v] . B,'~AB "~A,3L t-" IB ~a t~33 , 

Ha3 = Z t, i-t,-.,3333] _B t.-~AB t~A,3t t~ JB ~a ,3~33  , 

-= Z hA,3[C3'U3V]B Qu Ay, (18) 
rl. - ~ hA 3[C3"3VlB " B,oAB , ~ ~ U v  

/~a3 ~- Z L, rto3tL3v] _ B ,,~AB t~A,3["J IB ~a,31"~,uv , 
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and where Q~B j are obta ined as solutions to the linear algebraic equat ions of the form 

. r i 3 j 3 t ' ~ A - 1 , B  " . ['~i3j3~ Q A B  ,, f ~ i 3 j 3 [ ) A + l , B  : 3 A B  (19) 
- - V A - l t ~ A  ~:~ij + ( C A  z3j3 + VA~JA+I )  j - -  V A ' ~ A + l ~ i j  

It can be proved that the shell consti tutive equat ions with initial interlaminar imperfections can be 
writ ten down  in the final form (summat ion convent ion for a = 1, ..., m holds) 

T :~ : {(1 - )~(sg p)+) (C ~"~ - H ~u~) + 2(sg p)+ C ~u~} W(.I~ ) 

+ ((1 - )?(sg p)+) (C~"'~, - Ha afll~v) ~- z(sg p)+ CC~flgVO~a} d~lv) 

+ (1 - 2(sg p)+) w , ~ a 3 3 .  Haiti333 ) d3 a, ~,'~ ~a ,3  - -  

where C~'"~ - C ~u" - Cef133C33#v/c3333; 

T 33 (1 z(sgp)+)(C 33uv H 33u~) (1 _ o = _ _ w(uj,~) + -- 2(sg p)+) (C33"v~ a Ha 33~v) d(ul.o ) 

+ (1 - 2(sg p)+) 'c3 33  ~, a,3 - -  a ' t a3  ! d3 a, 
(20) 

T ~3 = 2 - (1  - 2) ( C~3"3 - H~ ~3"3) w(31u) + 2 - ( 1  - 2) (C~3"3c~,- H J  3~3) dg31~) 

[CCt3#3~ Ha~3U 3) du a" + (1  - 20  t - 

Heterogenei ty  correct ion tensors H, Ha, Ha 3 in (20) are determined by formulae (17)-(19). 
It has to be remembered  that (20) hold at any point  (0, qS) belonging to an arbi trary laminae. That  

physical components  of tensor (12 in every laminae are constant.  
(20) together with (17)-(19) represent the final result of the analysis and are called effective 

constitutive relations for laminated linear elastic" shells with initial interlaminar imperfections. At the 
same time (20) yield the explicite form of the effective elasticity tensor r (compare (14)). 

Combining  field equat ions  (6) with (7), where stress components  T ~i are given by means of (20), we 
obtain  the governing equat ions  of 2D- theory  for laminated shells with initial interlaminar 
imperfections. It has to be emphasized that these equat ions  do not  involve unknown  corrector  fields 
qia('),jia('). Hence, from the formal point  of view the obta ined governing equat ions have a form similar 
to that  of  the 3 + 3m-parameter  shell theory with wi('), d~('), a = 1, ..., m as the basic unknowns.  

It can be shown that if ~ E [0, 1] then formulae (20) lead to the quadrat ic  positive definite form of 
the strain energy; the p roof  of this s ta tement  is rather lengthy and will be not  presented here. 

For  2 =- 0 we arrive at the theory of laminated shells wi thout  imperfections; it can be seen that the 
main advantage  of approach  proposed  in this paper  is that  the number  3 + 3m of the basic unknowns  
is independent  of the number  of laminae. Such situation does not  hold if the theory of a laminated shell 
is based on the broken line kinematic hypothesis where the number  of basic unknowns  is very large: Let 
us also observe that  if 2 --' 1 and p > 0 then the state of stress tends to the plain stress state. 

7 Discussion 

Combin ing  (14) and (20) it can be seen that I12 ~ has the form 

(12 eff = 112 - ll-I - il2imP(2 , sg p+) + ]I-Iimp(2 , sg p+) (21) 

where (12 is a s tandard elasticity tensor and IH is the heterogeneity correct ion tensor derived from 
(17)-(19). Tensor ( E i m P ( 2  , sgp  § characterizes the effect of imperfections on the shell behavior  
independent ly  of the shell laminated structure while tensor 1HimP(2 , sg p§ describes the effect of 
coupling between imperfections and heterogeneity on the state of stress. 

It can be shown that 

sg p = sg { C 3 3 p v  _ H33Uv, C33Uvg a _ Ha33Uv, C33330~ /J'3333). o,3 - - o 3  

( d3 3 /  

and hence, the effective consti tutive equat ions (20) are nonlinear. It follows that the initial 
interlaminar imperfections leads to a nonlinear shell behavior.  However ,  in the first approximat ion  
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we can introduce what will be called: Mean Pressure Approximation. The mean pressure p = ( r  33) 
acting on an arbitrary surface ~ = const can be approximated by 

p+3(0) -- p_3(0) p+3(0) q- p_3(0) 
p(O, --- + , [ - a / 2 ,  a / 2 ] .  

6 2 

where p+3(0), p_3(0) are the known normal loadings acting on the shell boundary surfaces ~ = -6/2, 
= ~/2, respectively. 

Hence, we see that the effective form of constitutive equations (20) (under Mean Pressure 
Approximation) depends on the character of normal loadings acting on shell boundary surfaces; if 
p(0, ~) is a compression then in (20) (sg p) + = 0, if otherwise then (sg p) + = 1. 

The effective constitutive equations (20) for laminated shells with initial interlaminar imperfec- 
tions have an explicit form and can be used in engineering problems provided that the imperfection 
densities are known. (20) describe the effect of imperfections on the shell behavior in the framework of 
3 + 3m parameter shell theory. The analysis of special shell problems as well as the possible 
generalizations of the proposed approach will be studied separately. 
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