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Abstract

We provide an optimization framework that is capable of identifying the material parameters and contact traction field
rom two measured deformed geometries of a soft body in contact. The novelty of the framework is the idea of parametrizing
he missing contact traction field and incorporating it into the inverse+forward hyper-elasticity formulation. We provide the
ontinuum- and finite element formulation of the framework, as well as the direct differentiation method of sensitivity analysis to
fficiently obtain necessary gradients for the BFGS optimizer. The correctness of the formulation and the excellent performance
f the framework are confirmed by a series of benchmark numerical examples.
2023 Published by Elsevier B.V.
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1. Introduction

In many practical applications, soft structures and tissues can only be observed in significantly deformed
onfigurations. For instance, in the context of biomechanics, in vivo imaging techniques operate on tissues that
re deformed at least under their weights [1,2]. In the case of breast cancer screening, the organ is additionally
onstrained by contacts with external devices [3–6] or self-contact [2]. In brain imaging, the leak of cerebrospinal
uid during the surgery leads to brain shift, i.e., the rigid motion of the brain in the skull combined with

ts consolidation under its weight [7]. For understanding abdominal aortic aneurysms, computing the residual
tresses [8,9] or the open configuration [10] is a crucial step for obtaining accurate simulations.

This inherent inability to measure the unloaded (stress-free) configuration poses problems for modeling- and
odel calibration procedures. This is because we are focused on large-deformation models, which is a generalization

o the standard model-based elastography that only calibrates apparent parameters around a given loaded state,
ee, e.g., Doyley [11]. To make it possible to calibrate large-deformation models, it is desirable to develop
heoretical/computational modeling frameworks that could either assess the load-free configuration or directly
perate on different loaded configurations.
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Several techniques were established to assess the load-free configuration of a given measured loaded configura-
tion. If the loading is known, the easiest is to reverse the direction of loading, see, e.g., Eiben et al. [12]. However,
this method is only suitable in the small deformation regime and is in general inaccurate in the case of large
deformations (soft bodies or in case of elasto-plasticity). In a more general case, one needs to solve an implicit
problem of finding an unloaded configuration such that, after the application of the loading, the expected measured
configuration is recovered. Within this general approach, several iterative schemes were proposed, see Eiben et al.
[12,13], Carter et al. [14], Gee et al. [15], Weisbecker et al. [16] and Landkammer et al. [17]. Originally, the
algorithm was introduced by Sellier [18] with a fixed-point method for elastostatic problems and then generalized
to the backward displacement method by Bols [19] for patient-specific blood vessel simulations.

The iterative schemes only utilize forward simulations to iteratively converge to a desired unloaded configuration.
Because of this, they can be used with practically any finite element solver. They are however computationally
expensive because many iterations are required to converge a satisfying solution. To circumvent this efficiency issue,
various direct inverse motion formulations were proposed, see, e.g., Govindjee and Mihalic [20], Mazier et al. [21]
and Rajagopal et al. [22]. They are based on inverse kinematics, in which the deformed (current) configuration is
known and the undeformed one corresponds to the primary unknowns. The goal is to solve the classical weak form
of the equilibrium expressed in the current (loaded) configuration (i.e., based on the Eulerian description and the
Cauchy stress tensor).

The direct inverse motion methodology to obtain unloaded configurations, and possibly use it as a part of the
calibration procedure, is based on the assumption that both the geometry and the external forces are known in
the given loaded configuration. This assumption cannot be that easily satisfied if the loaded configuration includes
contact. The reason for that is that the necessary contact traction field is usually experimentally difficult to retrieve.
This is particularly true for medical imaging of soft tissues, where contact or self-contact often occurs (Mı̂ra et al.
2,4] and Kuhlmann et al. [23]). In such situations of missing contact traction, the inverse elasticity problem cannot
e solved.

This paper aims to tackle the inverse-elasticity-based identification problem with contact. (We limit ourselves
o path-independent problems/models: hyperelasticity with frictionless contact.) To do so, we consider not one but
wo different deformed configurations, both of which can potentially include contact. We parametrize the missing
ontact traction field and solve a certain optimization problem to identify these parameters simultaneously together
ith material parameters. This poses a new identification problem, for which we additionally solve the sensitivity
roblem for the gradient-based optimization procedure. We demonstrate the performance of our framework on
rtificially (numerically) generated benchmark cases, with and without contact. In order to assesses applicability of
he framework to work with experimental data, we also analyze the influence of noise in data.

The proposed approach fits into a well-established class of full-field measurement based model calibration
echniques, see, e.g., Avril et al. [24], Goenezen et al. [25], Pierron and Grédiac [26], Barbone et al. [27], Hild
t al. [28], Pan [29], Pierron and Grédiac [30] and Borzeszkowski et al. [31]. The novelty of our approach is that
e aim to identify contact tractions in addition to calibrating material parameters, and that we assume to only
now loaded configurations. The present approach resembles some of the problems of shape optimization with
ontact, see, e.g., Stupkiewicz et al. [32], Beremlijski et al. [33] and Hilding et al. [34], as in both cases the
nloaded shape undergoes changes upon optimization. However, in the present case, this is the contact traction
eld being parametrized, not directly the geometry. Even more distinctive, the present approach involves not two
ut three configurations, with subsequent inverse and forward elasticity problems to be solved in between. A similar
irection to what we propose has been recently taken in Song et al. [35] to develop a calibration framework in cell
iomechanics. Similarly to us, they parametrize the traction field to be part of the calibration procedure that is done
hrough the inverse elasticity formulation. However, there are several important differences. The first difference is
hat in Song et al. [35] they assume to have a direct access to the unloaded configuration, while in our case only
ully loaded configurations are considered. The second difference is that they do not explicitly consider contact
nteractions, which in our case are possible in both loaded configurations. The third difference is that they calibrate
raction vectors individually per node, while in our case the number of parameters determining the unknown traction
eld can be more precisely controlled, which may allow for reduction of computational costs and can have a
egularizing effect on the identification procedure.

The organization of the paper is the following. In Section 2 we shortly introduce the forward and inverse

hyper-)elasticity problem with contact. Then, in Section 3, we introduce the identification framework: first only
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Fig. 1. Kinematic variables for the forward and inverse elasticity problems.

for the contact-less case and afterward for the case including contact. In Section 4 we provide three benchmark
problems that demonstrate the concept and quantitatively assess the efficiency of the method. The paper is concluded
in Section 5.

2. Forward and inverse elasticity formulations

2.1. Forward hyper-elasticity

We will shortly introduce a standard quasi-static hyper-elasticity formulation. The strong form of the equilibrium
equations reads

∇X · P + ρ0b = 0 (1)

hich is accompanied by an appropriate constitutive relationship between the stress and strain measures through a
yper-elastic potential W (F)

P =
∂W
∂ F

. (2)

n the equations above, P = Jσ F−T is the first Piola–Kirchhoff stress tensor defined in terms of the Cauchy stress
tensor σ , ρ0 is the density of the material, b are body forces and

F(X) = I + ∇Xu (3)

s the deformation gradient with its determinant J = det(F), see also Fig. 1. We use the notation ∇X to denote
gradients with respect to the reference configuration X ∈ Ω0.

We specify here a particular form of the hyper-elastic strain energy potential (Neo-Hookean), see Simo and
aylor [36],

W (F) =
µ

2

(
Tr(FT F) − 3 − 2 log(J )

)
+

λ

4

(
J 2

− 1 − 2 log(J )
)
, (4)

here the Lamé constants µ =
E

2(1−ν) and λ =
Eν

(1+ν)(1−2ν) are material parameters expressed in term of the Young’s
odulus, E , and Poisson ratio, ν (see also Doll and Schweizerhof [37] for other forms of the volumetric part of

he potential). This model will be used in the examples provided in Section 4. Note, however, that in principle, by
eplacing the strain energy potential, any other hyper-elastic model can be used within the proposed framework,
ncluding the Mooney–Rivlin model, and a more general class of Ogden models, see Ogden [38].

The associated weak form, suitable for the finite element formulation, is obtained by multiplyingthe strong form
y the kinematically admissible test functions δv(X)∫

Ω0

(∇X · P) · δv dΩ0 +

∫
Ω0

(ρ0b) · δv dΩ0 = 0. (5)

his is then transformed (Green–Ostrogradski theorem) to∫
P : ∇Xδv dΩ0 −

∫
(ρ0b) · δv dΩ0 −

∫
t

t0 · δv dΓ t
0 = 0, (6)
Ω0 Ω0 Γ0

3
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in which the Neumann boundary conditions are recovered by applying (nominal) traction t0 at the boundary
t
0 = ∂Ω0/Γ

u
0 . The problem, in the weak form, is to find the displacement field u(X) such that Eq. (6) holds

for any kinematically admissible test functions δv(X).
The contact constraints in the (forward) hyper-elasticity formulation can be introduced in various ways, see

e.g., Laursen [39], Wriggers [40] and Lengiewicz et al. [41]. In the present paper, we only consider simple
frictionless contact with flat rigid obstacles, and we follow the standard penalty formulation, that can be found
in Lengiewicz et al. [41]. The corresponding weak form that includes contact constraints reads∫

Ω0

P : ∇Xδv − ρ0b · δv dΩ0 −

∫
Γ t

0

t0 · δv dΓ t
0 −

∫
Γ c

0

tN n · δv dΓ c
0 = 0, (7)

here Γ c
0 is the boundary of potential contact, n is the normal to the obstacle’s surface (at the point of orthogonal

rojection), and

tN =

{
−ϵc gN if gN ≤ 0 (contact)
0 if gN > 0 (separation) (8)

s the Penalty regularization of contact constraint, in which gN is the normal gap and ϵc > 0 is the regularization
arameter.

.2. Direct inverse hyper-elasticity

The problem of inverse hyper-elasticity can be expressed in terms of the already introduced forward elasticity
roblem, see Section 2.1. Specifically, having a given loaded configuration, the goal is to find an unloaded
onfiguration such that the loaded configuration will be the solution to the forward elasticity problem. The
undamental difference with respect to the forward elasticity problem is that, in the present case, the unloaded
onfiguration Ω0 is unknown while the loaded configuration Ω is known, see also Fig. 1. The body forces and
eumann boundary conditions are assumed to be known. The problem is to find the inverse deformation field

ũ(X̃), which corresponds to the solution u(X) of the forward elasticity problem given by Eqs. (2) and (6) through

ũ = −u(ũ + X̃). (9)

he proposed approach, borrowed from Govindjee and Mihalic [20] and Mazier et al. [21], relies on solving the
ame form of equilibrium as in Eq. (6) but for different variables, a different integration space, and a different
efinition of the gradients.

Let us consider the notation as in Fig. 1, in which X(X̃) = X̃ + ũ and x(X̃) = X̃ . The (forward) deformation
radient can be then expressed as:

F(X̃) =
dx
dX

=

(
dX
dx

)−1

=
(
I + ∇X̃ũ

)−1
. (10)

mportantly, this is a new definition of F as compared to Eq. (3). All quantities derived from F(X̃) depend on ũ
and are defined on the (fixed) domain Ω . For that reason, a more suitable weak form that corresponds to Eq. (6)
reads ∫

Ω

(
σ : ∇X̃δṽ −

1
J

ρ0b · δṽ

)
dΩ −

∫
Γ t

t · δṽ dΓ t
= 0. (11)

ere

σ =
1
J

P FT, (12)

and P is obtained from the same elastic energy potential as in the forward problem, see Eq. (2), while
J = det(F(X̃)), and δṽ = δṽ(X̃) is a kinematically admissible trial function. Note that

t =
1
J

t0 FT (13)

ncludes t that is assumed to be known.
0

4
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If the known loaded configuration includes contact, the respective weak form reads∫
Ω

(
σ : ∇X̃δṽ −

1
J

ρ0b · δṽ

)
dΩ −

∫
Γ t

t · δṽ dΓ t
−

∫
Γ c

tc · δṽ dΓ c
= 0, (14)

nd involves the contact traction field tc. In many practical cases, this traction field is unknown. Quite obviously, if
tc is chosen improperly then the computed unloaded configuration is incorrect (this is demonstrated in the example
hown in Fig. 14 in Section 4.3). As a solution to this problem, in Section 3.2 we will provide an identification
ramework to assess this unknown contact traction field.

.3. Finite element formulation

The finite element formulation of the forward elasticity problems with contact, as defined in Eq. (7), is standard,
ee for instance Laursen [39], Wriggers [40] and Lengiewicz et al. [41]. The FE formulation of the inverse elasticity
roblem is analogous. For the sake of completeness, below, we will briefly introduce them both.

For the forward elasticity problem, we will work with the weak form defined by Eq. (7). After FE discretization,
e will use its isoparametric form, in which the positions X ∈ Ω0 are transformed to local coordinates Ξ ∈ □. For
corresponding finite element, the discretized quantities at an integration point Ξ read

X(Ξ ) =

n∑
i=1

Ni (Ξ )Xi , u(Ξ ) =

n∑
i=1

Ni (Ξ )ui , (15)

t0(Ξ ) =

n∑
i=1

Ni (Ξ )t0,i , tN(Ξ ) =

n∑
i=1

Ni (Ξ )tN,i , (16)

here n refers to the number of nodes in a given finite element, and Ni are the associated shape functions.
he double-stroke variables are the vectors of nodal values (possibly multi-dimensional), for which the index i

efers to the local indexing in a given element. The displacement gradient and the Jacobian of the isoparametric
ransformation read

∇Xu =
du
dΞ

(
dX
dΞ

)−1

, JΞ = det
(

dX
dΞ

)
. (17)

hen using the Bubnov–Galerkin method, we set

δv =
du
du

, and ∇Xδv =
d∇Xu

du
. (18)

With the definitions introduced above, together with Eqs. (2)–(4) and (8), after applying chosen numerical
uadratures, we can transform the weak form of Eq. (7) into the balance equations in the residual form:

R(u;X) ≡ Rv +Rt +Rc = 0, (19)

here

Rv = A
k∈Ev

⎡⎣∑
i∈Gk

wk,i J k,i
Ξ ·

(
σ k,i

: ∇Xδvk,i
− ρ0bk,i

· δvk,i)⎤⎦ , (20)

Rt = − A
k∈Et

⎡⎣∑
i∈Gk

wk,i J k,i
Ξ ·

(
tk,i

· δvk,i)⎤⎦ , (21)

Rc = − A
k∈Ec

⎡⎣∑
i∈Gk

wk,i J k,i
Ξ ·

(
tk,i
N nk,i

· δvk,i
)⎤⎦ . (22)

Above, A stands for the FE assembly operator over the set of elements E , while Gk and wk,i are the set of
element integration points and their weights, respectively. Given an initial configuration X, the set of non-linear

Eqs. (19) can be solved for the unknown vector u.

5
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For the inverse elasticity problem, the FE discretization takes a form that is analogous to the forward-elasticity
ersion (Eqs. (15)–(18)):

X̃(Ξ ) =

n∑
i=1

Ni (Ξ )X̃i , ũ(Ξ ) =

n∑
i=1

Ni (Ξ )ũi , (23)

t0(Ξ ) =

n∑
i=1

Ni (Ξ )t0,i , tc(Ξ ) =

n∑
i=1

Ni (Ξ )tc,i , (24)

∇X̃ũ =
dũ
dΞ

(
dX̃
dΞ

)−1

, J̃Ξ = det

(
dX̃
dΞ

)
, (25)

δṽ =
dũ
dũ

, ∇X̃δṽ =
d∇X̃ũ

dũ
. (26)

he residual form of the balance equations is based on the weak form given by Eq. (14), together with Eqs. (10),
12) and (13), and the constitutive relationship given by Eqs. (2) and (4). Similarly to Eq. (19), we write

R̃(ũ; X̃) ≡ R̃v + R̃t + R̃c = 0, (27)

here

R̃v = A
k∈Ev

⎡⎣∑
i∈Gk

wk,i J̃ k,i
Ξ ·

(
σ k,i

: ∇X̃δṽk,i
−

1
J

ρ0bk,i
· δṽk,i

)⎤⎦ , (28)

R̃t = − A
k∈Et

⎡⎣∑
i∈Gk

wk,i J̃ k,i
Ξ ·

(
tk,i

· δṽk,i
)⎤⎦ , (29)

R̃c = − A
k∈Ec

⎡⎣∑
i∈Gk

wk,i J̃ k,i
Ξ ·

(
tk,i

c · δ̃v
k,i
)⎤⎦ . (30)

iven an initial configuration X̃, the set of non-linear Eqs. (27) can be solved for the unknown vector ũ.

3. Inverse-elasticity-based identification framework

We will consider an identification problem involving two different (measured) configurations of the same body.
The configurations originate from two different external loadings, that are known. As mentioned earlier, the
assumption of only having deformed configurations is motivated by the experimental reality when dealing with
soft bodies.

We expect the configurations to be provided in the form of an already discretized deformation field (FE mesh
of nodal displacements between the loaded configurations). In the benchmark cases considered in this paper, the
required displacement fields are naturally available because the known loaded configurations are generated from
the same discretized unloaded configuration. The same is also possible in real-life applications where scans of a
deformed body (e.g., MRI- or CT-scans) are provided. In this real-life case, the necessary discretized displacement
fields can be obtained by applying the image segmentation of the scans with subsequent meshing, which are then
combined with the digital image/volume correlation procedure, see, e.g., Buljac et al. [42], Auger et al. [43] and
Lavigne et al. [44].

Our primary interest is in identifying the material parameters of an assumed material model of the body. In
Section 3.1, we introduce the framework for the contactless case. For the case involving contact, the identification
of the contact traction field will need to be also included in the optimization procedure, which will be provided in
Section 3.2. In Section 3.3 we will introduce the pipeline for the direct differentiation method of sensitivity analysis
to compute implicit gradients that are required by gradient-based identification procedures.
6
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Fig. 2. Schematics of the inverse-forward problem used in the identification procedure. The reference configuration (left) is virtually unloaded
(center) by solving the inverse hyper-elasticity problem and then loaded (right) by solving the classical forward hyper-elasticity problem.
The desired known geometry is denoted by dashed lines.

3.1. Two deformed configurations — no contact

Knowing two loaded configurations and the loading conditions, the aim is to identify the material parameters,
φ, of the assumed material model of the body under consideration. The procedure is schematically shown in Fig. 2.
It involves the known mapping x∗(X̃∗) between the two loaded configurations and the (trial) solution

x(X̃; φ) = X+ u(X; φ), (31)

which incorporates the inverse elasticity part

X = X(X̃; φ) = X̃+ ũ(X̃; φ). (32)

n the expressions above, ũ(X̃; φ) is the solution to the inverse elasticity problem, R̃(ũ; φ) = 0, without contact,
.e., for tc = 0. This solution is then used to provide the initial configuration, X(φ), for the forward elasticity

problem, R(u; φ) = 0, which is then solved to obtain u(X; φ).
The identification relies on finding a vector of material parameters φ∗ that brings the solution x(X̃; φ∗) as close

as possible to the desired solution x∗(X̃). (Note that X̃ = X̃∗ by definition.) This can be expressed in the form of
minimization of the square error functional (the objective functional):

φ∗
= argmin

φ

f (φ) = argmin
φ

∑
i∈nodes

(xi (φ) − x∗

i )2. (33)

In this work, the minimization is performed with the gradient-based method BFGS, see Nocedal and Wright
[45]. The necessary gradient of the objective functional is expressed as:

∇φ f (φ) = 2
∑

i∈nodes

∇φxi · (xi − x∗

i ), (34)

here

∇φxi = ∇φX̃i + ∇φũ(X̃i ) + ∇φu(Xi ). (35)

ecause the initial shape does not depend on φ, the term ∇φX̃i vanishes. The remaining gradients in Eq. (35) can
e computed by using the direct differentiation method of sensitivity analysis, which will be outlined in Section 3.3.

.2. Two deformed configurations — with contact

When contact is present in the initial configuration for the inverse elasticity problem, the residual form given
˜
y Eq. (27) includes a non-vanishing unknown contact term Rc given by Eq. (30). This makes it impossible to

7
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Fig. 3. Schematic of a contact region and four knot points χi covering that region (nx = 2 case is present).

directly solve Eq. (27). The unique idea proposed in the present work is to parametrize the missing contact traction
field:

tc = tc(X̃; φc), (36)

so that for a given vector of parameters φc, the vector field tc(X̃; φc) is known over the potential contact boundary.
These additional parameters can be then merged with the material parameters, φ = φc ∪ φm, and undergo the
dentification procedure expressed by Eq. (33).

To demonstrate the idea, below we will provide one of such parametrizations (which will be used in the example
n Section 4.3). For the sake of clarity, we will restrict ourselves to a simple case in which a single-connected,
orizontally-oriented, flat contact zone is present, see Fig. 3. Also, only the normal component of the traction field,

N, will be considered (frictionless contact).
The construction of parametrization will be based on degree-one B-Splines, with a B-Spline basis

Bi (x, χ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x − χi−1

χi − χi−1
for x ∈ [χi−1, χi ),

χi+1 − x
χi+1 − χi

for x ∈ [χi , χi+1),

0 elsewhere,

(37)

where χ is the vector of knot points. In 2D cases, the contact region is a segment, and the necessary nx B-Spline
basis functions are defined over nx +2 knots points, χ = {χ0, . . . , χnx +1}. The knots are chosen to span the contact
segment with some margin. Now, the normal traction profile can be defined as

tN(X̃; φc) =

nx∑
i=1

Bi (X̃x , χ ) · φi
c, (38)

hich allows to recover the parametrized traction field

tc(X̃; φc) = {0, tN(X̃; φc)} (39)

hat is necessary for Eq. (30). In 3D cases, the contact traction is parametrized over a rectangular contact zone that
s specified by two vectors of knot points, χ = {χ0, . . . , χnx +1} and ζ = {ζ0, . . . , ζny+1}, and the product of two
-Spline bases, Bi (x, χ ) · B j (y, ζ ), is used. The parametrized normal traction and traction vector read

tN(X̃; φc) =

nx∑
i=1

ny∑
j=1

Bi (X̃x , χ )B j (X̃ y, ζ ) · φi, j
c , (40)

tc(X̃; φc) = {0, 0, tN(X̃; φc)}. (41)

ote, that in 3D cases the vector of parameters φc is of length nx · ny .

emark. As stated in the introduction, we limit ourselves to path-independent problems, which excludes the
rictional contact. Although we can see no technical obstacles to introduce friction (tangential contact traction)
nto the inverse- and forward elasticity parts of the proposed optimization framework, we have concerns about the

niqueness of solution if the friction is present. To this end, we leave this question for future research.

8
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3.3. Sensitivity analysis

The gradient of design functional with respect to design parameters (which is necessary for gradient-based
inimization algorithms) involves the gradient of the solution expressed by Eq. (35). This gradient is expressed

mplicitly through the solution of inverse-forward elasticity problems given by Eqs. (31) and (32). To recover this
mplicit gradient, in this work we use the direct differentiation method of sensitivity analysis, see Michaleris et al.
46]. The method utilizes discretized residual forms given by Eqs. (19) and (27), of the forward and inverse elasticity
roblems, respectively. Knowing that

R(u(φ),X(φ), φ) ≡ 0 and R̃(ũ(φ), φ) ≡ 0 (42)

old for all φ (through their solution for u and ũ), we can obtain the necessary gradients as a solution of two sets
f linear equations

∇φiu = −K−1
·

(
∂R

∂φi
+

∂R

∂X
· ∇φi ũ

)
(43)

∇φi ũ = −K̃−1
·
∂R̃

∂φi
. (44)

he right-hand sides of the linear problems solved above are called sensitivity pseudo-loads. Eq. (43) involves the
elocity field of shape sensitivity, ∇φi ũ, which is given through the solution of Eq. (44). Quite notably, the linear
perators K = DR/Du and K̃ = dR̃/dũ are the same consistent stiffness matrices that are used at the last iterations
f the Newton–Raphson method when solving Eqs. (19) and (27), respectively. The technique is thus able to provide
umerical-precision sensitivities, and it only requires solving two systems of linear equations per gradient ∇φix.

emark. The most straightforward method to achieving implicit gradients is to apply the finite difference scheme
center differences)

∇φix =
dx
dφi

≈
x(φ + ∆iφ) − x(φ − ∆iφ)

2∥∆iφ∥
, (45)

here ∆iφ is the perturbation in the direction of the i th component of φ. This method is inefficient for a larger
umber of parameters because it requires two executions of the whole inverse-forward problem per gradient ∇φix.
t has been, however, used in the present work to validate the gradients computed with the direct differentiation
ethod of sensitivity analysis.

. Results

Three benchmark examples will be presented to verify the implementation of the framework and to demonstrate
ts capabilities. In the benchmark examples we also analyze the influence of noise, which provides a basic assessment
f applicability the framework to work with real experimental data. In all the examples, the deformed configurations
re only loaded in by their masses in the gravitational field (no Neumann BCs are present, except the contact
raction). We imitated the rotation of the sample by changing the direction of gravity. In Section 4.1, we performed

basic verification of the inverse elasticity formulation and of the sensitivity analysis for all three benchmark
xamples. In Section 4.2, the identification of material parameters of a two-phase soft material is demonstrated.
n Section 4.3, the identification problem is extended to the case that includes frictionless contact in both loaded
onfigurations.

The implementation of finite element procedures has been done with AceGen/AceFem system, see Korelc [47,48]
nd Wriggers and Korelc [49]. AceGen is an automatic-differentiation system that interprets FE formulations
xpressed in a Mathematica-based symbolic language, and then automatizes the derivation of computationally-
fficient FE procedures. It has been used to facilitate the implementation of finite element residual vectors, see
qs. (19) and (27), their linearization, as well as the sensitivity pseudo-load vectors used in Eqs. (43)–(44).

The benchmark examples are prepared as follows. We compute necessary loaded configurations and use them as
nitial configurations for inverse elasticity problems or final configurations for inverse+forward elasticity problems.
hanks to that, we can compare the solutions of the inverse (inverse+forward) elasticity problem with the expected
nown in silico results.
9
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c

Fig. 4. Beam benchmark example. FE solution of (a) forward deformation and the corresponding (b) inverse deformation. (The presented
case corresponds to the first row in Table 1.) The light gray arrows refer to the initial load. The gray wire-frames denote initial configurations
of the respective forward- and inverse problems. Case (c) shows the solution of the inverse elasticity problem in which the gravity direction
was rotated by 10◦ clockwise with respect to the one that was used to obtain the loaded (initial) configuration.

Fig. 5. Beam benchmark example. Sensitivity fields of the inverse elasticity problem (for the case provided in row 1 in Table 1).

4.1. Validation of the inverse and inverse-forward formulation

For basic validation of the inverse elasticity formulation, we consider a 30 cm×6 cm×6 cm beam that is clamped
on the left side and subjected to gravity loading (see Fig. 4(a)). The discretized FE model of the beam consists of
240 first-order tetrahedral elements (O1). (Note that other element types/topologies are also compatible with the
proposed method. To demonstrate this, the second order tetrahedral (O2) mesh and the first order hexahedral (H1)
mesh were also included in the benchmark.) The neo-Hookean material model is assumed (see Eq. (4)), and the
material parameters are chosen such that the beam undergoes large deformation.

In Fig. 4 we can see the solution to the inverse elasticity problem. Even though the initial configuration was
highly deformed, the original unloaded shape could be successfully retrieved. This was only possible because the
formulation and its implementation were correct, and because we provided exact material parameters and loading
conditions (i.e., the ones that were used to compute the initial loaded configuration shown in Fig. 4(a)). Indeed,
if a different direction of gravity from the forward step one is chosen for the inverse problem, the solution of the
inverse elasticity problem is not matching the initial unloaded configuration anymore, see Fig. 4(c).

In Fig. 5 we provide the solution to the sensitivity problem for the inverse elasticity formulation of E and ρ. We
an observe a high correlation of those sensitivity fields, with ∥E · ∇E ũ + ρ · ∇ρ ũ∥ ≃ 10−14. This correlation is

an effect of linear dependency of the elastic strain energy potential on Young’s modulus (see Eq. (4)), and lack of
Neumann boundary conditions (only body forces are present). For these two reasons, when neglecting the boundary
terms in the weak forms (7) and (11), a single independent parameter E/ρ can be extracted, and the solution only
depends on that ratio, making the two parameters correlated. As a consequence,

E · ∇E ũ ≈ −ρ · ∇ρ ũ, (46)

holds (up to machine precision), and one cannot simultaneously identify E and ρ as independent parameters. This
fact is utilized later in the present paper in the optimization examples, for which we keep the density fixed to allow
for unique identification of the elastic modulus.

We performed a thorough validation campaign for the inverse- and inverse-forward elasticity problems, as well

as for the respective sensitivity problems. The error metrics used in the validation are the following. The solution

10
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Table 1
Validation and performance study of the inverse elasticity problem for the beam geometry. Different values of material parameters and the
gravity vector are checked. The fourth and fifth columns provide the number of necessary load increment steps (and the total number of
Newton–Raphson (N–R) iterations) needed by the solver for the case of forward (F) and inverse (I) problems, respectively. Error metrics
for the displacement and the sensitivities are provided in columns 6th and 7th, respectively.

(E [Pa] , ν [ ] ,

ρ [kg m−3])
(gx , gy , gz)
[N m−3]

Topology F steps
(N–R iter.)

I steps
(N–R iter.)

εX εsens
X

(103, 0.45, 50) (0., 0., −9.81) O1 5 (41) 1 (9) 3.9 · 10−16 1.6 · 10−9

(104, 0.45, 50) (0., 0., −9.81) O1 1 (7) 1 (5) 4.2 · 10−16 1.4 · 10−9

(103, 0.20, 50) (0., 0., −9.81) O1 4 (31) 1 (7) 3.1 · 10−16 6.1 · 10−10

(103, 0.45, 20) (0., 0., −9.81) O1 2 (22) 1 (7) 4.5 · 10−16 1.6 · 10−9

(103, 0.45, 50) (0., −5.7, −8) O1 6 (47) 1 (9) 1.9 · 10−16 1.9 · 10−9

(103, 0.45, 50) (0., 0., −9.81) O2 9 (71) 1 (9) 8.42 · 10−16 1.2 · 10−9

(103, 0.45, 50) (0., 0., −9.81) H1 8 (71) 1 (9) 5.0 · 10−16 2.7 · 10−9

X is compared against the known expected solution X∗ using the relative error

εX = ∥X−X∗
∥/∥X∗

∥. (47)

The sensitivities of the solution are cross-validated by checking the relative error

εsens
X = max

i

(
∥DDM

(
∇φi ũ

)
− FD

(
∇φi ũ

)
∥

∥FD
(
∇φi ũ

)
∥

)
, (48)

in which DDM(·) are sensitivities computed with the direct differentiation method given by Eq. (44) and FD(·)
are respective finite-difference approximations provided by Eq. (45). The above-mentioned metrics of the inverse
elasticity solutions naturally extend to the respective inverse-forward cases, in which we have the error metrics εx
and εsens

x that are related to the solution x = X̃+ ũ+ u.
For the inverse elasticity problem, the study has been done for a variety of material parameters (stiffness,

compressibility, density), loading directions (bending, bending with torsion) and element topologies, which are
summarized in Table 1 first three columns. The selected results for the case of inverse elasticity of the beam are
provided in Table 1. The differences in the number of steps which are necessary to converge for the forward problem
(column 4) for different cases are something expected. For instance, the low number of steps in line 2 and 4 results
from a lower deformation (higher stiffness or lower density). On the other hand, higher numbers of necessary
steps in line 5 are due to a more complex load and in lines 6 and 7 results from the use of more complex element
topologies. The computed displacements are numerically exact to the known solution, and the computed sensitivities
are successfully cross-validated.

We can also observe in Table 1 that, quite surprisingly, the solution procedure of the inverse elasticity problem
requires less iterations (steps) than for the forward elasticity case. Our understanding of this effect is the following.
Due to extreme deformations, in the forward elasticity analysis, the deformed mesh is highly distorted. This distorted
mesh is an element of solution, which makes it very likely to cause divergence of the Newton–Raphson solution
scheme when increasing the load too rapidly in the adaptive load-stepping procedure (i.e., the convergence radius
is small). Because of that, more steps are necessary to reach the solution of the forward elasticity problem. For
the inverse elasticity problem, the highly distorted mesh is fixed (the initial configuration), while the final mesh is
not distorted, which makes the convergence of the Newton–Raphson scheme easier, even for large load increments
(i.e., the convergence radius is large). Our hypothesis is to some extent confirmed by the cases in lines 2 and 4 in
Table 1. In these cases, the deformations are much smaller (because of higher stiffness or lower density), which
makes the solutions of forward- and inverse problems the same easy.

A similar performance/validation study has been done for the inverse-forward problem, for all the benchmark
examples considered in this section, i.e., also including the multi-part (simplified breast geometry) case described
in Section 4.2 and the tire case described in Section 4.3. Selected examples are provided in Table 2, and, again,

prove the excellent performance of the inverse- and inverse-forward frameworks.

11
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Table 2
Validation and performance study of the inverse-forward elasticity problem for three benchmark examples. The gravity field g0 is used in
the inverse problem and the gravity field g in the subsequent forward problem (both in N m−3). The 4th and 5th columns provide the

umber of necessary load increment steps (and the total number of Newton–Raphson (N–R) iterations) needed by the solver for the case
f inverse (I) and forward (F) problems, respectively. Error metrics for the displacement of the inverse problem and the sensitivities of the
nverse- and inverse-forward problems are provided in columns 6th, 7th and 8th, respectively; Young’s modulus, Poisson ratio and density
ere respectively set to 1000 Pa, 0.45, 50 kg m−3 for the beam case, (Et , νt , ρt ; Es , νs , ρs ) = (1000 Pa, 0.45, 1000 kg m−3; 1000 Pa,

0.45, 1000 kg m−3) for the breast case, and 1000 Pa, 0.45, 200 kg m−3 for the tire case.

Geometry (gx , gy , gz)0 (gx , gy , gz) I steps
(N–R iter.)

F steps
(N–R iter.)

εX εsens
X εsens

x

Beam (0., 0., −9.81) (2., 5., −2.5) 1 (9) 5 (41) 9.26 · 10−17 1.56 · 10−9 3.60 · 10−8

Breast (0., 0., −9.81) (2., 5., −2.5) 1 (5) 1 (8) 2.75 · 10−17 3.80 · 10−10 6.37 · 10−10

Tire (0., −9.81, 0.) (0., 9.81, 0.) 1 (9) 5 (31) 7.52 · 10−16 6.83 · 10−9 2.71 · 10−9

Fig. 6. Beam benchmark example with noise. (a) FE solution of the inverse deformation (the gray wire-frame denotes the noisy initial
configuration). (b) The statistics (mean, lower & upper quartiles, min & max) of displacement relative errors (Eq. (47)) for different noise
levels.

4.1.1. Effect of noise
So far, we assumed the known geometries to be perfect. They resulted from an assumed numerical model (forward

lasticity), which assured the compatibility with the inverse elasticity model that was used to recover the unknown
eometry and then to be a part of the calibration procedure. However, in the experimental reality we do not have
erfect data. There are several sources of uncertainties/errors/noise, such as the mismatch between properties of
xamined material/system and an assumed model, the inaccuracies in physical imaging/measurement, or the fitting
rrors in the Digital Volume Correlation (DVC) procedure to achieve discretized geometries and deformation maps.

In this study, we were not aiming to investigate all possible sources of uncertainties. What we did was to add
andom perturbation (noise) to our perfect in silico geometries and see how this affects the predictions. We related
he level of noise to an arbitrarily assumed voxel size, which is directly related to the accuracy/resolution of an
maging device, and can be also related to uncertainties of the DVC procedure, see our recent work Lavigne et al.
44].

In case of noisy version of the beam benchmark test (Table 1, line 1), the initial (loaded) geometry of the beam
as been perturbed in the following way. A random noise δ ∈ U[−vx, vx] has been individually generated and

added to each nodal coordinate, where U[•, •] represents the uniform distribution and vx is the assumed noise
level. We have tested 11 different values of noise levels, vx , in the range 0.1 mm − 5 mm.

Fig. 6(a) presents the inverse deformation solution for one chosen perturbed initial configuration for the noise
level vx = 5 mm. For each noise level, we have generated 100 different random perturbed geometries, which allowed

us to analyze the statistics of prediction errors. The statistics is presented in Fig. 6(b), where we can observe that
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Fig. 7. The effect of mesh refinement on FE solutions for the (a) forward and (b) inverse elasticity problems. Different FE discretizations
f the initial geometry (gray) effect in different solutions. Three mesh refinements are shown: the coarsest (blue), intermediate (green), and
he finest (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Convergence study for the beam example. The relative error εX (see Eq. (47)) increases with the element size (mesh coarsening).

the median and min&max values of relative error in position are proportional to the noise level. The plot shows
a relatively high sensitivity of solution to noise level. This high sensitivity can be explained by extremely large
deformations that are present in the studied case, as well as by the fact that the noise can significantly affect the
loading conditions by changing the volume (due to body force loading).

4.1.2. Convergence study
In Section 4.1.1, we showed that the solution of the inverse elasticity problem is sensitive to noise added to the

initial (loaded) geometry. In this section, we will investigate the effect of coarsening or refining the finite element
mesh, which can be viewed as another source of uncertainties that can affect prediction errors. To do this, we
conducted the following convergence study for the beam geometry.

The study was performed for the case presented in the first row of Table 1. A reference (ground-truth) loaded
configuration was calculated using the finest finite element mesh, which was made of 6×nx×ny×nz = 6×26

×24
×24

tetrahedrons (shown in red in Fig. 7(a)). This finest reference mesh was used to create all the coarser reference
meshes for this study by gradually coarsening it by a factor of 2 × 2 × 2. As a result, five meshes were considered:

× nx × ny × nz = 6 × 2i+2
× 2i

× 2i , i ∈ [0, 4], all overlapping with the gray geometry in Fig. 7(b). The
nverse elasticity procedure was applied to all meshes, allowing us to investigate how mesh coarsening influences
he prediction error, see Fig. 7(b).
13
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Fig. 9. Two-part 3D simplified breast model (tissue + skin).

In Fig. 8, we observe that the relative error is close to zero for the ground-truth mesh, but increases as the mesh is
oarsened. This is expected and is primarily due to the fact that the discretized system becomes relatively stiffer as
he mesh is coarsened. This is evident in the less deformed configurations obtained by solving the forward elasticity
roblem for coarser meshes, as shown in Fig. 7(a).

.2. Identification of material parameters

The second benchmark example is based on a simplified breast geometry. The sample consists of two parts: the
ody tissue and the skin, as schematically depicted in Fig. 9(a). The respective FE mesh is composed of 46 053
rst-order tetrahedral elements (GMSH API was used for the meshing), see Fig. 9(b). This case aims to analyze

he case of mixed stiffer/softer tissue, with a high contrast of properties. Motivated by the literature (Payan and
hayon [1], Gamage et al. [50] and Kalra and Lowe [51]), the material parameters of the inner tissue and the skin

re roughly set to (Et , νt , ρt ) = (1000 Pa, 0.45, 1000 kg m−3) and (Es, νs, ρs) = (10 000 Pa, 0.45, 1100 kg m−3),
espectively. These parameters can under-estimate the material found in the literature. The skin is usually considered
ncompressible. However, the chosen FE formulation only supports compressible and quasi-incompressible models.
herefore, a Poisson ratio of 0.45 was deemed a good compromise. The sample is fixed at its bottom boundary.

We will demonstrate the performance of the optimization procedure introduced in Section 3.1. The necessary
nitial and final deformed configurations are obtained by solving the forward elasticity problems for the gravity field
0, 0, −9.81) N m−3 (initial configuration, see Fig. 9(c)) and (−5.7, 0, −8) N m−3 (final configuration, see Fig. 9(d)),
espectively. The four material parameters to be identified are Young’s modulus and Poisson ratio of the tissue and
he skin. For the reason discussed in Section 4.1, the densities were fixed. To better assess the reliability of the

ptimization framework, two independent identifications were performed for two different initial guesses of those

14
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Fig. 10. Breast example. Examples of sensitivity fields of the inverse-forward elasticity problem (for the case provided in Fig. 9(d)).

Fig. 11. Breast example. Convergence of the BFGS optimization method for two different initial guesses.

our parameters, see Table 3. The necessary gradients for the BFGS optimization method were computed with the
irect differentiation method of sensitivity analysis (see exemplary sensitivity fields in Fig. 10).

The results provided in Table 3 and Fig. 11 demonstrate the excellent performance of the framework. For both
nitial guesses, the procedure only needed less than 50 BFGS iterations to reach the stopping criterion of 10−16 for

the square error of the solution. In both cases, the expected values of the in silico material parameters were found
(up to numerical precision).

4.2.1. Effect of noise
In Section 4.1.1 we studied the effect of noise on the solution of inverse elasticity problem. In this section, we

show the effect of noise on the whole calibration procedure for the breast example. We considered three different
15
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Table 3
Breast example: performance of the identification procedure. Initial guesses for the tissue and skin phases, number of required iterations for
convergence (BFGS it.), and the final value of the square error (SE).

(Et [Pa] , νt [ ] , ρt [kg m−3]) (Es [Pa] , νs [ ] , ρs [kg m−3]) BFGS it. SE [m2]

(750., 0.225, 1000) (15000, 0.27, 1100) 41 2.4 · 10−20

(2000, 0.225, 1000) (20000, 0.225, 1100) 44 6.0 · 10−20

Fig. 12. Calibration with noise for the breast example. (a) The convergence of BFGS procedure for different noise levels. (b) The statistics
(mean, lower & upper quartiles, min & max) of calibrated parameters’ relative errors for different noise levels.

noise levels: 0.01 mm, 0.05 mm and 0.1 mm. The random noise was added to both known loaded geometries. The
maximum noise magnitude represented 2% of the skin thickness.

For each noise level, we performed calibration for 10 different noisy cases (different random perturbations of
eometries). The statistics of relative errors of identified parameters (with respect to their expected values) are
ummarized in Fig. 12. We can observe that, as expected, the error grows with the level of noise, however, it is
ower than 0.5% for the most noisy case. We can also observe that the errors related to the parameters of skin, Es
nd νs, are the most affected. This can be explained by the fact that, due to its low thickness, the skin was discretized
ith much finer mesh, as compared to the tissue, therefore, the same level of perturbations created higher errors in

trains for the skin than for the tissue, which then affected the calibration errors.

.3. Identification of material parameters with contact

Finally, we will analyze the case with contact. We consider a tire-like geometry held by two semi-axles that
re fixed at their free ends, see Fig. 13(a). The FE discretization consists of 43 846 first-order tetrahedral elements
created using GMSH), cf. Fig. 13(b). To obtain a large displacement field of the tire held by a stiffer axle, the
aterial parameters of the tire are (Et, νt, ρt) = (800 Pa, 0.4, 200 kg m−3) and of the axles are (Ea, νa, ρa) =

104 Pa, 0.4, 100 kg m−3).
The two deformed configurations considered in this example are loaded in opposite directions, i.e., g =

(0, 9.81, 0) N m−3. In both loaded cases, the deformation of the sample is restricted by an obstacle located
bove/below (friction-less contact constraints), which results in non-trivial highly deformed configurations. The
ontact constraints are introduced with the penalty method. The resulting initial and final deformed shapes are
hown in Figs. 13(c) and 13(d), respectively.

As a first basic test, we perform the inverse- and inverse-froward analyses in which the contact traction term
n Eq. (30) is neglected (tN = 0). As expected, the respective solutions are incorrect, which is visible in Fig. 14.
o this end, we will apply the framework introduced in Section 3.2 to identify the missing contact traction field.

The identification procedure is similar to the one presented in Section 4.2. The important difference is that, as
tated in Section 3.2, we additionally parametrize the contact traction field by piece-wise bi-linear segments that

re controlled by a grid of (nx × nz) parameters. The grid is evenly distributed over the 0.2 m × 0.2 m square that
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Fig. 13. Tire example. Schematics, unloaded configuration and two loaded configurations.

Fig. 14. Tire example for the correct material parameters but incorrect contract traction tN = 0. The gray meshes in (a) and (b) are the
eference configurations for the inverse- and forward elasticity problems, respectively.

Table 4
Tire example. The convergence study for different (nx, nz) resolutions. The chosen number of BFGS iterations is shown, together with the
dentified material parameters (Young modulus and Poisson ratio of the tire) and their relative error. BFGS error = ||xcomputed

− xexpected
||

2

is the value of the minimized design functional, and MPE = max abs(xcomputed
− xexpected), is the maximal nodal position error in the final

configuration.

(nx, nz) BFGS iterations Solution: (Et [Pa], νt [ ]) Solution error (%) BFGS error [m2] MPE [m]

(2, 2) 80 (761.0, 0.372) (4.9, 7.0) 1.29 · 10−1 1.91 · 10−2

(3, 3) 120 (798.5, 0.398) (1.9 · 10−1, 5 · 10−1) 2.98 · 10−3 5.91 · 10−3

(4, 4) 200 (802.8, 0.401) (3.5 · 10−1, 2.5 · 10−1) 1.03 · 10−3 2.34 · 10−3

(6, 6) 400 (801.3, 0.400) (1.6 · 10−1, 5.3 · 10−2) 3.74 · 10−4 1.84 · 10−3

(8, 8) 1000 (800.1, 0.400) (1.5 · 10−2, 2.8 · 10−3) 5.27 · 10−5 8.45 · 10−4
17
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Fig. 15. Tire example for the optimized 8 × 8 case. The gray meshes in (a) and (b) are the reference configurations for the inverse- and
forward elasticity problems, respectively.

Fig. 16. Tire example. (a) The optimized contact traction fields, and (b) the convergence of BFGS procedure, for three different resolutions
nx × nz. (cropped at 500 iterations for the ease of reading).

includes the contact area of the initial loaded configuration. These contact traction parameters are identified together
with two material parameters of the tire, (Et, νt). The remaining material parameters, i.e., ρt, Ea, νa, ρa, are fixed
during the identification procedure. The choice to fix ρt is a direct consequence of the interplay between the Young

odulus and the density, discussed in Section 4.1. The parameters of stiffer axle are not upon calibration because
he axle was only introduced to simulate a clamping device.

In the study, we consider a different number of contact traction parameters, starting from 2 × 2 up to 8 × 8,
ee Table 4. This allows us to control the resolution at which the traction field can be identified: the higher the
esolution is the more accurate should be the result of identification. The initial guess for the identification procedure
as: random (close to zero) contact traction parameters and (Et, νt) = (1600 Pa, 0.2). Due to the approximate

representation of the contact traction, the exact solution cannot be reached up to numerical precision (which was
possible in the noiseless breast example). As a consequence, the BFGS error will reach a plateau at a finite level.
The fact of reaching this plateau will be considered as our stopping criterion (different for each analyzed case),
which is expressed as “BFGS iterations” in Table 4.

We can observe that the identification procedure performs very well, see Table 4 and Figs. 15–16. Even for
the lowest analyzed resolution, nx × nz = 2 × 2, the identified material parameters are within 10% relative error,

ith the maximal position error of approx. 19 mm which is 19% of the tire radius. For the increasing resolution,
he accuracy increases too, reaching the level below 0.02% relative error for material parameters and below 1 mm

aximal position error for the 8 × 8 resolution.

emark. The increased accuracy is achieved at the cost of higher computation time. A larger number of design

arameters increases both: the required number of BFGS iterations and the computational cost of each iteration
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Fig. 17. Effect of noise on the calibration for the nx × nz = 8 × 8 tire example, for different noise magnitudes. (a) Evolution of the BFGS
error. (b) Contact tractions (at x = 0). (c) Calibration errors of contact tractions (relative error with respect to the noiseless predictions). (d)
Calibration errors of material parameters (relative error with respect to the exact values).

(computation of gradient). In practical applications, a suitable balance must be then found between the accuracy
and the computation time.

4.3.1. Effect of noise
Similarly to the breast benchmark case, we introduced noise in the tire calibration case to assess the robustness

of the method (we only analyzed the case nx × nz = 8 × 8). We considered noise levels, vx , up to 2 mm (which
s 2% of the tire radius), and used them to perturb the reference (loaded) geometries.

As expected, the BFGS error is increasing with the noise level, see Fig. 17(a). In Fig. 17(b), we can observe
hat the calibration error for contact tractions is pronounced the most near the boundary and outside the contact
rea, which correlates with the analogous results for the noiseless case shown in Fig. 16(a). This error, however,
ignificantly influences the overall relative error for contact tractions, see Fig. 17(c), and goes above 10% for the
ighest analyzed noise level. Happily, the error in contact tractions does not significantly affect the calibration error
or material parameters, which is below 0.2% for the highest analyzed noise level, see Fig. 17(d).

. Conclusions

In this paper, we provided an optimization framework that is capable of identifying material parameters and
he contact traction field, knowing only two meshes for two deformed configurations. Remarkably, both known
onfigurations are loaded and subjected to contact with no information about contact traction. To the best of our
nowledge, this is the first time such identification is shown to be possible.

In the framework, we incorporated large-deformation inverse and forward elasticity formulations, friction-less
ontact, as well as the parametrized unknown contact traction field that was applied as a boundary term in the inverse
lasticity formulation. In the paper, we provided the details of the continuum and FE formulations, as well as the
irect differentiation method of sensitivity analysis that allowed us to compute necessary gradients efficiently. In a

eries of numerical examples, we confirmed the correctness of the formulation and its implementation and studied
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the performance of the framework, also for systems of heterogeneous material properties. Possible application of
the framework to real experimental data has been demonstrated by showing its good performance when noise was
artificially added to in silico reference geometries.

We limited ourselves to hyper-elastic material models and frictionless contact. Extension of the framework to
more general models and problems (e.g., path-dependent or irreversible problems) may pose obstacles of a more
fundamental (theoretical) nature. Technically, in this more general case, one could replace the efficient (direct)
inverse formulation with an iterative scheme, however, this would greatly deteriorate the computational efficiency
of the framework. As an alternative, an interesting avenue to investigate is to apply machine-learning techniques
to retrieve computationally efficient surrogate models (see Mendizabal et al. [52], Deshpande et al. [53,54,55] and
Krokos et al. [56] for the case of large-deformation elasticity), or even to extend the framework with model selection
strategies, see, e.g., Thakolkaran et al. [57]. Such extensions and new directions are beyond the scope of the present
paper and are left for future research.

The application area of the proposed framework is wide and covers full-field experimental model calibration
procedures for natural and engineering systems that operate under load, with possible contact interactions. The
unique capabilities of the framework seem particularly useful in biomedicine which must intrinsically consider soft
confined systems under loads. This includes patient-specific data-driven modeling of soft human tissues, which is
an emerging area of research, also pursued by our group, see Elouneg et al. [58] and Mazier et al. [59]. To this end,
we believe that the presented framework will stimulate further research in that direction, and will find practical use
in many engineering applications.
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