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Te elastic material properties which change momentarily and locally under the high deformation rate due to the movement of
a wavefront are presented. Te work contains mathematical formulation, semianalytical results, numerical formulations, and
simulation results demonstrating the efectiveness of modifying the rheological properties of the elastic material upon shock load
or contact with a rigid obstacle. While the semianalytical solutions can be obtained in a narrow time interval, numerical solutions
allow us to track the process of wavefront refections from edges. Te efectiveness of reducing the physical quantities signifcant
for impact in the presented examples reaches 30–70% of forces or accelerations, depending on the adopted criteria.

1. Introduction

Impact protection materials are a problem of great practical
importance. Improving the parameters of materials re-
sponsible for protecting the human head, human body, or
broadly understood engineering structures is highly desir-
able. Terefore, new solutions, mainly using intelligent
materials, are constantly sought.

Te aim of the work is to present the concept of an
intelligent material reducing the efects of impact loads. Te
material used can be both rigid and efectively reduce efects
of impacts. Te improvement in efciency is possible due to
the local and temporary change in stifness induced by the
moving mechanical wave. It should be emphasized that the
designed material should have a high usable stifness and
only in a critical moment should locally and temporarily
change its properties. In this way, the usability of an element
or a structure with the use of intelligent material will remain
unchanged throughout the entire range of use, including the
moment of impacts.

Te crucial signifcance of mechanical properties in
practical applications has made it one of the most funda-
mental and extensively researched areas in materials science.
Sudden impacts cause signifcant harm to lives and devices.
Tus, the development of crash-resistant devices plays an

essential role in engineering applications such as aircraft,
vessels, and automobiles. Hence, the demand for the safety
of structures against severe loading is increasing day by day
as structure safety is generally associated with the materials
used for construction [1–3].

In practical applications, materials that absorb impact
energy using the phenomenon of plastic deformations are
most often selected [4–6]. Te use of aluminium or steel
enables achieving desired properties such as lightweight,
strength, and the ability for controlled deformation, which is
crucial for the efective absorption of kinetic energy in the
case of impacts. During plastic deformation, the material
experiences tensile, shear, compressive, or torsional stresses,
depending on the type of loading conditions [7–9]. Con-
sequently, the kinetic energy is dissipated internally through
mechanisms such as grain boundary sliding, dislocation
motion, or fracture propagation within the material’s mi-
crostructure. Tis energy absorption process mitigates ac-
celerations and forces exerted on the structure, thereby
minimizing the risk of injuries or structural damage.

Another engineering material that fnds application in
reducing accelerations is the carbon fber composite. Tese
composites consist of a polymer resin reinforced with
carbon or glass fbers.Tey are signifcantly lighter than steel
while exhibiting high strength and stifness. Carbon fber-
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reinforced polymer utilizes brittle fracturing to reduce the
efects of impact. Carbon fbers are incredibly strong and stif
but they are also brittle. When subjected to dynamic loading,
such as during an impact, carbon fbers experience sudden
fracturing, resulting in the absorption and dispersion of
kinetic energy [10–12]. Tis process reduces accelerations
and forces acting on the structure, providing protection
against damage.

Tere are also attempts to use the so-called smart ma-
terials in acceleration reduction, especially magneto-
rheological materials. Magnetorheological (MR) materials
are used to reduce the efects of impact by leveraging their
ability to change viscosity or hardness in response to
a magnetic feld. Under dynamic loading, MR materials can
adapt their rheological properties, allowing for efective
absorption of kinetic energy and reducing accelerations and
forces acting on the structure. Tese are interesting solu-
tions, however, requiring additional control devices that
activate the material. Tis is a major limitation in practical
applications [13–16].

Also, cellular materials, such as honeycombs and foams,
have been studied for impact energy absorption. Te un-
doubted advantages of this type of materials are low density
and high stifness. Due to the geometric complexity of the
material’s structure, experimental research is carried out
mainly. Examples include hybrid nickel-strengthened alu-
minium foams. Hybrid metallic foams are highly strain-rate
sensitive, so they are able to dissipate more energy under
dynamic loads [17]. In [18], various recipes for energy-
absorbing granular materials were experimentally tested. Te
obtained physicomechanical properties are presented, namely,
bulk density, fexural, compressive, and impact strength. Based
on these results, the rate andmode of energy absorption can be
predicted. Tere are also attempts to fnd cellular structures
inspired by nature [19]. Te authors presented how the me-
chanical properties ofmetal foam can be improved by changing
its structure at diferent hierarchical levels, inspired by features
and principles important for the impact resistance of biological
patterns. An interesting example of cellular material is the
metallic hollow sphere material. Te mechanical behaviors
were experimentally characterized [20–22]. Functionally
graded porous materials are also being developed. It is char-
acterized by a gradual change in the composition and structure
of the volume, which results in corresponding changes in the
material properties. Te specifc functions are attempted to be
modeled using the fnite element approach [23, 24].

A promising area of research is mechanical meta-
materials, which, thanks to their nontrivial structure, have
interesting properties [25]. Tese are innovative materials
that are used to reduce the efects of impact. Tey possess
a unique structure composed of repeating units with dif-
ferent mechanical properties. Tese units, known as meta-
material cells, are optimized to absorb and dissipate kinetic
energy, thereby reducing accelerations and forces acting on
the structure. By precisely manipulating mechanical prop-
erties such as stifness, elasticity, and damping, mechanical
metamaterials ofer the ability to design custom structures
that minimize the impact efects [26–31]. Te numerical
search for appropriate structures requires time-consuming

simulations of 3D objects with a large number of degrees of
freedom. In addition, in the case of structural dynamics
computations, the simulation time is signifcantly longer.
Terefore, the direct search (optimization) of metamaterial
structures is extremely expensive and practically impossible.
Recent progress in the development of energy-absorbing
metamaterials and their mechanical properties under dy-
namic loading is presented in [32].

Te paper proposes a simplifed analysis of the behavior
of a hypothetical metamaterial. Te material is elastic, and
the mechanical wave traveling in it causes a local change in
the stifness of the material. Te infuence of local reduction
or increase of Young’s modulus on the response of the
structure was investigated. Te information obtained in-
dicates the way to search for the structure of the appropriate
metamaterial that will be able to implement the assumed
strategy of operation. A simple 1D model enables deep
exploration of the problem due to its simplicity and rela-
tively short computation time.

Te remaining sections of this paper are as follows. Te
mathematical model is presented in Section 2. To model the
traveling stifness zone, we use the Heaviside functions. Tis
leads to a nonconstant longitudinal force in a rod.Te problem
defnition and equation ofmotion are given.Te semianalytical
solution to the model is presented in Section 3 based on
a separation of variablesmethod and integral transformation. A
numerical fnite element method scheme for the problem is
constructed in Section 4. Te obtained results confrm the
correctness of the developed numerical model.Te infuence of
the number of local material changes on the system’s response
is depicted in Section 5. Te paper concludes in Section 6.

2. Mathematical model

2.1. Problem Defnition. Let us consider a homogeneous
straight clamped-free bar of length L and a constant cross
section A clamped on the left side (Figure 1).

Te w (x, t) function defnes longitudinal displacements.
So, we can write the boundary conditions as follows:

w(0, t) � 0,

zw(x, t)

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�L
� 0.

(1)

Assume that the material of the rod is linearly elastic and
thus follows Hook’s law. Moreover, the bar has a density ρ
and a global stifness E0. Te following zero initial dis-
placement and the initial velocity v0 are obtained:

w(x, 0) � 0,

_w(x, 0) � v0.
(2)

In addition, we assume that along with the wave moving
in the rod, its stifness changes locally.

E(x) � E0 +[H(x − (L − ϵ − ct)) − H(x − (L − ct))]􏽢E,

(3)

where the wave speed c is given by the following formula:

2 Shock and Vibration



c �

��
E0

ρ

􏽳

. (4)

We will consider the following two cases: local
strengthening 􏽢E> 0 and local weakening 􏽢E< 0 of stifness.
Te diference of the Heaviside functions defnes the trav-
eling stifness zone of width ϵ. At this point, it should be
noted that we solve semianalytically only the stage of the
wave reaching the support tmax � L/c.

2.2. Equation of Motion. In order to obtain the equation of
free vibrations of a rod, we will examine the motion of an
infnitesimally small element created by cutting the rod with
two very close cross sections. Te longitudinal force balance
equation takes the following form:

ρAdx
z
2
w(x, t)

zt
2 � − N(x, t) + N(x, t) + dN(x, t). (5)

Due to its elasticity, the longitudinal force N in the rod
can be determined depending on the deformation, which in
turn depends on the displacement.

N � E(x)A
zw

zx
. (6)

According to (3), the longitudinal force (6) is not
constant, so the increase in longitudinal force dN can be
written in the following form:

dN �
zN

zx
dx � E0A

z
2
w

zx
2 +[δ(x − (L − ϵ − ct)) − δ(x − (L − ct))]􏽢EA

zw

zx
􏼨

+[H(x − (L − ϵ − ct)) − H(x − (L − ct))]􏽢EA
z
2
w

zx
2􏼩dx.

(7)

Finally, after rearrangements of equation (5), taking into
account (7), and dividing by Adx, it takes the form of the
equation of motion.

− E0
z
2
w(x, t)

zx
2 − [δ(x − (L − ϵ − ct)) − δ(x − (L − ct))]􏽢E

zw

zx

− [H(x − (L − ϵ − ct)) − H(x − (L − ct))]􏽢E
z
2
w

zx
2 + ρ

z
2
w(x, t)

zt
2 � 0.

(8)

It is a partial diferential equation with variable co-
efcients. Since the variables are Dirac deltas and Heaviside
steps, the potential solution is a solution in the
distribution sense.

3. Semianalytical Solution

In order to solve equation (8) along with the boundary
conditions (1) and the initial conditions (2), we will use the
separation of variables method as follows:

w(x, t) � V(t)U(x). (9)

Substitution of (1) into formula (9) leads to boundary
conditions for the function U(x). To solve the boundary
problem, we defne eigenfunctions and eigenvalues. Te

assumed boundary conditions are satisfed by the following
series of sines:

w(x, t) �
2
L

􏽘

∞

j�1
Vj(t) sin

(2j − 1)πx

2L
. (10)

So, we get an infnite sequence of eigenvalues. Each
eigenvalue corresponds to an eigenfunction. Te V(t)

function is determined from the following formula:

Vj(t) � 􏽚
L

0
w(x, t)sin

(2j − 1)πx

2L
dx. (11)

Te integral (11) is called the Fourier transformation.
Taking into account (11), initial conditions (2) take the
following form:

L

E0 + Êє
ρ, E0, A

υ0 υ0 υ0 υ0 υ0 υ0

c

Figure 1: A rod with a moving stifness zone.
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Vj(0) � 0,

_Vj(0) �
2v0L

(2j − 1)π
.

(12)

According to (11) and (10), the equation of motion (8)
after rearrangements can be written in the following form:

_Vj(t) +
E0

ρ
(2j − 1)π

2L
􏼠 􏼡

2

Vj(t)

−
􏽢E

ρ
π
L
2 􏽘

∞

k�1
(2k − 1)Vk(t) cos

(2k − 1)π(L − ϵ − ct)

2L
sin

(2j − 1)π(L − ϵ − ct)

2L

+
􏽢E

ρ
π
L
2 􏽘

∞

k�1
(2k − 1)Vk(t) cos

(2k − 1)π(L − ct)

2L
sin

(2j − 1)π(L − ct)

2L

+
􏽢E

ρ
2
L

π
2L

􏼒 􏼓
2

􏽘

∞

k�1
(2k − 1)

2
Vk(t) 􏽚

L

L− ϵ− ct
sin

(2k − 1)πx

2L
sin

(2j − 1)πx

2L
dx

−
􏽢E

ρ
2
L

π
2L

􏼒 􏼓
2

􏽘

∞

k�1
(2k − 1)

2
Vk(t) 􏽚

L

L− ct
sin

(2k − 1)πx

2L
sin

(2j − 1)πx

2L
dx � 0,

(13)

where the integrals are presented for the interval 〈L − ϵ −
ct, L〉 in the following form:

􏽚
L

L− ϵ− ct
sin

(2k − 1)πx

2L
sin

(2j − 1)πx

2L
dx

�
2L

π
1

(2j − 1)
2

− (2k − 1)
2 (2j − 1)cos

(2j − 1)π(L − ϵ − ct)
2L

sin
(2k − 1)π(L − ϵ − ct)

2L
􏼢

− (2k − 1)sin
(2j − 1)π(L − ϵ − ct)

2L
cos

(2k − 1)π(L − ϵ − ct)
2L

􏼣.

(14)

Te second integral difers by the integration interval
when ϵ � 0. We can see that the solution (14) is only possible

for j≠ k. In the case of j � k, we have to use l’Hôpital’s rule.
Te formula is given in the following form:

􏽚
L

L− ϵ− ct
sin

(2j − 1)πx

2L
􏼠 􏼡

2

dx �
L

2(2j − 1)π
sin

(2j − 1)π(L − ϵ − ct)
L

+
1
2

(ct + ϵ). (15)

We limit the series to a fnite number of n terms. Finally,
the system of equation (13) can be written in matrix form as
follows:

M _V + KV � 0. (16)

Te fnal solution is obtained by substituting the com-
ponents of the vector V into the series (10). Te presented
system of diferential equation (16) will be solved using the
numerical Newmark integration method with initial con-
ditions (12). Te self-prepared computer program was
written in the Fortran programming language. Te

advantage of the obtained semianalytical solution is the
possibility of using it to verify the solution using the fnite
element method. Te disadvantage of the semianalytical
solution is that the mathematical model is limited only to the
frst phase of the process, i.e., to the wave reaching the
support tmax � L/c. Tis is due to the mathematical structure
of the function E(x), i.e., the moving stifness (3), which
does not provide for wave refection from the fxed end of the
rod; therefore, further observation of the solution is
unphysical. Taking into account the wave refection from the
support in the function E(x) would be extremely
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complicated mathematically. However, it is sufcient to
correctly verify the developed numerical model, which will
be used later in the paper. In addition, it should be re-
membered that the semianalytical solution applies only to
selected boundary conditions (1).

4. Finite Element Model

In further analysis of the material with a local stifness
change zone, we will use the fnite element method. Te rod
will be divided into n fnite elements of length b. Te
considered moving zone of length ϵ may include only 1
element but also several elements. Figure 2 shows the case of
the two involved elements.

We are dealing with the wave equation, so we will use
linear shape functions describing the distribution of nodal
displacements in a fnite element as follows:

w(x, t) � 1 −
x

b
􏼒 􏼓w1(t) +

x

b
w2(t), (17)

and similarly, virtual displacements as follows:

w
∗
(x) � 1 −

x

b
􏼒 􏼓w1 +

x

b
w2. (18)

Classical characteristic matrices of the rod can be written
in the following form:

M �
ρAb

6

2 1

1 2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (19)

K �
EA
b

1 − 1
− 1 1

􏼢 􏼣. (20)

Moving components require our attention. According to
(8), virtual energy of the traveling zone can be presented in
the following form:

􏽢Π � 􏽢EA 􏽚
b

0
w
∗

[H(x − (b − ϵ − ct)) − H(x − (b − ct))]
z
2
w

zx
2􏼨

− δ(x − (b − ϵ − ct)) − δ(x − (b − ct))]
zw

zx
􏼢 􏼩dx.

(21)

Te abovementioned integrals can be computed con-
sidering (17) and (18) as follows:

􏽚
b

0
w
∗
H(x − (b − ϵ − ct))

z
2
w

zx
2 dx � 􏽚

b

b− ϵ− ct
w
∗z

2
w

zx
2 dx,

􏽚
b

0
w
∗δ(x − (b − ϵ − ct))

zw

zx
dx � w

∗zw

zx
􏼠 􏼡

x�b− ϵ− ct

.

(22)

In the case of ϵ � 0, the same methodology was used.
As a result of the minimization of the energy (21), we

obtain the following vector:

􏽢F �
􏽢EA

b

κ − κ

− κ κ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

w1

w2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +
􏽢EA

b
2

ϵ − ϵ

− ϵ ϵ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

w1

w2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

−
􏽢EA

b

κ − κ

− κ κ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

w2

w3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(23)

where κ ∈ [0, 1] is a parameter that describes the current
position of the moving component in a fnite element.

κ �
ct
b

. (24)

Te vector (23) describes the wave direction from right
to left. When the zone of changed stifness moves from left to
right, the vector takes the following form:

􏽢F �
􏽢EA

b

1 − κ − 1 + κ

− 1 + κ 1 − κ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

w1

w2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +
􏽢EA

b
2

ϵ − ϵ

− ϵ ϵ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

w2

w3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

−
􏽢EA

b

1 − κ − 1 + κ

− 1 + κ 1 − κ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

w2

w3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(25)

According to (19) and (20), we build a global system of
diferential equations. Finally, we obtain a matrix diagram of
the rod dynamics with a moving stifness zone as follows:

M _w + Kw + 􏽢F � 0. (26)

Tis discrete problem can be solved, for example, by the
Newmark method. Te abovementioned numerical scheme
was hand coded in the Fortran programming language. Te
developed computer program has an undeniable advantage.
It takes into account the moving stifness in both directions
according to the vectors (23) and (25). In the following, a test
example that illustrates the correctness of the numerical
model is presented. It should be noted that the solution
applies only to the arrival of the wave at the support
tmax � L/c. Figures 3 and 4 present the obtained results
compared with the semianalytical solution from Section 3.

Te dataset for a rod used in the simulations was as
follows:

є

1 2 3

b

c

Figure 2: Te traveling stifness zone.
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(i) Young’s modulus: E0 � 100[GPa]

(ii) Moving Young’s modulus: 􏽢E � 0.9E0

(iii) Density of a rod: ρ � 10[kg/m3]

(iv) Length of a rod: L � 0.05[m]

(v) Width of a moving zone: ϵ � 0.001[m]

(vi) Initial velocity: v0 � 1[m/s].

Te semianalytical solution presented above shows the
correctness of the results obtained by the numerical method.
Successively increasing the number of terms of the series
(10), which is the solution of the semianalytical solution,
converges to the exact solution. Tis suggests that the
semianalytic solution is correct. Unfortunately, direct
mathematical proof of the correctness of the solution is not
possible due to its fnal nature.

Te diferences in the semianalytical solution and the
fnite element method result from their nature. In the fnite
element solution, we use a mesh of elements. In simulations
of structural dynamics concerning wave equations such as
a rod, during the process investigation, waves are refected
between the mesh nodes. Tis causes additional oscillations
to appear in the solution. We will never obtain an identical
solution to the same solution with both methods, especially
when we study displacement velocities (Figure 4). While in
the semianalytical solution, the scope of considerations is

limited to a particular case, numerical solutions ofer much
wider possibilities, allowing the observation of refections of
moving stifness.

5. Results

In this work, the aim was to address the question of the
efectiveness of locally modifying material properties under
impact conditions. Commercial computational packages
were not suitable for this task because they do not allow for
accurate modeling of the problem. In the numerical model,
it was necessary to consider the fact that a moving narrow
zone of material softening/hardening, infuenced by
a propagating wave, simultaneously changes the wave
propagation velocity in that region. Consequently, it alters
the spatial location of the area where material parameters
change. Dealing with variable coefcients, the problem
becomes nonlinear. Terefore, a custom computer pro-
gram was developed for simulations and its key compo-
nents are described. Another aspect that had to be taken
into account in the numerical simulations was the need to
incorporate certain imperfections of the physical models in
which local material weakening occurs in a gradual rather
than abrupt manner. For this reason, the stated objective
could only be achieved using a custom computational
program.
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Figure 3: Displacements in the middle of the rod: local strengthening (a) and local softening (b).
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Figure 4: Velocities in the middle of the rod: local strengthening (a) and local softening (b).
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Another important goal of numerical calculations was to
assess the infuence of the spatial width of the weakening
zone and the value of the elasticity modulus of the weakened
zone relative to the original modulus of elasticity. Te own
computer program was used for optimizing these parame-
ters while maximizing the reduction of instantaneous ac-
celerations as the objective function.

In the following, we will discuss the results obtained
numerically using the matrices described in Section 4 in the
case of a bar with one end fxed and the free end loaded with
a force impulse. We will consider the acceleration of the free
end of the rod and the axial force appearing in the fnite
element at the free end. Te infuence of the width of the
hardening/softening zone will be exhibited as well as the
ratio of the contribution of 􏽢E to the initial elasticity
modulus E0.

Figure 5 presents the force and acceleration at the
subjected end for the softened and stifened traveling zone.
Te following data were assumed: the ratio 􏽢E/E0 � 0.9 and
the width of the traveling gap equal to 1% of the length of the
bar. In the case of the softening material, the axial force
appearing in the edge element just after the impact is about
15% of the value related to the force in the unmodifed
material. In the same example, the hardening material ex-
hibits about 60% higher force. Te acceleration registered at
the end of the rod with the temporarily weakening material
is 25% less than the reference acceleration and 30% greater
for the hardening material.

Figure 6 shows the infuence of the amount of local
material weakening on the response of the system.Te range
of weakening of the modulus of elasticity 􏽢E was assumed in
the range from 0 to 95% of the value of the basic modulus of
elasticity in the rod E0. In practice, the physical modulus
E0 + 􏽢E in the moving zone changes from E0 to 0.05 E0. It can
be seen that the reduction of the internal force at the loaded
end member is proportional to the 􏽢E/E0 ratio.

Figure 7 shows displacements in time for various relative
additional elasticity module 􏽢E. Displacements w(x, t) are
related to the displacement of the free end w0 with un-
modifed elasticity module E0. In the analysed example,
w0 � 1. A slower but deeper increase in time of the resultant
displacement value is visible in the case of softened material.
Tis allows one to reduce the recorded accelerations and
thus makes the impacts gentler.

Te diagram in Figure 8 displays the internal force value
measured at the free end over time. Te horizontal sections
of the diagram correspond to the increasing width of the
modifed gap zone.Te fgure illustrates that the width of the
moving softened gap can be quite narrow. Although the
wider gap slightly improves the results in relation to the
narrow gap and reduces the acting forces and accelerations,
it happens to a slight extent. Tis is theoretically explicable
because the wavefront in the elastic material, in the absence
of parabolization of the governing equation and blurring of
the response due to damping, is relatively sharply outlined.
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Figure 5: Force and acceleration at the subjected end for the softened and stifened traveling zone normalized to those obtained with
unmodifed material.
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Figure 7: Displacement at the subjected free end depending on the relative additional elasticity module.
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Terefore, only a narrow zone is involved in the process
described in the work.

Figure 9 depicts the amplitude in terms of the width of
the modifed moving zone. Te increasing amplitude along
with the lengthening of the frst period of vibration results in
a reduced value of the acceleration at the free end of the rod.
Te increase in the period of free-end oscillation is directly
proportional to the width of the softening gap. Tis re-
lationship is also evident in Figure 7, which depicts the
impact of the softening modulus range. Te extension of the
oscillation period, even with increasing amplitude, leads to
a reduction in the acceleration amplitudes. Figure 9 shows
a threefold increase in displacement amplitudes, with
a tenfold increase in the time it takes to return the observed
point to its equilibrium position. Tis is the reason for the
signifcant decrease in accelerations and forces. It should be
emphasized again that the narrow, softened moving zone
somehow distributes the impulse energy over the area of the
object.

6. Conclusion

Te paper shows that the locally and temporarily weakening
material signifcantly reduces critical utility values, such as
peak accelerations and peak force values acting at the edge of
the tested object. Te material weakens in the zone of high
deformation velocities, i.e., in the location of the traveling
wave front resulting from the impact. Only a narrow layer of
the material is weakened, while the rest does not change its
mechanical and functional properties.

Mathematical formulation and semianalytical solution
of the task allowed us to verify the developed numerical
model of fnite elements. In the case of numerical modeling,
the correctness of the description of the passage of the front
of the weakened zone through the area of successive fnite
elements is important. Te same applies to the end-of-zone
transition of a weakened zone, where part of the fnite el-
ement area is weakened and parts are not. In the numerical
model, the direction of the elastic wave is important.
Semianalytical and numerical results were consistent within
the scope possible to be assessed with the appearance of
known artifacts.

Te simulation results show that material with locally
weakening stifness allows avoiding large and short-term
acceleration peaks more efectively and can be successfully
used in protection against accidents. Te shown examples
show that the reduction of forces or accelerations can range
from 30 to 70% of the value of models with ordinary ma-
terial. In further research, it is necessary to correlate the
mathematical model with a group of real materials and
identify directions for developing material compositions
that meet theoretical expectations. In addition, it is essential
to verify the efectiveness of impact energy absorption in
two- and three-dimensional systems. It is worth in-
vestigating the potential efectiveness of multilayer materials
in which individual layers would serve diferent mechanical
functions. Properly selected relationships between the gap
width and the relative additional elasticity module signif-
cantly reduce the forces acting during the impact. Te

obtained results are an important clue in the search for
a metamaterial structure that implements the strategy of
local stifness change.

Abbreviations

ρ: Density of the rod
A: Rod cross section area
L: Length of the rod
E0: Global stifness of the rod (Young’s modulus)
􏽢E: Local moving stifness
ϵ: Width of the moving stifness zone
c: Wave speed in the rod
v0: Initial velocity
w: Longitudinal displacements of the rod
w0: Static longitudinal displacements of the rod
H(x): Heaviside function
δ(x): Dirac delta function
t: Time
N: Longitudinal force in the rod
Vj(t): Fourier fnite integral transformation of the

function w

V: Vector of subsequent integral transformation Vj(t)

M: Inertial matrix in semianalytical solution
K: Stifness matrix in semianalytical solution
b: Finite element length
wi: Displacement in the i node
w⋆: Virtual displacements
􏽢Π: Virtual energy of the traveling zone
κ: Current position of the moving component
M: Inertial matrix in the fnite element approach
K: Stifness matrix in the fnite element approach
􏽢F: Vector of the moving zone
w: Nodal displacement vector
., ..: Dots over the letter denote derivatives with respect

to time.
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