
 
 

 

 
Abstract—This paper considers structural control by 

reinforcement learning. The aim is to mitigate vibrations of a 
shear building subjected to an earthquake-like excitation and 
fitted with a semi-active tuned mass damper (TMD). The control 
force is coupled with the structural response, making the 
problem intrinsically nonlinear and challenging to solve using 
classical methods. Structural control by reinforcement learning 
has not been extensively explored yet. Here, Deep-Q-Learning is 
used, which appriximates the Q-function with a neural network 
and optimizes initially random control sequences through 
interaction with the controlled system. For safety reasons, 
training must be performed using an inevitably inexact 
numerical model instead of the real structure. It is thus crucial 
to assess the robustness of the control with respect to 
measurement noise and model errors. It is verified to 
significantly outperform an optimally tuned conventional TMD, 
and the key outcome is the high robustness to measurement noise 
and model error.  

Index Terms—structural control, semi-active control, 
reinforcement learning, tuned mass damper (TMD). 

I. INTRODUCTION 
In this paper, a novel control strategy for reducing structural 
vibrations in shear-type building structures under seismic ex-
citation is presented and assessed. To achieve this, machine 
learning techniques, specifically reinforcement learning (RL), 
were customized, developed, and applied. Structural vibra-
tions in engineering structures can have a negative impact on 
structural condition and operation, and they can negatively 
impact structural integrity. Various approaches have been de-
veloped to mitigate these effects, including passive, active, 
and semi-active control methods [1], [2]. The semi-active 
methods are appealing, since they do not require significant 
power sources and can be designed to be failure-safe. How-
ever, the control forces are coupled with the structural re-
sponse, which leads to formulations that are challenging to be 
solved using classical methods [3], [4]. This paper focuses on 
semi-active control through the use of a semi-active tuned 
mass damper (TMD). The TMD is a classical device used to 
mitigate structural vibrations by adding a secondary mass that 
opposes the motion of the main structure [5], [6]. The semi-
active TMD applied here is controllable through a switchable 
level of viscous damping. 

The main aim of this contribution is to test the application 
potential of reinforcement learning (RL) in semi-active struc-
tural control, and in particular, the robustness of the trained 
agent to measurement noise and structural errors. This is a 
crucial problem for potential practical applications in civil en-
gineering, since for safety reasons the RL agent must be 
trained using a numerical model instead of the physical target 
structure. The structure investigated here is an 11-story shear-
type building equipped with a semi-active TMD. The struc-
ture is modeled using the finite element (FE) method, and the 
specific parameters of the models are taken from litera-
ture [7]. The TMD is controlled by switching its viscous 
damping coefficient in an on/off manner (bang–bang), as sug-
gested by the Pontryagin minimum principle [8]. The struc-
ture is subjected to an earthquake-like random base excitation. 
A Deep Q Learning (DQN) algorithm is applied. The trained 
RL agent reduces the structural vibrations effectively and to a 
greater extent than a conventional tuned mass damper. Im-
portantly, the contribution demonstrates and evaluates also 
the robustness of the trained agent with respect to measure-
ment noise and model error.  

II.  REINFORCEMENT LEARNING – THE TECHNIQUE AND 
SYSTEM ARCHITECTURE 

Reinforcement learning is a set of machine learning tech-
niques that aim to teach an agent to determine the most effec-
tive actions by engaging in trial-and-error interactions with its 
environment. During the process the agent receives feedback 
in the form of rewards or punishments, which it uses to en-
hance its decision-making abilities over time. This research 
investigates the capability of reinforcement learning (RL) to 
enhance semi-active structural control. Unlike supervised 
learning that depends on optimal control sequences, which are 
often unknown in semi-active control, and unlike unsuper-
vised learning, which solely relies on exploring input data, RL 
enables learning from interactions and seems to be well-tai-
lored to the needs of structural control. However, despite the 
large successes of RL in mastering other complex tasks [9], 
including control-like problems [10]-[13], it is still a novel 
and very scarcely explored approach in structural control with 
only a handful of publications [14]-[16]. 
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In this study, the reinforcement learning (RL) agent em-
ploys a dense artificial neural network (ANN) to learn and 
encode the Q-function. The ANN is implemented in the Py-
thon programming language using two popular open-source 
libraries, TensorFlow and Keras. TensorFlow is a low-level 
library used for building and training machine learning mod-
els, while Keras is a high-level API that simplifies the process 
of building neural networks. The ANN used in this study con-
sists of six hidden sequential dense layers, each with 40 neu-
rons. The input layer provides the network with measure-
ments of structural response, while the output layer consists 
of two neurons corresponding to the possible states of the con-
trol signal. The activation function used in the neural network 
is rectified linear unit (ReLU) [17]. 

III. SHEAR BUILDING AND EXCITATION 
The structure analyzed in this study is a shear-type building 

consisting of 11 stories with a semi-active tuned mass damper 
(TMD) attached to the top story (Fig. 1). The TMD is a well-
known classical engineering device that comprises a mass, 
spring, and viscous damper and is widely used to reduce vi-
brations in structures subjected to external excitations, such 
as earthquakes [5]. Such a setup results in a total of twelve 
degrees of freedom (DOFs) which correspond to each of the 
eleven stories and the TMD. The equation of motion for the 
building model under seismic excitation can be expressed as: 
 [𝑀]{𝑢̈}  +  [𝐶]{𝑢̇}  +  [𝐾 ]{𝑢}  =  −[𝑀]{𝑟}𝑎(𝑡) (1) 
The vector {u} has 12 rows and represents the absolute dis-
placements of each DOF, while the vector {r} also has 12 
rows and represents the displacement resulting from unit hor-
izontal ground displacement for each DOF. The ground accel-
eration is denoted by a(t), while the matrices [M], [C], and [K] 
are 12 × 12 in dimension, and represent the mass, damping, 
and stiffness of the structure, respectively. The material 
damping model is assumed, and the damping matrix [C] is 
proportional to the stiffness matrix with the proportionality 
coefficient chosen to achieve 2% critical damping for the first 
mode of vibration of the structure without the TMD. The con-
trol directly affects the entries in [C] that correspond to the 
damping of the TMD, see Fig. 1, by switching it between zero 
and a large value. The mass matrix [M] is diagonal. The 
masses of each story and the TMD are thus listed on the diag-
onal of the mass matrix, assuming lumped masses at each 
floor level. Building specifications, including the number of 
stories, their masses, and stiffnesses, are based on the litera-
ture data [7]. The first undamped natural frequency is 0.89 Hz 
for the building with the TMD and 1.05 Hz for the building 
without the TMD. 

In this study, an effort has been made to safeguard the RL 
agent from acquiring a limited response pattern conditioned 
on a particular collection of ground movements. This re-
striction is essential to avoid overfitting, a common issue in 
supervised learning. To address this concern, the seismic load 
a(t) is assumed to be the white Gaussian noise. Consequently, 

it is generated afresh for every training and evaluation epi-
sode, guaranteeing that the proposed control system is ex-
posed to diverse ground motions without any bias towards 
specific patterns [7]. 

 

Fig. 1. The investigated 11-DOF structure with a semi-actively con-
trolled TMD placed on the top level 

IV. RL TRAINING 
The state of the RL environment employed for training and 

control purposes is based on linearly transformed full struc-
tural state vector, and it is comprised of the relative displace-
ments and velocities between the ground, subsequent floors, 
and the TMD. Such a choice is practical, as the relative inter-
story displacements and velocities are relatively easy to be 
measured in a real setting. 

The training proceeds in episodes. Each episode consists of 
1000 RL steps of 25 ms each, and it corresponds to about 25 
periods of the fundamental structural vibration. For fidelity of 
structural response simulation, each RL step is internally fur-
ther subdivided into 5 simulation steps, each of 5 ms. 

The aim of the control is to reduce the oscillations experi-
enced by the highest floor of the structure. For structural con-
trol purposes, the control efficiency is usually assessed using 
the root mean square (RMS) of the displacements in each ep-
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isode. Consequently, the agent’s training is based on the re-
wards it receives in each step of the interaction episodes, and 
the rewards are evaluated using the displacement level of the 
top floor. The maximum reward of 1 is assigned when the dis-
placement is zero. The rewards are used to update the agent's 
Q-function, allowing it to improve its performance in future 
episodes. 

The total reward signal at the end of each episode reflects 
the agent's performance and the distance from the equilibrium 
point over all time steps. Fig. 2 shows the total reward per 
training episode, together with its EMA50, which increases as 
the agent learns. The value of 1000 denotes a perfectly sta-
tionary top floor, and the chart includes the effect of a 10% 
exploration rate (10% of actions, on average, is selected ran-
domly to ensure ongoing exploration of the action space). 

 

Fig 2. Total rewards per training episode (blue line) and its EMA50 (or-
ange line)  

V. ROBUSTNESS TO MEASUREMENT NOISE AND MODEL ERROR 
The intended ultimate application scenario involves a real 

physical environment (building structure) rather than just its 
idealized mathematical model. There are two main factors 
that inevitably differentiate a physical structure from its nu-
merical model: 1) measurement noises overlaid on signals 
from physical sensors, and 2) model errors that represent the 
modeling inaccuracies. These factors can negatively affect the 
control efficiency applied by an RL agent trained using an 
idealized environment. 

The first test involves applying simulated measurement 
noise to the agent's observations, which is modeled as a 
Gaussian white noise and added to the input to the neural net-
work (sensor measurements). The test examines increasing 
larger levels of noise, which is quantified in the signal RMS 
terms (noise standard deviation related to the RMS of the 
original sensor signal). The control effectiveness is assessed 
in terms of the ratio of the top floor displacement RMS in the 
controlled structure to the top floor displacement RMS in the 
structure equipped with an optimally tuned passive TMD. 
Values smaller than 1.0 denote a better effectiveness in com-
parison to the passive system. To account for the random 

character of the earthquake-like base excitation, 1000 epi-
sodes of 2000 time steps are simulated for each noise level. 
Fig. 3 plots the mean value of the RMS ratio (blue line) to-
gether with its 1 sigma band (yellow). 

 

Fig 3. Control efficiency for various measurement noise levels, as-
sessed in terms of the ratio of the top floor displacement RMS between 

the controlled structure and the structure equipped with an optimally 
tuned passive TMD: mean value (blue) and 1 sigma band (yellow) 

 
The next evaluation assesses how the trained agent handles 

model errors, which are possible deviations of physical engi-
neering structures from their ideal mathematical models. The 
stiffness and mass of individual floors are subject to random 
change. The generated error follows a normal distribution, 
limited at 10% of the original level to avoid near-zero or neg-
ative values. The evaluation results are presented in Fig. 4. 
Similarly as in Fig 3, the figure depicts the top floor displace-
ment mean RMS ratio (blue) and its 1 sigma range (yellow), 
evaluated at each error level using 1000 episodes of 2000 
steps each. 

 

Fig 4. Control efficiency for various model error levels, assessed in 
terms of the ratio of the top floor displacement RMS between the con-

trolled structure and the structure equipped with an optimally tuned 
passive TMD: mean value (blue) and 1 sigma band (yellow) 
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The control performance was not significantly affected by 
even large levels of measurement noise and model error, as 
indicated by the observed stable RMS ratio. In particular, the 
control was more effective than the optimal passive TMD up 
to measurement noise of about 60% rms. In case of model er-
rors, the mean control effectiveness remained surprisingly 
good in the entire tested error range; however, the variability 
of the results increased considerably for model errors above 
the level of 20%. Such results suggest that the trained model 
possesses a certain degree of tolerance to disturbances in the 
form of measurement noise and model errors, allowing it to 
maintain reliable performance even in the presence of real-
world environmental variations. 

One possible reason for the model's low sensitivity to dis-
turbances could be attributed to its neural network architec-
ture. Neural networks, particularly those with deeper struc-
tures, are known for their ability to learn and extract mean-
ingful features from noisy data. The network layers and pa-
rameters might have been optimized during training to cap-
ture relevant patterns and generalize well, enabling the model 
to disregard irrelevant noise components. Additionally, the 
random character of the base excitation could also contribute 
to the model resilience, as it prevents the agent from overfit-
ting the specific characteristics of the model and signals and 
allows it to explore the entire control space. 

Further analysis and experimentation can provide deeper 
insights into the model's robustness and shed light on the spe-
cific architectural and training aspects that contribute to its 
noise tolerance. Understanding these factors will not only en-
hance our understanding of the model's behavior but also 
guide the development of more resilient and reliable models 
in various scientific and engineering domains. 

VI. CONCLUSION 
This contribution studied the efficiency of an RL-based 

semi-active control scheme applied to a shear-type building 
subjected to an earthquake-like base excitation. The evalua-
tion revealed a noteworthy characteristic of the control sys-
tem, namely its remarkable insensitivity to measurement and 
model errors. Despite potential deviations or inaccuracies in 
the mathematical model used for control, the system demon-
strated a high level of robustness and stability. This implies 
that the control algorithm could effectively compensate for 
discrepancies between the actual system behavior and the ide-
alized mathematical representation, ensuring reliable perfor-
mance in real-world scenarios. The observed low insensitivity 
to noises and errors highlights the effectiveness and practical 
applicability of the RL-based control methodology in the con-
sidered context.  

The promising results provide initial insights into the po-
tential of reinforcement learning for improving and ensuring 
the performance of semi-active damping systems, even 
though the use of RL in structural control, particularly in 
semi-active control, is not yet widespread. 
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