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Direct estimation of quantum coherence by collective
measurements
Yuan Yuan1,2,3, Zhibo Hou1,3, Jun-Feng Tang1,3, Alexander Streltsov4✉, Guo-Yong Xiang1,3✉, Chuan-Feng Li 1,3 and Guang-Can Guo1,3

The recently established resource theory of quantum coherence allows for a quantitative understanding of the superposition
principle, with applications reaching from quantum computing to quantum biology. While different quantifiers of coherence have
been proposed in the literature, their efficient estimation in today’s experiments remains a challenge. Here, we introduce a
collective measurement scheme for estimating the amount of coherence in quantum states, which requires entangled
measurements on two copies of the state. As we show by numerical simulations, our scheme outperforms other estimation
methods based on tomography or adaptive measurements, leading to a higher precision in a large parameter range for estimating
established coherence quantifiers of qubit and qutrit states. We show that our method is accessible with today’s technology by
implementing it experimentally with photons, finding a good agreement between experiment and theory.
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INTRODUCTION
Quantum coherence is the most distinguished feature of quantum
mechanics, characterizing the superposition properties of quan-
tum states. An operational resource theory of coherence has been
established in the last years1–7, allowing for a systematic study of
quantum coherence in quantum technology6, including quantum
algorithms8,9, quantum computation10, quantum key distribu-
tion11, quantum channel discrimination12,13, and quantum metrol-
ogy14–16. Moreover, quantum coherence is closely related to other
quantum resources, such as asymmetry17,18, entanglement19,20,
and other quantum correlations21; the manipulation of coherence
and conversion between coherence and quantum correlations in
bipartite and multipartite systems has been explored both
theoretically22–25 and experimentally26,27. Highly relevant from
the experimental perspective is the recent progress on coherence
theory in the finite copy regime, in particular regarding single-shot
coherence distillation28–31, coherence dilution32, and incoherent
state conversion33. Being a fundamental property of quantum
systems, coherence plays an important role in quantum thermo-
dynamics34–40, nanoscale physics41, transport theory42,43, biological
systems44–49, and for the study of the wave-particle duality50–52.
Having identified quantum coherence as a valuable feature of

quantum systems, it is important to develop methods for its
rigorous quantification. First attempts for resource quantification
were made in the resource theory of entanglement53,54, leading
to various entanglement measures based on physical or
mathematical considerations. The common feature of all
resource quantifiers is the postulate that they should not
increase under free operations of the theory, which in entangle-
ment theory are known as “local operations and classical
communication”. In the resource theory of coherence, the free
operations are incoherent operations, corresponding to quan-
tum measurements, which cannot create coherence for indivi-
dual measurement outcomes1.

While various coherence measures have been proposed6, an
important issue is how to efficiently estimate them in experiments.
Clearly, one possibility is to perform quantum state tomography55

and then use the derived state density matrix to estimate the
amount of coherence. However, estimation of coherence mea-
sures in general does not require the complete information about
the state of the system, a fact which has been exploited in various
approaches for detecting and estimating coherence of unknown
quantum states56–59.
In this paper, we put forward a general method to directly

measure quantum coherence of an unknown quantum state using
two-copy collective measurement scheme (CMS)60–63. We simulate
the performance of this method for qubits and qutrits and
compare the precision of CMS with other methods for coherence
estimation, including tomography. The simulations show that in
certain setups CMS outperforms all other schemes discussed in
this work. We also report an experimental demonstration of CMS
for qubit states. The collective measurements are performed on
two identically prepared qubits, which are encoded in two
degrees of freedom of a single photon. In this way, we
experimentally obtain two widely studied coherence measures,
finding a good agreement between the numerical simulations and
the experimental results.

RESULTS
Theoretical framework
We aim to estimate coherence of a quantum state ρ by
performing measurements on two copies of the state. As
quantifiers of coherence we use the ℓ1-norm of coherence C‘1
and the relative entropy of coherence Cr, defined as1:

C‘1ðρÞ ¼
X
i≠j

ρij
�� ��; (1)

CrðρÞ ¼ SðρdiagÞ � SðρÞ: (2)
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Here, SðρÞ ¼ �Tr½ρ log 2ρ� is the von Neumann entropy,
ρdiag ¼ P

i ij i ih jρ ij i ih j, and we consider coherence with respect to
the computational basis f ij ig. For single-qubit states with Bloch
vector r= (rx, ry, rz), both quantities can be expressed as64:

C‘1ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
; (3)

CrðρÞ ¼ h
1þ rzj j

2

� �
� h

1þ r
2

� �
(4)

with the binary entropy hðxÞ ¼ �x log 2x � ð1� xÞ log 2ð1� xÞ
and the Bloch vector length r ¼ ðr2x þ r2y þ r2z Þ1=2.
In the next step, we will express both C‘1 and Cr in terms of the

outcome probabilities of a collective measurement in the
maximally entangled basis, performed on two copies ρ ⊗ ρ. We
denote the corresponding outcome probabilities as
Pi ¼ Tr½Miρ� ρ�, where
M1 ¼ ψþj i ψþh j; M2 ¼ ψ�j i ψ�h j;
M3 ¼ φþj i φþh j; M4 ¼ φ�j i φ�h j (5)

are projectors onto maximally entangled states ψ±j i ¼
ð 01j i± 10j iÞ= ffiffiffi

2
p

and φ±j i ¼ ð 00j i± 11j iÞ= ffiffiffi
2

p
. As we show in

Method section, the outcome probabilities fulfill the relations

r2x þ r2y ¼ 2ðP1 � P2Þ;
jrzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P3 þ P4ð Þ � 1

p
;

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4P2

p
:

(6)

Thus, both coherence measures C‘1 and Cr can be expressed as
simple functions of Pi. We further note that in general CMS can be
used to estimate absolute values of the Bloch vector components
of a single-qubit state ρ. This implies that CMS allows to evaluate
any coherence measure of single-qubit states, as any such
measure is a function of the absolute values of the Bloch
coordinates, see Method section for more details.
In the following, we use numerical simulation to compare the

collective measurement scheme (CMS) discussed above to three
alternative schemes for measuring C‘1 for single-qubit states. The
first alternative scheme is to directly measure observables σx and
σy, and estimate C‘1 via Eq. (3). The second scheme is a two-step
adaptive measurement: step one is to measure observables σx and
σy; based on the feedback results of the first step, step two is to
choose optimal observable aσx+ bσy to obtain jh0jρj1ij. The third
alternative scheme is to perform state tomography and then,
subject to the derived density matrix, to estimate the value of C‘1 .
We further use the tomography results to estimate the relative
entropy of coherence Cr via Eq. (4), and compare the performance
of the estimation with CMS.
For the numerical simulation we use single-qubit states

Ψj i ¼ sin θ 0j i þ cos θ 1j i (7)

with θ ranging from 0 to π/2. All simulations are performed on
N= 1200 copies of Ψj i. We further repeat each simulation 1000
times and average the numerical data overall repetitions. We are
in particular interested in the error of the estimation:

ε ¼ CestðρÞ � CðρÞj j; (8)

where Cest and C are the estimated and the actual coherence
measures, respectively. Figure 1a shows the results of numerical
simulation for C‘1 , together with experimental data; the experi-
ment will be discussed in more detail below. Each data point in
the figure is the average of T= 1000 repetitions, i.e., 1

T

PT
i¼1 εi ,

where εi is the error of the ith measurement. The error bar denotes
the standard deviation of εi. Figure 1b shows the corresponding
comparison between CMS and tomography for estimating the
relative entropy of coherence Cr.
As we see from the data shown in Fig. 1a, b, there is a range of θ

where CMS outperforms all other schemes, leading to the smallest

error. Moreover, while the error in general depends on θ, this
dependence is comparably weak for CMS. To compare the
accuracy achieved by different estimation methods more intui-
tively and clearly, we average the mean error for all input states
shown in Fig. 1a, and the average results are shown in Fig. 2. For
the estimation of C‘1 the adaptive measurement scheme outper-
forms CMS on average, which again outperforms all other
estimation schemes presented above. In the Supplementary
Information we further report theoretical and experimental results
for estimating coherence of formation3,65 for qubits. Also in this
case CMS outperforms all other schemes discussed in this paper in
a certain range of θ.
While the above discussion was restricted to qubit systems, the

CMS method can also be applied to estimate C‘1 for states of
higher dimensions. We consider an arbitrary quantum state
ρ ¼ P

i;jρij ij i jh j, where i, j = 0, 1, …, d − 1 and d is the dimension
of Hilbert space. After an appropriate set of collective measure-
ments are performed on the two-copy state ρ ⊗ ρ, we find that
the absolute value of the off-diagonal element ∣ρij∣ for i ≠ j can be

Fig. 1 Results of estimation error for qubit. Mean errors for
estimating ℓ1-norm coherence in a and relative entropy coherence
in b for a family of qubit states with different measurement
schemes. The states have the form Ψj i ¼ sin θ 0j i þ cos θ 1j i with θ
ranging from 0 to π/2. In a, the performances of CMS (numerical
simulation and experiment); σx, σy measurement (simulation); two-
step adaptive measurements (simulation); and tomography (simula-
tion) are shown for comparison. In b, the performances of CMS
(numerical simulation and experiment) and tomography (simula-
tion) are shown for comparison. The sample size is N= 1200. Each
data point is the average of 1000 repetitions, and the error bar
denotes the standard deviation.
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expressed as

jρijj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðTr½ρ�2jψþ

ij i hψþ
ij j� � Tr½ρ�2jψ�

ij i hψ�
ij j�Þ

r
; (9)

where jψ±
ij i ¼ ð ijj i± jij iÞ= ffiffiffi

2
p

. Therefore, the ℓ1-norm coherence
can be written as

C‘1ðρÞ ¼ 2
X
j > i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðTr½ρ�2jψþ

ij i hψþ
ij j� � Tr½ρ�2jψ�

ij i hψ�
ij j�Þ

r
: (10)

We use numerical simulation to compare the performance of
the CMS method to the qutrit state tomography for the family of
qutrit states

Φj i ¼ 1ffiffiffi
2

p ðsin α 0j i þ cos α 1j i þ 2j iÞ; (11)

with α ranging from 0 to π/2 (see Supplementary Information for
more details). The results of the simulation are shown in Fig. 3. As
before, we use N= 1200 copies of the state Φj i for both CMS and
state tomography, and average over 1000 repetitions. The results
show that CMS outperforms the tomography method for a large
range of α. Apart from a higher accuracy, the CMS method
requires only a single measurement setup, while four measure-
ment setups are required for qutrit tomography.

Experimental implementation
The experimental setup for realizing CMS to estimate coherence of
qubit states is presented in Fig. 4. The setup is composed of three
modules designed for single-photon source, two-copy state prepara-
tion, and collective measurements, respectively. In the single-photon
source module, a 80-mW cw laser with a 404-nm wavelength
(linewidth= 5MHz) pumps a type-II beamlike phase-matching beta-
barium-borate (BBO, 6.0 × 6.0 × 2.0mm3, θ= 40.98∘) crystal to pro-
duce a pair of photons with wavelength λ= 808 nm. The two
photons pass through two interference filters (IF) whose FWHM (full
width at half maximum) is 3 nm. The photon pairs generated in
spontaneous parametric down-conversion (SPDC) are coupled into
single-mode fibers separately. One photon is detected by a single-
photon detector acting as a trigger. The coincidence counts are ~5 ×
103 per second. In the two-copy state preparation module, we first
prepare copy 1 in the path degree of freedom of single photon, i.e.,
the first qubit encoded in positions 1 and 0 (see a in Fig. 4). After
passing a half-wave plate (HWP) and a quarter-wave plate (QWP) with
deviation angles H1, Q1, the photon is prepared in the desired state ρ.
To encode the polarization state into the path degree of freedom,
beam displacer (BD1) is used to displace the horizontal polarization (H)
component into path 0, which is 4-mm away from the vertical
polarization (V) component in path 1; then a HWP (H3) with deviation
angle 45∘ is placed in path 0. The resulting photon is described by the
state ρ� Vj i Vh j. Then we encode the second copy of ρ into the
polarization degree of freedom of single photon using a HWP and a
QWP with deviation angles H2, Q2 (see b in Fig. 4). In this way, we can
prepare the desired two-copy state ρ ⊗ ρ.
The collective measurement module realizes a measurement on ρ

⊗ ρ in the maximally entangled basis, where Mi are given in Eq. (5).
When estimating the ℓ1-norm coherence, only the probabilities of the
outcomes M1 and M2 are used, see the discussion below Eq. (3). The
probabilities of all outcomes are used for estimating the relative
entropy of coherence, see Eq. (4). To verify the experimental
implementation of the collective measurement, we take the
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Fig. 2 Average results of estimation error for qubit. Average
results of the mean error for all input states shown in Fig. 1a. The
corresponding average values of these methods from left to right:
0.0263, 0.0234, 0.0156, 0.0176, 0.0187.

(degree)

Fig. 3 Results of estimation error for qutrit. Mean error for
estimating C‘1 for a family of qutrit states in Eq. (11) for CMS and
qutrit state tomography (numerical simulation). The sample size is
N= 1200. Each data point is the average of 1000 repetitions, and the
error bars denote the standard deviation.

Fig. 4 Experimental setup for measuring coherence of qubit with
collective measurements. The setup consists of three modules
designed for single-photon source, two-copy state preparation (a, b)
and collective measurement, respectively. In the single-photon
source module, the photon pairs generated in spontaneous
parametric down-conversion are coupled into single-mode fibers
separately. One photon is detected by a single-photon detector
(SPD) acting as a trigger. In the two-copy state preparation module,
a prepares the first copy in the path degree of freedom of the
photon; b prepares the second copy in the polarization degree of
freedom of the photon. In the collective measurement module,
combinations of beam displacers (BDs) and half-wave plates (HWPs)
with certain angular settings are used to realize collective
measurement, where H4 and H5 are 22.5∘. Four SPDs M1 to M4
correspond to the four outcomes of the collective measurement.
Each SPD is a silicon avalanche photodiode (Si-APD), with detection
efficiency of ~60%.
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conventional method of measuring the probability distributions after
preparing the input states ψþj i, ψ�j i, φþj i and φ�j i. These input
states can be prepared by choosing proper rotation angles H1, Q1, H2,
H3 as specified in the Supplementary Information. Each input state is
prepared and measured 5000 times, and the probability of obtaining
the outcomes M1, M2, M3, and M4 are 0.9981 ± 0.0006, 0.9973 ±
0.0007, 0.9962 ± 0.0009, and 0.9961 ± 0.0009, respectively (ideal value
is 1). The theoretical values of other probability distributions for the
input states are all 0, experimentally the maximum error of other
probability is 0.0037 ± 0.0009.
The experimental deterministic realization of the collective

measurement allows us to estimate the amount of coherence with
a single measurement setup. We experimentally investigate the
error achieved by CMS when the input states Ψj i have the form
Eq. (7) with θ ranging from 0 to π/2. The sample size of the
experiment is N= 1200 copies of Ψj i; same sample size has been
used in the numerical simulations reported above. As in the
numerical simulation, we average over 1000 repetitions of the
experiment. The experimental results for the estimation precision
of C‘1 and Cr are shown in Fig. 1a, b, respectively. The
experimental data are in good agreement with the theoretical
prediction. The errors in our experiment mainly come from the
inaccuracy of angles of the wave plates and the imperfect
interference visibility of the interferometer.

DISCUSSION
We introduce a general method to directly measure quantum
coherence of an unknown quantum state using two-copy collective
measurement, focusing on two established coherence quantifiers: ℓ1-
norm coherence and relative entropy coherence. As we demonstrate
by numerical simulation for qubit and qutrit states, in a certain
parameter region the collective measurement scheme outperforms
other estimation techniques, including methods based on adaptive
σx, σy measurement for qubits, and tomography-based coherence
estimation for qubits and qutrits. We test our results by experimentally
estimating the ℓ1-norm coherence and relative entropy coherence of
qubit states by collective measurements in optical setup, finding
good agreement between theory and experiment. For single-qubit
states our method allows to estimate absolute values of the Bloch
coordinates, implying that any coherence quantifier of a qubit can be
estimated with the collective measurement scheme.
Although the precision achieved by our method is not always

better than by adaptive measurement, our scheme has several
advantages with respect to other techniques. In particular, our
method does not need any optimization procedures or feedback,
which are required for coherence estimation via adaptive
measurements. Moreover, the entire experiment can be per-
formed in a single measurement setup. Thus, our work provides a
simple method to measure coherence, and highlights the
application of collective measurement in quantum information
processing.

METHODS
Estimating general coherence measures for qubits with collective
measurements
For a single-qubit state ρ with Bloch vector r= (rx, ry, rz) the probabilities
Pi ¼ Tr½Miρ� ρ� are given explicitly as

P1 ¼ ψþjρ� ρjψþh i ¼ 1
4 ð1þ r2x þ r2y � r2z Þ;

P2 ¼ ψ�jρ� ρjψ�h i ¼ 1
4 ð1� r2x � r2y � r2z Þ;

P3 ¼ φþjρ� ρjφþh i ¼ 1
4 ð1þ r2x � r2y þ r2z Þ;

P4 ¼ φ�jρ� ρjφ�h i ¼ 1
4 ð1� r2x þ r2y þ r2z Þ:

(12)

It thus follows that collective measurements can be used to evaluate

absolute values of the Bloch coordinates:

rxj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P1 þ P3ð Þ � 1

p
;

ry
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 P1 þ P4ð Þ � 1
p

;

rzj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P3 þ P4ð Þ � 1

p
:

(13)

From these results, it is straightforward to verify Eq. (6).
In the following, C(rx, ry, rz) will denote a coherence measure for a qubit

state ρ with Bloch vector r= (rx, ry, rz). As we will now show, for single-qubit
states any coherence measure C depends only on the absolute values of
the Bloch vector coordinates. For this, it is enough to show that

Cðrx ; ry ; rzÞ ¼ Cð�rx ; ry ; rzÞ ¼ Cðrx ;�ry ; rzÞ ¼ Cðrx ; ry ;�rzÞ (14)

for any coherence measure C and any Bloch vector. This can be seen by
noting that the vector (rx, ry, rz) can be transformed into the vector (−rx, ry,
rz) via a rotation around the z-axis, which corresponds to an incoherent
unitary operation. Since any coherence measure is invariant under
incoherent unitaries, it follows that C(rx, ry, rz)= C(−rx, ry, rz). By similar
arguments we obtain C(rx, ry, rz)= C(rx, −ry, rz). Moreover, note that σx is an
incoherent unitary inducing the transformation (rx, ry, rz) → (rx, −ry, −rz),
and thus it must be that C(rx, ry, rz)= C(rx, −ry, −rz). Combining these
arguments completes the proof of Eq. (14).

DATA AVAILABILITY
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