
Computers and Mathematics with Applications 148 (2023) 70–80

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Efficient strategy for space-time based finite element analysis of vibrating 

structures

Bartłomiej Dyniewicz a, Jacek M. Bajkowski b,∗, Czesław I. Bajer a,∗

a Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw, 02-106, Poland
b Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, Warsaw, 02-524, Poland

A R T I C L E I N F O A B S T R A C T

Keywords:

Space-time

Finite element

Direct decoupling

Vibration

Moving load

Parallel algorithm

This paper presents an efficient parallel computing strategy to solve large-scale structural vibration problems. 
The proposed approach utilises a novel direct method that operates using simplex-shaped space-time finite 
elements and allows for the direct decoupling of variables during the assembly of global matrices. The method 
uses consistent stiffness, inertia and damping matrices and deals with non-symmetric matrices. One significant 
advantage of this approach is that the computational cost remains unaffected by the bandwidth of the matrix in 
the traditional sense because only non-zero coefficients are retained. The speed of computations demonstrates 
a noticeable increase as the number of nodes and the problem’s dimensionality grow. To demonstrate the 
effectiveness of the parallel space-time approach, a comparison with a sequentially executed code was conducted. 
The results indicate that the proposed method enables calculations at least 20 times faster than those 
achieved using the classical finite element method. Furthermore, the parallelisation algorithm was successfully 
implemented to solve a dynamics problem involving a large-scale, three-dimensional railway structure subjected 
to a moving load. Remarkably, the problem was solved in a reasonable amount of time using a relatively low-cost 
personal computer.
1. Introduction

When properly implemented and executed, the classical finite ele-

ment method (FEM) produces highly accurate results but requires a long 
solving time because discretising the complex structure results in a sys-

tem with a large number of degrees of freedom, often reaching millions 
[1–4].

Even more processing power is required when moving inertial per-

turbance is considered since the fine discretisation along the trajectory 
of the movement is necessary. The wave phenomena dominate partic-

ularly in the case of high-speed motion, e.g. when a high-speed train 
is travelling along an embankment [5]. The induced ground vibration 
negatively influences the surrounding infrastructure, and the comfort of 
inhabitants. It motivates the development of fast and reliable numerical 
methods for accurately simulating rail-embankment interactions. The 
problem of obtaining the numerical response of such a railway system 
is considered in this paper as a benchmark of the proposed space-time 
parallelisation strategy using 3-D finite element analysis.

In the early studies of dynamic problems related to high speed trains 
presented by Krylov [6], the moving force was modelled only as the 

* Corresponding author.

E-mail address: jm.bajkowski@gmail.com (J.M. Bajkowski).

quasi-static force transmitted by the sleepers in a ballasted track. The 
investigations of ground vibrations were conducted by analytical means 
assuming a homogeneous elastic half-space [7,8] or by semi-analytical 
models for multi-layered ground [9]. Two-dimensional (2-D) models 
may be attractive for their computational efficiency, but are prone to 
underestimating the soil damping and ignoring wave propagation char-

acteristics, while transferring a 3-D force into an equivalent 2-D force 
is problematic [10,11]. Yang and Hung [12] used a two-and-a-half-

dimensional finite element method (2.5-D FEM) to study the dynamic 
response of the train track and ground. The 2.5-D FEM is useful when 
the applied load and structural response are 3-D while the structure 
itself is 2-D, which allows for simpler discretisation and reduces the 
computational effort [13,14]. However, longitudinally invariant geom-

etry is assumed, which requires the ground, tunnels and rails to be 
homogeneous in the track direction.

The fully 3-D models allow to include irregularities in the geometry 
and material without compromising the accuracy. They overcome plane 
stress/strain limitations and allow including the wave propagation be-

haviour in the load-moving direction [15,16]. In [17] a fully 3-D model 
https://doi.org/10.1016/j.camwa.2023.08.002

Received 20 February 2023; Received in revised form 20 June 2023; Accepted 1 Au

0898-1221/© 2023 The Author(s). Published by Elsevier Ltd. This is an open acces

by -nc -nd /4 .0/).
gust 2023

s article under the CC BY-NC-ND license (http://creativecommons .org /licenses /

https://doi.org/10.1016/j.camwa.2023.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.08.002&domain=pdf
mailto:jm.bajkowski@gmail.com
https://doi.org/10.1016/j.camwa.2023.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80
combining multi-body, FEM and boundary elements was formulated in 
time to predict vibrations in the environment due to train passage. In 
[18] a time domain explicit 3-D FEM model with non-linear excitation 
mechanisms was used to simulate the propagation and transmission of 
ground vibration in the vicinity of high-speed railways. In [19] Katou et 
al. analysed a numerical model of the embankment of the railroad un-

der a high-speed train with a 3-D viscoelastic finite difference method. 
However, the execution of a 3-D analysis is extremely time-consuming 
and requires high-performance computing resources.

When examining vibration and wave propagation problems de-

scribed with second-order differential equations of the hyperbolic type, 
numerical methods, like the finite element method, require a great solv-

ing time. Parallel computing techniques can facilitate the acceleration 
of such bulk tasks.

In [20], authors implemented the explicit nonlinear FEM for sheet 
forming simulation. The graphics processing unit (GPU) allowed more 
than 27 times faster computations than the central processing unit 
(CPU). In [21], the parallel GPU computations of finite elements mod-

els were 4 times more efficient when compared with single-core CPU 
computations. In [22], it was found that GPU can accelerate the com-

putation by a factor of up to 20 compared to the non-parallel CPU code. 
In [23], authors achieved speedups of the single GPU concerning the 
single-core CPU larger than 100.

In [24] strategy for the matrix assembly procedure in a Galerkin 
implementation of local maximum entropy meshfree schemes was struc-

tured to exploit the massive parallelism of GPU architecture, demon-

strating speedups reaching 1035 times when using a dedicated work-

station. A more modest acceleration of up to 91 times was achieved 
using a mobile workstation, proving the possibility of handling indus-

trially relevant applications on dedicated computing infrastructure and 
personal computers.

In the present paper, we introduce a novel approach that harnesses 
parallel computing to reduce the computational effort in a nonlinear 
time-stepping algorithm significantly. This approach differs from tra-

ditional methods used to reduce computational time in stepwise algo-

rithms. The key novelty lies in the type of the matrices obtained directly 
through discretisation. In conventional approaches, the systems of equa-

tions are full (bandwise), and require a separate matrix triangulation 
process. In contrast, our proposed method, utilising simplex-shaped el-

ements, directly yields systems of equations with already formulated 
triangular matrices during the global matrix assembly from elemental 
matrices.

Moreover, the features of the formulation predestine the space-time 
method to be efficiently mapped into parallel processing units.

To the author’s knowledge, no documented efforts have been made 
thus far to parallelise calculations using the method of space-time ele-

ments with simplex shapes. Previous works employing the space-time 
elements method have described solutions to original problems more 
straightforwardly and intuitively. However, effective parallelisation of 
solutions to initial-boundary problems is only feasible using symplectic 
elements, which require appropriate mesh topology in both time and 
space.

The main chapters of the work introduce the concept of a single-

stage solution for each time step in a linear problem. Non-linear prob-

lems are solved iteratively at each time step, following the traditional 
methods of solving systems of non-linear equations. The presented 
method offers a significant advantage by allowing for the separation 
of subsystems and limiting iterations within each time step to a specific 
spatial area with a considerably smaller number of unknowns compared 
to the entire problem domain. A demonstration of the method’s feasi-

bility in solving non-linear problems is presented in the final chapter.

There are three main advantages of the space-time approximation:

• it allows the non-stationary division of the structure into finite el-

ements and thus adjusting the position of the mesh nodes to the 
travelling sources of disturbances,
71
• it enables the relatively easy formulation of phenomena described 
by differential equations with shifted arguments, using a stationary 
discretisation,

• it enables the partitioning of time and space into simplex elements 
for semi-separation of the resulting system of algebraic equations 
at the stage of its formation, so the size of a semi-infinite or infinite 
problem can be limited to a small subsystem with few unknowns 
[25,26].

In Section 2 the fundamentals of space-time discretisation performed 
with simplex-shaped finite elements are given. In Section 3, the strat-

egy of parallelisation for space-time computations is presented for test 
problems, and limitations are discussed. In Section 4 the efficiency of 
the parallel space-time FEM is compared with other approaches. In 
Section 5 the solution of a 3-D example of an elongated railway em-

bankment structure with a refined mesh is used as a benchmark. Finally, 
the Conclusions summarise the contribution and perspectives for further 
development.

2. Essentials of space-time finite element method

2.1. Space-time finite element discretisation

The idea of splitting space-time into various subdomains goes back 
to 1969 when Oden [27] presented discretised time layers of a physical 
structure representing a uni-dimensional structure consisting of quad-

rangles and triangles. The application of simplex-shaped elements was 
further developed [28,29] to directly obtain a decoupled system of alge-

braic equations during the formulation and assembly of global matrices. 
The solution can be carried out joint-by-joint, and thus the efficiency of 
computations is increased because only a sequence of small systems of 
equations, each having the same number of equations as the number of 
nodal degrees of freedom, must be solved, instead of one global system. 
No triangulation of the global matrix or LU decomposition is required. 
This concept is the foundation of the idea of the parallelisation strategy 
presented in this paper.

A vibrating structure defined in space is considered in time. The do-

main of interest is determined by Ω = {𝐱, 𝑡 ∶ 𝐱 ∈ 𝑅3, 𝑡 ∈ (0, 𝑡𝑓 )}. Here, 
𝐱 = (𝑥, 𝑦, 𝑧) defines the spatial domain while the time interval defines 
the period of observation. In the typical approach, the spatial domain 
is topologically separate from the time domain. The displacements, ve-

locities, accelerations, and their spatial derivatives are assumed at the 
same time 𝑡, at which the equilibrium is evaluated. Therefore, the prob-

lem is described in the plane that is one section at a time of space-time 
(Fig. 1a).

The transfer from a one-time layer to another one at a distance of Δ𝑡
is not continuous but performed with incremental formulas.

The space-time domain surrounds the physical space and extends its 
dimensionality to time. The approach used in the algorithm proposed in 
this work assumes interpolations to be continuous in time. Subdomains 
are separated from volumes or hyper-volumes by two parallel planes 
evaluated at times 𝑡 and 𝑡 +Δ𝑡 (Fig. 1b). Space-time subdomains can be 
separated with more complex forms or even evolve in time (Fig. 1c). 
For simplicity, only space-time subdomains limited by time planes at 
a given time and creating a stationary set of nodes are considered in 
this work.

The classical finite element method for time-dependent problems 
uses the discretisation

𝐮(𝐱, 𝑡) = 𝐍̃(𝐱) 𝐪̃𝑒 ×𝐓(𝑡) , (1)

where 𝐪̃𝑒 is the vector of element nodal unknowns evaluated at time 𝑡
like the displacement or velocity vector, 𝐍̃ is the matrix of interpolation 
(shape) functions in space, while 𝐓(𝑡) is the interpolation function in 
time.



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80

Fig. 1. 2-D object in classical discrete time integration (a), in space-time (b), and evolving in space-time (c).
Fig. 2. Multiplex and simplex approximation in space-time for 1, 2 and 3-

dimensional objects.

The space-time approach uses the formula

𝐮(𝐱, 𝑡) =𝐍(𝐱, 𝑡)𝐪𝑒 (2)

where 𝐪𝑒 contains nodal unknowns for both times limiting a space-

time layer. Simplex-shaped elements 𝐪𝑒 contain nodal parameters for 
one node more than their spatial representatives, i.e. triangle instead 
of a line segment, tetrahedron instead of a triangle, etc. (Fig. 2). Thus 
𝐍 is the matrix shape function with a larger number of columns than 
𝐍̃. The classical approach to time-stepping algorithms can be consid-

ered a sequence of elliptic problems, one per time step. In contrast, the 
space-time approach is a sequence of semi-hyperbolic problems.

2.2. Numerical model in space-time approach

The space-time FEM method used in the paper is based on the topo-

logical properties of triangles, tetrahedra, and hyper-tetrahedra, which 
allow the global matrices of the resulting systems of algebraic equa-

tions to be generated in a semi-decoupled form. Classical methods result 
in band matrices, whereas triangular half-band matrices are directly 
formed with the simplex-shaped space-time approach. Thus the solution 
stage can be extremely fast since the system of equations describing the 
structure can be solved directly joint-by-joint. The classical formulation 
of the discrete dynamic problem of elasticity is presented below.

A continuum closed in a domain 𝑉 , being a subdomain in Euclidean 
space 𝐸3 is considered. 𝑉 denotes the interior of this subspace and 𝜕𝑉
its boundary, being the sum of 𝜕𝑉𝑡 and 𝜕𝑉𝑢. Stress and displacement 
boundary conditions are assumed on 𝜕𝑉 . The motion of the body in 
time interval [0, 𝑇 ] is considered. Displacement vector 𝐮, velocity vector 
𝐯, inertial forces 𝜌𝐟 , symmetric tensor of stresses 𝝈 and strains 𝜺 are 
determined on Cartesian product of sets 𝑉 × [0, 𝑇 ]. Vector of surface 
forces ̂𝐭 is determined on the product 𝜕𝑉 × [0, 𝑇 ]. A set of kinematic and 
physical equations with boundary and initial conditions describes the 
problem. Equations of motion are as follows
72
div𝝈𝑇 + 𝜌𝐟 = 𝜌
𝜕𝐯
𝜕𝑡

, (𝐱, 𝑡) ∈ 𝑉 × [0, 𝑇 ]. (3)

The respective system of equations formulates the problem locally. 
The transition to the global formulation is obtained by multiplication 
of (3) by the virtual displacement function 𝛿𝐮(𝐱, 𝑡). After integration we 
obtain

𝑡1

∫
𝑡0

∫
𝑉

(
div𝝈𝑇 + 𝜌𝐟 − 𝜌𝐯̇

)
𝛿𝐮 d𝑉 d𝑡+

𝑡1

∫
𝑡0

∫
𝜕𝑉𝑡

𝐭̂ 𝛿𝐮 d(𝜕𝑉 )d𝑡 = 0 . (4)

Integration by parts yields

𝑡1

∫
𝑡0

∫
𝑉

𝜌 (𝐟𝛿𝐮+ 𝐮̇ 𝛿𝐮̇) d𝑉 d𝑡+

𝑡1

∫
𝑡0

∫
𝜕𝑉𝑡

𝐭̂ 𝛿𝐮d(𝜕𝑉 )d𝑡 =

𝑡1

∫
𝑡0

∫
𝑉

𝝈𝛿𝜺d𝑉 d𝑡 . (5)

The domain {𝑉 , 0 ≤ 𝑡 ≤ 𝑇 } must be discretised. In this initial-boundary 
problem, the half-infinite space-time band can be split into various 
space-time finite elements. The straightforward partition into rectan-

gular elements in time (generally into multiplex shape elements) makes 
this method similar to the classical FEM, with time integration carried 
out with the Newmark family method.

The simplest space-time elements can be cut out of the time layer 
limited by planes 𝑡 = 𝑡𝑖 and 𝑡 = 𝑡𝑖+1 in forms of prisms. Thus final ob-

jects can be considered as finite spatial elements extended over a time 
interval (Fig. 1b). The unknown parameters like real and virtual dis-

placements 𝐮 and 𝛿𝐮, respectively, and their derivatives 𝐮̇, 𝜺, 𝝈 etc. are 
interpolated from nodal displacements 𝐪 and 𝛿𝐪

𝐮(𝐱, 𝑡) =𝐍(𝐱, 𝑡) 𝐪, 𝛿𝐮(𝐱, 𝑡) =𝐍∗(𝐱, 𝑡) 𝛿𝐪,

𝐮̇(𝐱, 𝑡) = 𝐍̇(𝐱, 𝑡) 𝐪, 𝛿𝐮̇(𝐱, 𝑡) = 𝐍̇∗(𝐱, 𝑡) 𝛿𝐪, (6)

𝜺(𝐱, 𝑡) = 𝐁(𝐱, 𝑡) 𝐪, 𝛿𝜺(𝐱, 𝑡) = 𝐁∗(𝐱, 𝑡) 𝛿𝐪,

𝝈(𝐱, 𝑡) = 𝐄𝐁(𝐱, 𝑡) 𝐪.

Matrix 𝐁 can be obtained by acting with a differential operator  on 
the shape functions 𝐍: 𝐁 =  𝐍, where  = 1

2

(
grad+ grad𝑇

)
. Symbol 

(.)∗ refers to the virtual state. The Kelvin-Voigt model of viscoelastic-

ity defined by the Young modulus 𝐸 and viscous damping coefficient 
𝜂𝑤 is assumed. The above interpolation is applied to each space-time 
subdomain. The set of local equations is then obtained.

Considering (6) in (5) the quadratic form of the equilibrium of the 
energy in time interval [𝑡0, 𝑡1] can be written

NE∑
𝑒=1

(
(𝚷𝑇

𝑒 𝛿𝐪𝑒)
𝑇𝚷𝑇

𝑒 𝐊̃𝑒𝚷𝑒 ⋅𝚷𝑇
𝑒 𝐪𝑒 − (𝚷𝑇

𝑒 𝛿𝐪𝑒)
𝑇𝚷𝑇

𝑒 𝐐𝑒

)
= 0. (7)

NE is the number of space-time elements in the space-time layer. Matri-

ces 𝚷𝑒 are zero-one tables assigning degrees of freedom of the element 
to the global set of degrees of freedom. These matrices determine the 
way of summation of local matrices into a global matrix. The same pro-

cess is carried on in a classical finite element approach. The elemental 
space-time stiffness matrix 𝐊̃𝑒 can be considered in a similar way to the 
equivalent stiffness matrix in the Newmark algorithm



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80
𝐊̃𝑒 =𝐊𝑒 +𝐌𝑒 . (8)

𝐊𝑒 contributes the stiffness effect and is proportional to physical stiff-

ness 𝑘 multiplied by time step ℎ, while 𝐌𝑒 contributes the inertia effect 
and is proportional to physical mass 𝑚 divided by time step ℎ.

If Kelvin-Voigt model is assumed and damping forces are included 
in (3), two additional terms 𝐖𝑒 and 𝐙𝑒 must be added to (8)

𝐊̃𝑒 =𝐊𝑒 +𝐌𝑒 +𝐖𝑒 +𝐙𝑒 . (9)

Final forms of stiffness 𝐊𝑒, inertia 𝐌𝑒, internal 𝐖𝑒 and external 𝐙𝑒 ele-

ment damping matrices are given below

𝐊𝑒 =

𝑡1

∫
𝑡0

∫
𝑉

(𝐍)𝑇 𝐄𝐍 d𝑉 d𝑡 ,

𝐌𝑒 = −

𝑡1

∫
𝑡0

∫
𝑉

(
𝜕𝐍
𝜕𝑡

)𝑇
𝐑 𝜕𝐍

𝜕𝑡
d𝑉 d𝑡 , (10)

𝐖𝑒 =

𝑡1

∫
𝑡0

∫
𝑉

(𝐍)𝑇 𝜂𝑤 𝜕𝐍
𝜕𝑡

d𝑉 d𝑡 ,

𝐙𝑒 =
𝑡1

∫
𝑡0

∫
𝑉

𝐍𝑇 𝜂𝑧
𝜕

𝜕𝑡
𝐍 d𝑉 d𝑡 ,

where 𝐑 is the matrix of inertia and 𝜂𝑧 is the external damping coeffi-

cient. The vector of external forces acting on the space-time element is 
denoted by 𝐐𝑒

𝐐𝑒 =

𝑡1

∫
𝑡0

∫
𝑉

𝐍𝑒(𝐱, 𝑡) 𝐭̂(𝐱, 𝑡) d𝑉 d𝑡 . (11)

Let us denote the initial displacement vector by 𝐪0 and initial velocities 
by 𝐪̇0

𝐪0 =
𝑁𝐸∑
𝑒=1

𝚷𝑇
𝑒 ∫
𝑉𝑒

𝐍𝑒(𝐱,0) 𝐮(𝐱,0) d𝑉𝑒 , 𝐪̇0 =
𝑁𝐸∑
𝑒=1

𝚷𝑇
𝑒 ∫
𝑉𝑒

𝐍𝑒(𝐱,0) 𝐮̇(𝐱,0) d𝑉𝑒 .

(12)

𝐪̇0 can be reduced to the displacement vector using a difference rule, 
for example 𝐪−1 = 𝐪0 − 𝐪̇0 ℎ.

Finally, the equilibrium of the 𝑖-th time layer bounded by 𝑡𝑖 and 𝑡𝑖+1
is described by the equation[
𝐊̃𝑖(1,1) 𝐊̃𝑖(1,2)
𝐊̃𝑖(2,1) 𝐊̃𝑖(2,2)

]{
𝐪𝑖
𝐪𝑖+1

}
=
{

𝐐𝑖

𝐐𝑖+1

}
. (13)

Successive time layers join together and matrices cover one another, 
resulting in algebraic equations for each time layer

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐊̃0(1,1) 𝐊̃0(1,2) 𝟎 𝟎 ...

𝐊̃0(2,1) 𝐊̃0(2,2) + 𝐊̃1(1,1) 𝐊̃1(1,2) 𝟎 ...

𝟎 𝐊̃1(2,1) 𝐊̃1(2,2) + 𝐊̃2(1,1) 𝐊̃2(1,2) ...

𝟎 𝟎 𝐊̃2(2,1) 𝐊̃2(2,2) ...

... ... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐪0
𝐪1
𝐪2
𝐪3
...

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐅0

𝐅1

𝐅2

𝐅3

...

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(14)

Forces 𝐅𝑖 in the node layer 𝑖 = 1, 2, ..., contain assembled nodal forces 𝐐𝑖

defined for two successive time layers [𝑡𝑖 − ℎ; 𝑡𝑖] and [𝑡𝑖; 𝑡𝑖 + ℎ] joining 
at time 𝑡𝑖. Summing matrices for these time layers gives a semi-infinite 
matrix tree-diagonal system of algebraic equations. Starting with the 
known initial conditions 𝐪0, it is solved layer by layer. The main bene-

fit is that the global matrices of coefficients for each time layer 𝐊̃0(1,2), 
𝐊̃1(1,2) etc. of the system of equations are directly constructed as tri-
angular. Paper [28] elaborates on formulating the triangular matrices 
73
Fig. 3. Space-time simplex-shaped (triangular) elements of a bar.

and discusses an efficient method of numbering the matrix coefficients. 
Therefore, building further rows of the triangular matrix 𝐊̃𝑖(1,2) cor-

responding to the unknowns with higher indices can be performed 
simultaneously with the calculation of the unknowns with low indices, 
because the corresponding rows necessary for their calculation have 
been created earlier. Thus, it allows to start solving a system of equa-

tions before all the lines (understood as blocks) are complete. Therefore, 
assembling the global matrix of the system of equations and solving it 
can run almost in parallel, node-by-node.

To conclude the above formulations, some remarks are worth not-

ing:

• element matrices in the case of arbitrary geometry are integrated 
over space and time,

• in the case of a stationary discretisation only one quarter of every 
matrix must be derived. The remaining quarters are identical or 
differ in a multiplier only,

• continuous description, in both space and time, enables the solu-

tion of complex linear differential equations with varying coeffi-

cients or non-linear equations, as in the dynamics of inertial load 
travelling over structures.

3. Space-time parallelisation strategy

A simplex-shaped space-time finite element described in Section 2

will be used to discuss the parallelisation algorithm for test cases.

Simplex-shaped space-time element of a bar

One spatial element is modelled as two simplex-shaped space-time tri-
angles, with sides 𝑏 along 𝑥-axis and ℎ along 𝑡-axis (Fig. 3). Shape 
functions 𝐍(𝑥, 𝑡) in space and time must be defined separately for each 
triangle. For the element No. (1) the shape function matrix is as follows

𝐍(1) =
[
1 − 𝑥

𝑏
− 𝑡

ℎ
; 𝑥
𝑏
; 𝑡

ℎ

]
, (15)

and for the element No. (2)

𝐍(2) =
[
1 − 𝑡

ℎ
; 1 − 𝑥

𝑏
; 𝑥
𝑏
+ 𝑡

ℎ
− 1

]
. (16)

In this case, shape functions are linear in space and time. The strain is

𝜺
(1) = 𝜕

𝜕𝑥
𝐍𝐪 =

[
−1
𝑏
; 1
𝑏
; 0

]
𝐪 , (17)

where 𝐪 contains three nodal displacements. Finally, according to (101) 
the integration over a triangle Δ results in the stiffness matrix

𝐊(1) = ∫
Δ

1
𝑏

⎡⎢⎢⎣
−1
1
0

⎤⎥⎥⎦𝐸𝐴
1
𝑏
[−1; 1; 0]d𝑥d𝑡 = 𝐸𝐴ℎ

2𝑏

⎡⎢⎢⎣
1 −1 0

−1 1 0
0 0 0

⎤⎥⎥⎦ (18)

where 𝐴 is the cross-sectional area of the bar. The same process must 
be carried on for the element No. (2), which gives

𝐊(2) = 𝐸𝐴ℎ

2𝑏

⎡⎢⎢⎣
0 0 0
0 1 −1
0 −1 1

⎤⎥⎥⎦ . (19)



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80
Fig. 4. Matrix assembly and information flow between nodes in exemplary 1-D 
structure.

Both matrices must be assembled according to the mesh topology. Sim-

ilar derivation and integration must be performed for the remaining 
terms in (10). The assembly of matrices in time layer results in global 
matrices that are overlapping as depicted in Fig. 4, because one node 
layer determining the end of one time layer states the beginning of the 
next time layer.

It is convenient to use linear interpolating functions in space-time 
elements with higher dimensionality. In such cases, the integration of 
the products of these functions and their derivatives in domains of tri-
angles, tetrahedrons and hyper-tetrahedrons are conducted analytically 
using simplified formulas. Notably, this integration involves efficient 
execution of floating-point fused multi-add (FMA) operations responsi-

ble for 𝑎 ∗ 𝑏 +𝑐 computations on GPU cards. The possibility of numerical 
integration for shape functions of greater complexity also remains vi-

able.

Although elemental matrices require the computation of more co-

efficients than in the classical finite element method, submatrices are 
identical in pairs for the stationary partition of a structure. In the 
non-stationary partition, integrating the elemental space-time domain 
results in four different submatrices. A more general problem of 1-D 
bar discretised into four spatial elements is considered to demonstrate 
the distribution of coefficients in global matrices. The space-time layer 
is now split into eight space-time triangles. This way, two successive 
instants are joined. According to the formulation, the solution is ex-

pressed in terms of displacements. A three-level time stepping scheme 
is obtained, where the resulting matrices are assembled from elements 
neighbouring time 𝑡𝑖, i.e. covering intervals [𝑡𝑖−1, 𝑡𝑖] and [𝑡𝑖, 𝑡𝑖+1]. The fi-

nal equation of the time integration scheme, i.e. one layer of the system 
(14), can be written in the following matrix form

𝐂𝐪𝑖−1 + (𝐃+𝐀)𝐪𝑖 +𝐁𝐪𝑖+1 = 𝐅𝑖 (20)

or as the final system of algebraic equations

𝐁𝐪𝑖+1 =𝐑𝑖, (21)

where 𝐑𝑖 contains all known terms defined at 𝑡𝑖 and 𝑡𝑖−1.
The matrices 𝐂, 𝐃 + 𝐀 and 𝐁 have dimensions equal to the num-

ber of degrees of freedom. 𝐂 is an upper triangular matrix, 𝐁 is a lower 
triangular matrix, and in the case of a stationary meshing, one is the 
transpose of the other, as depicted in Fig. 4. In this particular numer-

ical integration scheme, the information propagates from one node to 
another in consecutive time steps at a finite speed. Even if the node 
numbering does not initially result in triangular forms, swapping the 
equations and re-ordering the variables allows for the transformation 
of the matrices into pure triangular and band matrices. The structure 
of 𝐁 is particularly important for our purposes, as it serves as the co-
74
Fig. 5. Number of required cycles for one time step in 2-D mesh increasing in 
size.

efficient matrix in the system of equations. The first two products of 
matrices and known displacement vectors 𝐪𝑖−1 and 𝐪𝑖, are shifted to 
the right-hand side of the equation. Since the system of equations has 
a triangular band matrix, its solution in successive time steps can be 
effectively parallelised.

Let the nodes of the tetrahedron in 𝐑3 at time 𝑡𝑖 be 1, 2, 3, 4, and 
the nodes of its representative at time 𝑡𝑖+1 be 5, 6, 7, 8. Then four 
hyper-tetrahedra are defined by the nodes: (1, 2, 3, 4, 5), (2, 3, 4, 5, 
6), ... (4, 5, 6, 7, 8), which are obtained as subsets of the series of node 
numbers. This numbering scheme is valid for triangles representing 1-

D structures and tetrahedra for 2-D structures and other elements of 
higher dimensionality.

The optimal parallelisation requires the specific flow of information 
in the initial stage of solving. In the first clock cycle, the unknowns 
of only one node can be determined. In successive clock cycles, neigh-

bouring nodes are included one by one in the calculations. Thus the 
front line in space-time is the slope and after the appropriate number 
of initial steps in a single cycle, every node treated in the front line 
corresponds to a different moment.

In the parallel space-time method, finite element characteristic ma-

trices must be added to a global matrix in such a way as to protect 
concurrent access to the same memory from more than one proces-

sor. This stage must be divided into sub-stages generating matrices of 
elements separated by at least one spatial element, i.e., concurrently 
computed elements can not have common nodes. In a two-dimensional 
mesh composed of regularly arranged triangles, it is possible to concep-

tually separate rosettes formed by triangles clustered around individual 
nodes. The matrix of elements surrounding a given node is determined 
in successive computational cycles, and the coefficients are placed in 
the global matrix. This process must be carried out sequentially for the 
successive spatial elements within a given rosette. In the mentioned 
mesh, a maximum of eight cycles is necessary to transition to the subse-

quent time step. These same operations are then repeated for the nodes 
within successive rosettes. Importantly, the rosettes occupy the spatial 
domain entirely and do not overlap. In summary, for arbitrarily large 
square meshes composed of triangles in two dimensions, a minimum of 
eight cycles is required when employing a sufficiently large number of 
processors. On the other hand, regular three-dimensional meshes based 
on tetrahedra require approximately 20 computational cycles per indi-

vidual time step. This factor is constant, independent of the mesh size 
and restricted only by the number of processors. The fewer processors 
are available, the more cycles are required.

Fig. 5 shows the number of threads required for a solution with max-

imum parallelisation in the case of an increasing number of elements. 
A limited number of available threads significantly increases the num-

ber of cycles required to solve all unknowns in a single time step of the 
time integration process. The required number of processors/threads is 
significant for efficient computations with large meshes. The order of 
calculating the sub-matrices of the individual nodes affects the order of 
solving the unknowns assigned to these nodes.



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80
Fig. 6. The scheme of limited iteration for 1-D structure with non-linear ele-

ment.

Space-time 1-D bar with nonlinearities

Important feature of the presented method involves iterations concern-

ing the solution of nonlinear algebraic equations when nonlinearities 
are limited to a small spatial zone. The problems described by nonlin-

ear equations require multiple iterative solving of systems of algebraic 
equations because the matrix coefficients and the vectors of the right-

hand sides of the matrix equations change. This step in the computa-

tional processes is costly. The system of equations and the solution is 
changed due to the nonlinear influences. In a classical approach, the 
alteration of a single variable in the iterative solution influences all 
the remaining variables, and the whole system of equations must be 
solved. In the space-time approach, only a small subsystem related to 
the sub-zone representing the change of parameters and a limited sur-

rounding zone of influence must be solved, as depicted in Fig. 6. If the 
behaviour of the inner element is influenced by plastic flow, only the 
unknowns of the surrounding nodes must be recomputed, despite the 
size of the mesh. At the outer parts of the spatial mesh, both triangu-

lar (simplex) and rectangular (multiplex) space-time finite elements can 
be added without the risk of including their nodes into the iterative re-

computing. In Fig. 6 the unknowns 1, 2 and 3 (the first three rows of 
the matrix) do not affect the values of variables 4 and the next ones at 
time 𝑡 + Δ𝑡 i.e. on the results at nodes 11 and beyond. Modifying the 
characteristic matrices in the element covered by nodes 4 and 5 (bold 
line in the figure) does not affect the solution in nodes with low ini-

tial numbers. Obviously, in many time steps, the non-linear disturbance 
affects the entire system of equations with a delay of few to several 
dozen time steps due to matrices multiplied by result vectors at previ-

ous moments. The impact of the change on the entire area, understood 
as an elliptical property, takes place in a dynamics problem solved by 
the space-time method with symplectic elements in a wave-like manner, 
in accordance with the properties of hyperbolic differential equations. 
This is the compromise between the full implicit time integration meth-

ods and the explicit variable decoupling.

Space-time 2-D plate

The 2-D thick plate is partitioned into 8 triangular spatial elements. 
These triangles gain a third dimension and become tetrahedral in space 
and time. The displacements of 10 nodes must be determined in every 
time step. In a sequential solution using a single core processor, 10 so-

lution cycles are required per time step. The computations performed 
on a quad-core processor presented in Fig. 7 required only three cycles 
for each time step. In this example, cycles 13–15 allow the passing of 
one time step. The numbers of the nodes are placed in the table. Super-

script 𝑖 indicates the time layer for which the unknowns of a given node 
75
are solved. Over one cycle various nodes are solved at different times. 
The more processors are available, the fewer cycles are required. The 
part of computations corresponding to one and multiple processor cy-

cles in the time-stepping procedure is described as Algorithm 1 in the 
Appendix.

4. Accuracy and performance verification

A square thick plate of side 𝐿 = 12 m, simply supported at all four 
edges was considered to estimate the accuracy of the space-time ap-

proach. The spacial domain was subdivided into 40 × 40 elements and 
subjected to a force moving along the centre line at 𝑣 = 100 m/s. The 
displacement 𝑤(𝑡) was related to the static deflection 𝑤0 of the mid-

point of the plate loaded at the centre [30]. The comparison of the 
deflection line obtained with a standard FEM model integrated with the 
Newmark method (FEM+Newmark) was compared in Fig. 8a with the 
results obtained using the space-time method (STFEM). The classical fi-

nite element approach with a stationary mesh and integrated with the 
Newmark method is identical to the multiplex space-time element ap-

proach in its particular case (see Eqn. (1)).

Fig. 8b compares curves for the central point of the plate obtained 
with both methods. Both pairs of curves coincide well, while the space-

time approach exhibits more stiff properties than the finite element 
approach.

The solution of a vibrating square plate covered with an unstruc-

tured triangular mesh refined in successive cases enables an overview 
of the computational costs and numerical efficiency of the presented 
approach. Although there are two degrees of freedom in the node and 
the bandwidth in a 2-D problem is not wide for a direct solution, the 
case may be considered moderate. The matrices were treated as non-

symmetric to imitate the worst-case scenario for estimating the cost of 
computations.

The efficiency of the parallel space-time approach was compared 
with relatively similar methods. A sequentially executed program was 
written using Fortran 90, assuming band matrices with bandwidth min-

imisation. The commercial FEM software performing sequential com-

putations was used as a second reference application. The Intel Xeon 
Silver 4208 CPU with 8 cores, 16 threads and a base frequency of 
2.1 GHz, set to single thread operations was used for reference code ex-

ecution. The Nvidia Quadro GV100 card with 65536 blocks with 2048 
threads was used to perform parallel computations. A dedicated code 
implementing the space-time finite element algorithm was written in 
the CUDA parallel framework for the GPU card and the results were 
treated as the reference.

Sparse band global stiffness and inertia matrices were generated 
and held with internal zeros inside the band. The bandwidth was min-

imised, element matrices were computed and the global matrix was 
formed in every time step to simulate problems with variable coef-

ficients. Variables in double precision were declared and the Lapack 
library procedure DGBSV was used to solve the system of equations. 
This code is denoted as CPU in the tables and figures.

First, in Fig. 9a, a comparison of the space-time simplex approach 
performed on the GPU with a dedicated CPU code and with a single GPU 
thread is given in the case of one time step solved. The ratio of the CPU 
solution time (wall-clock time) to a single GPU thread is about 35. The 
cost is proportional to the number of unknowns and the proportionality 
in both cases is identical. The parallel solution of the GPU takes the 
same time independently of the number of nodes in the mesh.

Figs. 9b–d track the time for 10, 100, and 1000 steps computed using 
the CPU and GPU. The comparison is held with a simple, non-optimised 
code dedicated for a rough comparison. In each case, the performance 
of the CPU linearly depends on the number of nodes. The computation 
time of the GPU is constant and does not increase with an increase in 
the task size. Despite its slower clock speed, the GPU performs better 
for tasks with more than 1000 nodes. This limiting size is characteristic 
of the considered 2-D problem. In the case of 3-D meshes, the limiting 



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80

Fig. 7. The idea of parallel computations on a 4-core computer of 2-D mesh with 10 nodes and 8 elements: numbers indicate the node while superscripts indicate 
the time (e.g. 42 expresses displacements of node 4 in time 𝑡 = 2Δ𝑡).
Fig. 8. Vertical displacements of the thick plate subjected to a force moving at 
100 m/s: a) contact point, b) centre of the plate.

size favourable for the GPU would be reached for much smaller tasks. 
Nevertheless, the characteristic trends would be the same. Although the 
time of computations carried out on a GPU card is constant up to 10,000 
nodes, it increases for greater tasks. This can be related to a saturation of 
the GPU threads, and a tenfold increase of the nodes involves a similar 
time extension.
76
Analysis of multiple calculation runs provides valuable insights that 
can be correlated with the curves depicted in Figs. 9 and 10. Firstly, the 
limited computational power of the graphics card employed in the tests 
must be acknowledged. Moreover, two main factors that significantly 
contribute to the increase in calculation time beyond a constant thresh-

old, regardless of the number of grid nodes, should be mentioned. The 
first factor relates to the limited speed of data exchange between the 
computer’s main memory and the graphics card. Ideally, all the neces-

sary task data should reside within the GPU card’s memory. However, in 
reality, the basic calculation program and its associated data resources 
are located in the computer’s primary operating memory. Consequently, 
frequent data exchanges between the main memory and the GPU sub-

stantially prolong the computational process.

The second limiting factor lies in the architecture of the GPU card 
itself. The calculations presented in the study were performed using a 
card with 640 tensor cores capable of executing 64 floating-point fused 
multiply-add operations per clock cycle. It translates to a total of 40,000 
available threads that the graphics card effectively utilises. While small 
or medium-sized tasks can be computed within a single cycle (or a group 
of cycles) on the GPU, larger tasks necessitate multiple cycles (or groups 
of cycles). This phenomenon becomes evident in Figs. 9 and 10 when 
the number of task nodes exceeds 60,000, resulting in an extension of 
calculation time. Significantly, the extended computational time does 
not simply scale linearly with the time required for a medium-sized task, 
as the GPU autonomously organises and manages the computational 
process.

Meaningful results were obtained by comparing the efficiency of the 
GPU with commercial software. The 2-D square plate was discretised 
into an increasing number of simple three-node triangular finite ele-

ments.

The straight lines in Fig. 10 show the time cost as a function of 
the task size. Since both dedicated finite element codes (CPU and com-

mercial software) realise the same solution scheme, the time is a linear 
function of the number of unknowns. Because the commercial software 
uses a more efficient sparse direct solver, the line in the figure is less 
steep than the CPU line. The GPU line is flat and becomes advantageous 
in the case of more than 103–104 nodes. Despite different architecture 
of the CPU and GPU used in the test, one can compare the number 
of computational cycles as a rough measure of the algorithm’s effec-



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80

Fig. 9. Wall-clock computation time for various numbers of time steps: a) single step, b) 10 steps, c) 100 steps, d) 1000 steps.
Fig. 10. Comparison with commercial software for 100 time steps.

tiveness. The computation time was scaled to the processor operating 
frequency. If the GPU line is scaled by 35 with respect to the clock fre-

quency, the advantage of the GPU is exhibited over the entire range of 
tested numbers of nodes, which is shown by the dotted line in Fig. 10.

5. Results for real-scale 3-D embankment

The high-speed moving load introduces wave phenomena and a 
significant increase of displacement and stresses at discontinuities, com-

monly present in geotechnical, civil engineering and transportation 
problems. Thus, the inevitable fine homogeneous discretisation be-

comes computationally expensive. This paper aims to demonstrate the 
efficiency of a computing strategy using a relatively straightforward ex-

ample that is easy to replicate so that specialists from different fields 
of science can easily analyse it or even modify it. Therefore, a problem 
of a large-size 3-D model of a railway embankment subjected to a load 
moving at speed 𝑣 = 56 m/s was solved to demonstrate the efficiency 
of the parallel space-time strategy. It required a fine discretisation grid 
over a long distance and numerous recalculations. The response of the 
77
Fig. 11. Two layer railway embankment under a moving load.

soil was not considered in detail since the purpose of the example was 
to demonstrate the numerical performance.

The embankment was modelled as a dual-layer 3-D trapezoid. It was 
discretised into 82944 tetrahedral spatial elements, with 15625 nodes 
and 46875 degrees of freedom.

Space discretisation could be performed using any mesh generator 
suitable for classical methods of 3-D discretisation. The only require-

ment is to disable using brick elements in favour of 3-D tetrahedra 
instead. All phenomena occurring in the modelled problems, e.g. fric-

tion, unilateral contact, material and geometric nonlinearities, can be 
realised in the same way as in the classical finite element method.

The upper ballast layer was assumed to be viscoelastic, while the 
bottom substrate was viscoplastic (Fig. 11). The load 𝑃 was moving 
along the embankment with velocity 𝑣. Geometric and material nonlin-

earities forced multiple iterations in every single time step. The formu-

lation of global matrices had to be carried out in every time step and 
every iteration.



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80

Fig. 12. Distribution of vertical displacements in successive stages.

Table 1

Total computation time in different problems (100 time steps).

problem type CPU (scaled to 
GPU frequency)

GPU 
(single core)

GPU 
(parallel)

GPU parallel vs. 
scaled CPU (factor)

linear 105 min 121 min 1 min 0.0095

nonlinear 4631 min 253 min 63 min 0.0136
Fig. 13. Distribution of vertical displacements in the vertical section after pass-

ing 75% of the embankment’s length.

The iteration in a limited number of elements presented in Fig. 6

was not implemented, since the greater part of a domain was treated as 
a non-linear one. Rather, such a technique would be computationally-

effective for locally nested non-linear zones. The entire observation 
period took 1.2 million time steps multiplied by 2-3 iterations per step. 
Although the problem could be reduced using symmetry, the size of the 
task was specifically left unchanged to estimate the efficiency of the 
method for large-scale problems. The consistent stiffness, inertia, and 
damping description were used, instead of fast diagonal variable decou-

pling with explicit methods often applied in impact engineering.

The results of vertical displacements in selected sections of the em-

bankment are presented in Figs. 12 and 13. The displacement maps 
show the concentrations around the load zone cross-section. Areas 
78
placed deeper experience displacements by a few orders smaller than 
the maximum ones and thus are more prone to rounding errors. In order 
to visualise them, the colour palette was enhanced, resulting in a seem-

ingly asymmetrical results of a symmetrical problem.

The time needed for one single pass of the simulation on the GPU 
was shorter by a factor of 24–25 than on the CPU, not taking into ac-

count different processor clock frequencies. If the CPU/GPU frequency 
ratio of 35 was roughly taken into account, the time efficiency factor 
increased to about 850. This value is consistent with previous estimates 
presented in Fig. 10.

Table 1 compares the time required to perform the calculations of 
the embankment in the linear case (with a single formulation of global 
matrices), and nonlinear case (with matrix formulation in every time 
step and every iteration). In the last column, the factor shows how many 
times the parallel computing was shorter than sequential computing. It 
is consistent with the test presented in Figs. 9 and 10. The operating 
system decides how to apportion the computation and buffers the com-

munication between the motherboard and the GPU card. However, one 
can get an overall evaluation of the efficiency of the presented space-

time finite element approach. The rough comparison presented in the 
manuscript is not perfect, but it gives a possible assessment of the pro-

posed parallelisation method’s effectiveness.

The presented computational strategy can successfully adapt to more 
advanced problems of dynamics, considering additional nonlinear phe-

nomena and complex geometries. Fig. 14a presents an example of an 



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80

Fig. 14. A physical model of the subway track a), and visualisation of bogie’s wheelset on the track -b).
Fig. 15. Relative oscillations of the contact force between the rail and wheel for 
different damping mats.

underground ballastless subway track loaded with a rail vehicle travel-

ling at a speed of 20 m/s.

A reinforced concrete slab was placed on the hardened soil, and 
dissipative mats were used to mitigate unwanted vibrations. In the first 
case, a so-called deep mat was placed underneath the plate, while in the 
second variant, a shallow damping mat was placed under the sleepers. 
The concrete slab was divided into sections by dilatations. Elastic pads 
separated the rails from the sleepers.

Three-dimensional tetrahedral solid elements were used to model 
the soil layer numerically. The horizontal and vertical parts of the rein-

forced concrete slab were described with 2D triangular elements of the 
Mindlin plate, coupled with the elements of the plane stress state. In 
space-time, they correspond to tetrahedrons. Elastic pads and dissipa-

tive mats were treated as Kelvin-Voigt point elastic-damping elements. 
The rails were modelled as elements of the Timoshenko beam, which 
are classic two-node sections in real space, but in space-time, they be-

come three-node triangular elements. The rail vehicle was modelled as 
a structure composed of grid elements, multi-level oscillators and point 
masses. Compatibility of forces and displacements at the wheel-rail con-

tact points was ensured iteratively.

The first stage of motion, when a rail vehicle bogie’s wheelset en-

ters the track was presented in Fig. 14b. The results in Fig. 15 present 
the oscillations of the contact force 𝐹𝑐 between the wheel and the rail 
related to the static values of the contact force 𝐹𝑠.

The results revealed that the lowest oscillations of contact forces are 
generated when deep mats are used. According to our analysis, using 
space-time, FEM allowed for shortening the calculations 18–21 times 
depending on the set of material parameters and number of iterations 
79
compared with classical FEM computed sequentially. Nevertheless, tak-

ing advantage of multi-processor parallel computations requires writing 
dedicated procedures, which might be time-consuming. The proposed 
strategy of employing parallel computing with space-time elements 
demonstrates its universality in tackling diverse computational physics 
problems. It was proven effective even in handling highly intricate ge-

ometries in [31] to enhance simulations of a viscoplastic-softening brain 
model with nearly 47,000 degrees of freedom, simulating the impact 
with a rigid obstacle.

6. Conclusions

The methodology proposed in this paper introduces a novel ap-

proach for parallel bulk computation of dynamic structures. It enables 
the direct decoupling of the resulting system of equations and the distri-

bution of computations to parallel processing units. The resulting global 
matrix takes on a triangular form and retains only the non-zero coeffi-

cients, highlighting its efficiency.

Proper discretization of space facilitates the separation of zones with 
nonlinearities that require iterative solutions. Consequently, only small 
parts of the system of algebraic equation system need to be recomputed 
iteratively. These characteristics reduce computational effort and allow 
for the frontal solution of the time-stepping scheme, contributing to 
increased efficiency.

A significant reduction in computation time was achieved by em-

ploying parallel computing on the GPU. This reduction varies from 
several times in large-scale, non-optimised complex problems to thou-

sands of times in more straightforward test cases. As demonstrated in 
a full-scale example of a nonlinear dynamic problem, parallel space-

time FEM outperforms classical FEM computed sequentially, providing 
a speed improvement of approximately 20 times.

This method holds potential for further optimisation and facilitates 
the solution of inverse problems while enabling efficient exploration of 
structural variations during the development phase of large-scale struc-

tural dynamics problems. Moreover, implementation, even on personal 
computers using a GPU card, ensures time-efficient analysis.

Data availability

Data will be made available on request.

Acknowledgements

This research has been supported within the projects UMO-2017/

26/E/ST8/00532 and UMO-2019/33/B/ST8/02686 funded by the Pol-

ish National Science Centre, which is gratefully acknowledged by the 
authors.



B. Dyniewicz, J.M. Bajkowski and C.I. Bajer Computers and Mathematics with Applications 148 (2023) 70–80
Appendix A

Algorithm 1 Distribution of solutions over processor cores.

1. Reading of mesh geometry and other data. a spatial domain must 
be discretised into simplexes (triangles for 2D, tetrahedra for 3D 
problems).

2. Distribution of nodal solutions over processor cores (for example as 
in Fig. 7 scheme). The following parts (a) and (b) are performed in 
a sequence on a single processor core or simultaneously on parallel 
cores:

(a) Calculation of matrices of a small number of space-time ele-

ments required to formulate the system of 1, 2, or 3 equations 
(depending on dimensionality of the physical problem) and to 
finally solve nodal parameters (displacements or velocities) of 
a single node.

(b) Loop over these space-time elements

• Space-time stiffness matrix is composed of four submatrices: 
𝐊̃(1,1), 𝐊̃(1,2), 𝐊̃(2,1), and 𝐊̃(2,2) (see for example Eqs. (13), (18), 
and (19)):

𝐊̃(1,1) 𝐊̃(1,2)
𝐊̃(2,1) 𝐊̃(2,2)

• Submatrix 𝐊̃(1,1) is multiplied by 𝐪𝑖 and moved to the right-

hand-side vector

• Submatrix 𝐊̃(1,2) constitutes the matrix in the system of 2 or 
3 equations, depending on the dimensionality of the problem

• Submatrix 𝐊̃(2,1) is multiplied by 𝑞𝑖 and held in a global vector 
for the next time step

• The system of 2 or 3 equations must be solved to determine 
nodal unknowns. Lower indices 𝑖 − 1, 𝑖, and 𝑖 + 1 denote the 
time layers

𝐊̃(2,1) 𝑖−1 𝐪𝑖−1 + 𝐊̃(2,2) 𝑖−1 𝐪𝑖 + 𝐊̃(1,1) 𝑖 𝐪𝑖 + 𝐊̃(1,2) 𝑖 𝐪𝑖+1 = 𝐅𝑖
Only 𝐊̃(1,2) 𝑖 𝐪𝑖+1 remains on the left-hand-side of the system of 
equations. Remaining terms are moved to the right-hand-side 
as vectors, together with the external load vector 𝐅𝑖

• Submatrix 𝐊̃(2,2) is multiplied by 𝐪𝑖+1 and added to the global 
vector for the next time step

• End for a single node.

3. Repeat step 2. for following nodes and remaining time steps

References

[1] A. Kużelewski, E. Zieniuk, M. Kapturczak, Acceleration of integration in paramet-

ric integral equations system using CUDA, Comput. Struct. 152 (2015) 113–124, 
https://doi .org /10 .1016 /j .compstruc .2015 .02 .019.

[2] G. Belinassi, A. Goldman, M.D. Gubitoso, R. Carrion, Vibration soil isolation anal-

ysis based on a 3-D frequency domain direct boundary element implementa-

tion: GPGPU acceleration, Eng. Anal. Bound. Elem. 105 (2019) 178–187, https://

doi .org /10 .1016 /j .enganabound .2019 .03 .037.

[3] S. Wang, C. Wang, Y. Cai, G. Li, A novel parallel finite element procedure for non-

linear dynamic problems using GPU and mixed-precision algorithm, Eng. Comput. 
37 (6) (2020) 2193–2211, https://doi .org /10 .1108 /EC -07 -2019 -0328.

[4] X. Li, Y. Yan, S. Shao, S. Ji, GPU-based simulation of dynamic characteristics of bal-

lasted railway track with coupled discrete-finite element method, Comput. Model. 
Eng. Sci. 126 (2) (2021) 645–671, https://doi .org /10 .32604 /cmes .2021 .013674.

[5] T. Ekevid, H. Lane, N.-E. Wiberg, Adaptive solid wave propagation—influences 
of boundary conditions in high-speed train applications, Comput. Methods Appl. 
Mech. Eng. 195 (4) (2006) 236–250, https://doi .org /10 .1016 /j .cma .2004 .12 .030, 
Adaptive Modeling and Simulation.

[6] V.V. Krylov, Generation of ground vibrations by superfast trains, Appl. Acoust. 
44 (2) (1995) 149–164, https://doi .org /10 .1016 /0003 -682X(95 )91370 -I.

[7] G. Eason, The stresses produced in a semi-infinite solid by a moving surface force, 
Int. J. Eng. Sci. 2 (6) (1965) 581–609, https://doi .org /10 .1016 /0020 -7225(65 )
90038 -8.

[8] H.A. Dieterman, A.V. Metrikine, Steady-state displacements of a beam on an elastic 
half-space due to a uniformly moving constant load, Eur. J. Mech. A, Solids 16 
(1997) 295–306.

[9] X. Sheng, C. Jones, M. Petyt, Ground vibration generated by a load moving along a 
railway track, J. Sound Vib. 228 (1) (1999) 129–156, https://doi .org /10 .1006 /jsvi .
1999 .2406.

[10] G. Saussine, C. Cholet, P. Gautier, F. Dubois, C. Bohatier, J. Moreau, Modelling 
ballast behaviour under dynamic loading. Part 1: a 2D polygonal discrete element 
method approach, Comput. Methods Appl. Mech. Eng. 195 (19) (2006) 2841–2859, 
https://doi .org /10 .1016 /j .cma .2005 .07 .006.

[11] H.R. Nejati, M. Ahmadi, H. Hashemolhosseini, Numerical analysis of ground surface 
vibration induced by underground train movement, Tunn. Undergr. Space Technol. 
29 (2012) 1–9, https://doi .org /10 .1016 /j .tust .2011 .12 .006.

[12] H.-H. Hung, Y.-B. Yang, D.-W. Chang, Wave barriers for reduction of train-induced 
vibrations in soils, J. Geotech. Geoenviron. Eng. 130 (12) (2004) 1283–1291, 
https://doi .org /10 .1061 /(ASCE )1090 -0241(2004 )130 :12(1283).

[13] S. Francois, M. Schevenels, P. Galvin, G. Lombaert, G. Degrande, A 2.5D coupled 
FE–BE methodology for the dynamic interaction between longitudinally invariant 
structures and a layered halfspace, Comput. Methods Appl. Mech. Eng. 199 (23) 
(2010) 1536–1548, https://doi .org /10 .1016 /j .cma .2010 .01 .001.

[14] P. Coulier, S. Francois, G. Degrande, G. Lombaert, Subgrade stiffening next to the 
track as a wave impeding barrier for railway induced vibrations, Soil Dyn. Earthq. 
Eng. 48 (2013) 119–131, https://doi .org /10 .1016 /j .soildyn .2012 .12 .009.

[15] A.E. Kacimi, P.K. Woodward, O. Laghrouche, G. Medero, Time domain 3D finite 
element modelling of train-induced vibration at high speed, Comput. Struct. 118 
(2013) 66–73, https://doi .org /10 .1016 /j .compstruc .2012 .07 .011.

[16] J.Y. Shih, D.J. Thompson, A. Zervos, The effect of boundary conditions, model 
size and damping models in the finite element modelling of a moving load on a 
track/ground system, Soil Dyn. Earthq. Eng. 89 (2016) 12–27, https://doi .org /10 .
1016 /j .soildyn .2016 .07 .004.

[17] P. Galvin, A. Romero, J. Dominguez, Fully three-dimensional analysis of high-

speed train–track–soil-structure dynamic interaction, J. Sound Vib. 329 (24) (2010) 
5147–5163, https://doi .org /10 .1016 /j .jsv .2010 .06 .016.

[18] D. Connolly, A. Giannopoulos, M. Forde, Numerical modelling of ground borne 
vibrations from high speed rail lines on embankments, Soil Dyn. Earthq. Eng. 46 
(2013) 13–19, https://doi .org /10 .1016 /j .soildyn .2012 .12 .003.

[19] M. Katou, T. Matsuoka, O. Yoshioka, Y. Sanada, T. Miyoshi, Numerical simulation 
study of ground vibrations using forces from wheels of a running high-speed train, 
J. Sound Vib. 318 (4) (2008) 830–849, https://doi .org /10 .1016 /j .jsv .2008 .04 .053.

[20] Y. Cai, G. Li, H. Wang, G. Zheng, S. Lin, Development of parallel explicit finite ele-

ment sheet forming simulation system based on GPU architecture, Adv. Eng. Softw. 
45 (1) (2012) 370–379, https://doi .org /10 .1016 /j .advengsoft .2011 .10 .014.

[21] D.-K. Kang, C.-W. Kim, H.-I. Yang, GPU-based parallel computation for structural 
dynamic response analysis with CUDA, J. Mech. Sci. Technol. 28 (10) (2014) 
4155–4162, https://doi .org /10 .1007 /s12206 -014 -0928 -2.

[22] Q. Ren, C.L. Chan, Natural convection with an array of solid obstacles in an enclo-

sure by lattice Boltzmann method on a CUDA computation platform, Int. J. Heat 
Mass Transf. 93 (2016) 273–285, https://doi .org /10 .1016 /j .ijheatmasstransfer .
2015 .09 .059.

[23] F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, G. Pascazio, An MPI-CUDA ap-

proach for hypersonic flows with detailed state-to-state air kinetics using a GPU 
cluster, Comput. Phys. Commun. 219 (6) (2017) 178–195, https://doi .org /10 .1016 /
j .cpc .2017 .05 .019.

[24] F. Cosco, F. Grecob, W. Desmet, D. Mundo, GPU accelerated initialization of local 
maximum-entropy meshfree methods for vibrational and acoustic problems, Com-

put. Methods Appl. Mech. Eng. 366 (2020) 13089, https://doi .org /10 .1016 /j .cma .
2020 .113089.

[25] C.I. Bajer, B. Dyniewicz, Virtual functions of the space-time finite element method 
in moving mass problems, Comput. Struct. 87 (2009) 444–455, https://doi .org /10 .
1016 /j .compstruc .2009 .01 .007.

[26] B. Dyniewicz, Space-time finite element approach to general description of a moving 
inertial load, Finite Elem. Anal. Des. 62 (2012) 8–17, https://doi .org /10 .1016 /j .
finel .2012 .07 .002.

[27] J.T. Oden, A generalized theory of finite elements, II. Applications, Int. J. Numer. 
Methods Eng. 1 (1969) 247–259.

[28] C.I. Bajer, Triangular and tetrahedral space–time finite elements in vibration analy-

sis, Int. J. Numer. Methods Eng. 23 (1986) 2031–2048.

[29] C.I. Bajer, Adaptive mesh in dynamic problem by the space–time approach, Comput. 
Struct. 33 (2) (1989) 319–325, https://doi .org /10 .1016 /0045 -7949(89 )90002 -3.

[30] B. Dyniewicz, D. Pisarski, C. Bajer, Vibrations of a Mindlin plate subjected to a pair 
of inertial loads moving in opposite directions, J. Sound Vib. 386 (2017) 265–282, 
https://doi .org /10 .1016 /j .jsv .2016 .09 .027.

[31] B. Dyniewicz, J.M. Bajkowski, C. Bajer, Effective viscoplastic-softening model suit-

able for brain impact modelling, Materials 15 (2) (2022) 2270, https://doi .org /10 .
3390 /ma15062270.
80

https://doi.org/10.1016/j.compstruc.2015.02.019
https://doi.org/10.1016/j.enganabound.2019.03.037
https://doi.org/10.1016/j.enganabound.2019.03.037
https://doi.org/10.1108/EC-07-2019-0328
https://doi.org/10.32604/cmes.2021.013674
https://doi.org/10.1016/j.cma.2004.12.030
https://doi.org/10.1016/0003-682X(95)91370-I
https://doi.org/10.1016/0020-7225(65)90038-8
https://doi.org/10.1016/0020-7225(65)90038-8
http://refhub.elsevier.com/S0898-1221(23)00334-6/bibCCC0D15F37866B869C09A8D7139E80CCs1
http://refhub.elsevier.com/S0898-1221(23)00334-6/bibCCC0D15F37866B869C09A8D7139E80CCs1
http://refhub.elsevier.com/S0898-1221(23)00334-6/bibCCC0D15F37866B869C09A8D7139E80CCs1
https://doi.org/10.1006/jsvi.1999.2406
https://doi.org/10.1006/jsvi.1999.2406
https://doi.org/10.1016/j.cma.2005.07.006
https://doi.org/10.1016/j.tust.2011.12.006
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1283)
https://doi.org/10.1016/j.cma.2010.01.001
https://doi.org/10.1016/j.soildyn.2012.12.009
https://doi.org/10.1016/j.compstruc.2012.07.011
https://doi.org/10.1016/j.soildyn.2016.07.004
https://doi.org/10.1016/j.soildyn.2016.07.004
https://doi.org/10.1016/j.jsv.2010.06.016
https://doi.org/10.1016/j.soildyn.2012.12.003
https://doi.org/10.1016/j.jsv.2008.04.053
https://doi.org/10.1016/j.advengsoft.2011.10.014
https://doi.org/10.1007/s12206-014-0928-2
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.059
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.059
https://doi.org/10.1016/j.cpc.2017.05.019
https://doi.org/10.1016/j.cpc.2017.05.019
https://doi.org/10.1016/j.cma.2020.113089
https://doi.org/10.1016/j.cma.2020.113089
https://doi.org/10.1016/j.compstruc.2009.01.007
https://doi.org/10.1016/j.compstruc.2009.01.007
https://doi.org/10.1016/j.finel.2012.07.002
https://doi.org/10.1016/j.finel.2012.07.002
http://refhub.elsevier.com/S0898-1221(23)00334-6/bib57ABD9420890B65C404987230276EB1Ds1
http://refhub.elsevier.com/S0898-1221(23)00334-6/bib57ABD9420890B65C404987230276EB1Ds1
http://refhub.elsevier.com/S0898-1221(23)00334-6/bib16EC4C04DB0F3177EF7DBF7CE350247Bs1
http://refhub.elsevier.com/S0898-1221(23)00334-6/bib16EC4C04DB0F3177EF7DBF7CE350247Bs1
https://doi.org/10.1016/0045-7949(89)90002-3
https://doi.org/10.1016/j.jsv.2016.09.027
https://doi.org/10.3390/ma15062270
https://doi.org/10.3390/ma15062270

	Efficient strategy for space-time based finite element analysis of vibrating structures
	1 Introduction
	2 Essentials of space-time finite element method
	2.1 Space-time finite element discretisation
	2.2 Numerical model in space-time approach

	3 Space-time parallelisation strategy
	4 Accuracy and performance verification
	5 Results for real-scale 3-D embankment
	6 Conclusions
	Data availability
	Acknowledgements
	References


