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A B S T R A C T

This paper describes a novel approach for nuclear facility inspection with novel automated 3D mapping system
as an open source end to end navigation stack available at https://github.com/JanuszBedkowski/msas_enrich_
2023. Incidents such as Fukushima, Majak or Chernobyl as well as the decommissioning and dismantling of old
nuclear facilities (e.g. Sellafield, Asse or Murmansk) are showing great importance of the robotic technology.
Rapid inspection requires reliable, accurate, precise and repeatable simultaneous localization and mapping.
Proposed SLAM approach uses only non repetitive scanning pattern Lidar (Livox Mid360) and integrated
inertial measurement unit. The novelty is based on feature less single core SLAM implementation. It fuses
Normal Distributions Transform and motion model for simultaneous map building and current pose estimation.
Motion model bounds an optimization result, thus it is stable and reliable. It requires less than 10 ms for pose
update, trajectory tracking and emergency behavior. This method is a candidate for real time application since
a calculation time is bounded and it uses only one core of Intel Celeron CPU G1840 2.8 GHz. It was tested
both (i) during EnRicH 2023 https://enrich.european-robotics.eu/ — the European robotics hackathon, (ii) in
laboratory conditions. This open source project provides also software of base station, thus it is first end to
end solution available in literature.
ode metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00759
Permanent link to Reproducible Capsule not available
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used C++, python
Compilation requirements, operating environments & dependencies cmake, ROS1, https://github.com/JanuszBedkowski/observation_equations.git,

https://github.com/nlohmann/json.git, https://github.com/LASzip/LASzip.git,
https://github.com/xioTechnologies/Fusion.git, https://gitlab.com/libeigen/eigen.git,
https://github.com/ocornut/imgui

Link to developer documentation/manual https://github.com/JanuszBedkowski/msas_enrich_2023
Support email for questions januszbedkowski@gmail.com
. Motivation and significance

Simultaneous localization and mapping capability is an essential
unctionality of autonomous mobile robot working in GPS/GNNS de-
ied environments. Mobile robot can be equipped with an odometry,
idar, camera, IMU and CPU for performing data fusion algorithm. This
lgorithm suppose to retrieve current pose based on sensor readings

E-mail address: januszbedkowski@gmail.com.

and simultaneously build a map — a digital representation of an
environment. Fusion algorithm should be reliable, robust and efficient
to assure proper mission execution. Nuclear power plant inspection
requires full autonomy, since the communication link is not always
sufficient, therefore robot cannot be remotely controlled all over the
mission task. Full autonomy in this particular scenario should guarantee
vailable online 2 May 2024
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Fig. 1. Robot and nuclear power plant.

at least (A) path planning, (B) mission execution and (C) return to base
station for a communication link retrieval. A, B, C require a SLAM
capability since we do not conciser a digital representation of the
nuclear power plant. Moreover, result of (B) should be a layout of the
scenario with marked all important objects recognized by robot. We
assume limited number of a dynamic obstacles, since Nuclear Power
Plant is rather a static environment. Most important issue is related
with limited time for the task execution, for this reason mobile robot
suppose to move as fast as it is possible. Above mentioned mission
characteristics and the need of lowering the cost of a mobile robot
determine this research, since there is no commercial application or
an open source project fulfilling this requirements. Proposed approach
assumes limited communication link up-to 5 meters range so robot
should always return to the base station for retrieving a communication
link and for receiving next mission task. The mission considered in this
paper is a task of providing layout of the environment acquired during
traversing all consecutive goals provided by an operator. Autonomous
mobile robot is capable performing such tasks when SLAM algorithm
provides accurate map and accurate localization all over the time. For
this reason novel approach is proposed. It is based on fused Normal
Distributions Transform with motion model. Map is constantly updated
during all missions. It is possible to retrieve the layout of environment
thanks to an estimated pose of the robot and LiDAR data. This layout
is used for manual path planning. It means base station provides func-
tionality for placing goals that construct consecutive set of trajectory
nodes that robot will trespass during mission. Robot performs way-
point navigation using naive approach. Thus, once it reaches the goal
it changes heading to another way-point. During navigation to the next
way-point robot is trying to adjust heading to the next goal. In current
implementation it is not capable to avoid obstacles, thus it simply stops
once it detects obstacle in front or back. It is sufficient looking from
presented application point of view.(see Figs. 1, 13, 15 and 18).

2. Software description

The core of an implementation is not using 𝑔2𝑜 [1], gtsam [2],
manif [3], ceres [4] or other well known libraries for solving non
linear optimization problems. It is based on novel approach [5] that
incorporates only SymPy [6] for automatic analytic Jacobian gener-
ation from observations equations available at https://github.com/
JanuszBedkowski/observation_equations and Eigen library [7] for solv-
ing non linear optimization problem. Lie algebra is not used since
the rotation matrix is parameterized using Tait–Bryan convention and
all analytic Jacobians are generated automatically. This guarantee
minimizing major issue of hand-crafted Jacobians (potential errors).
Tait–Bryan convention enables intuitive uncertainty setup. Thus, pose
2

is represented as 6 parameter vector (x, y, z, yaw, pitch, roll). In our
case we set up an uncertainty for all angles (yaw, pitch, roll) with sigma
equals 1 degree, thus our optimization is stable. Unfortunately, other
implementations such as Fast-Lio2 [8] and successor Faster-Lio [9] do
not guarantee bounded result for optimization. Thus, such implemen-
tation is not sufficient for our application. An implementation can be
interpreted as factor graph [10] since it is based on a probabilistic
approach commonly used in mobile robotics. General assumption is
that local point cloud is transformed according to IMU readings pro-
cessed my Madgwick filter https://github.com/bjohnsonfl/Madgwick_
Filter [11]. Optimization problem incorporates several observation
equations such as:

• point to point (basic observation equation for iterative closest
point algorithm [12]).

• relative pose (fundamental observation equation for constructing
pose graph SLAM [13]).

• Normal Distributions Transform (an extension to ICP incorpo-
rating uncertainty and using Mahanobis distance between query
point and target [14]).

• fixed optimized parameter (to eliminate first node from optimiza-
tion [5]).

These observation equations construct an optimization problem com-
posed of 12 parameters (random variables) to solve (previous pose,
current pose) at each iteration step. The pose graph SLAM is composed
of two nodes and one edge between them, thus it is smallest instance
possible. The SLAM algorithm is as follows:

• loop begin
• transform local point cloud with rotation matrix resulted from

Madgwick Filter applied for raw IMU data
• form and solve optimization problem based on previous pose,

current pose, map and local point cloud
• update map (update all covariances)
• set previous pose as current pose
• loop end

2.1. Observation equations

An observation Eq. (1) relates a target value 𝑦𝑖, a model function
𝜳 [𝜷](𝒙𝑖) and its residual 𝑟𝑖. Minimizing a difference between the target
value and the model function allows defining the optimization problem
as (2) that is described in detail in Section 2.4.

𝑟𝑖
⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

= 𝑦𝑖
⏟⏟⏟

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

− 𝜳 [𝜷](𝒙𝑖)
⏟⏞⏟⏞⏟

𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

(1)

𝜷∗ = min
𝜷

𝐶
∑

𝑖=1

(

𝑦𝑖 − 𝜳 [𝜷]
(

𝒙𝑖
))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

(2)

where, 𝜷 is the vector of 𝑛 adjustable parameters by the optimization
process resulting 𝜷∗ and 𝒙 is the vector of input variables of the model
function. C is number observations.

2.2. Point to point

Point to point observation equation incorporates model function
given by (3),

𝜳 [𝑹,𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟
(𝑹𝑊←𝐿𝑖𝑑𝑎𝑟, 𝒕𝑊←𝐿𝑖𝑑𝑎𝑟,𝑷 𝑙 ,𝑷 𝑛𝑛,𝑔) = [𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟𝑷

𝑙−𝑷 𝑛𝑛,𝑔 (3)

where 𝑷 𝑛𝑛,𝑔 is a nearest neighbor to 𝑷 𝑙 expressed in global reference
frame as [𝑥𝑛𝑛,𝑔 , 𝑦𝑛𝑛,𝑔 , 𝑧𝑛𝑛,𝑔]⊺. Thus, point to point observation equation

https://github.com/JanuszBedkowski/observation_equations
https://github.com/JanuszBedkowski/observation_equations
https://github.com/JanuszBedkowski/observation_equations
https://github.com/bjohnsonfl/Madgwick_Filter
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https://github.com/bjohnsonfl/Madgwick_Filter
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is given in form of (4),
[

𝜹3×1
]

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

=
[

𝟎3×1
]

⏟⏟⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

− ([𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟𝑷
𝑙 − 𝑷 𝑛𝑛,𝑔)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(4)

where target value (our expectation) is [𝟎3×1] interpreted as no dif-
ference between coordinates of nearest neighbors. This difference is
denoted as residuals [𝜹3×1].

2.3. Relative pose

This constraint is a fundamental concept of Pose Graph SLAM. It
allows modeling the relations between measurements and observations
in form of a graph [15], where nodes are related with poses end edges
that relate the difference between measures and observations. Relative
pose [𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,12 from pose [𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,1 to pose [𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,2 is
expressed in Eq. (5).

[𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,12 = [𝑹, 𝒕]−1𝑊←𝐿𝑖𝑑𝑎𝑟,1[𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,2 = [𝑹, 𝒕]𝑊→𝐿𝑖𝑑𝑎𝑟,1[𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,2

(5)

To construct a relative pose observation equation it is necessary to
introduce function 𝛽 = 𝑚2𝑣([𝑹, 𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟,12) that retrieves parametric
form of rotation matrix (Tait–Bryan angles, quaternion, Rodrigues etc.).
The relative pose observation equation is given in (6).
[

𝜹
]𝑁×1

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

=
[

𝜷𝑡𝑎𝑟𝑔𝑒𝑡]𝑁×1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

−𝑚2𝑣[𝜷]([𝑹, 𝒕]12)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(6)

2.4. Optimization problem formulation

Optimization problem is defined as (7).

𝜷∗ = min
𝜷

𝐾
∑

𝑘=1

𝐶𝐾
∑

𝑖=1

(

𝒚𝑘𝑖 − 𝜳 𝑘
[𝜷]

(

𝒙𝑘𝑖
)

)2
(7)

It contains 𝐾 observation equation blocks. Each block contains 𝐶𝐾

instances of observation equations that are considered the same type. It
is extended to weighted non-linear least squares by adding weights for
each observation equation. Thus, it is possible to construct probabilistic
approach for our problem. It will be discussed in the following sections.

2.5. Rotation matrix parametrization

Rigid transformation in SO(3) is expressed in parametric form as
Tait–Bryan angles. Other parametric forms exist such as quaternions,
Rodrigues, Cayley Formula [16], but they are not considered in this
research since Tait–Bryan angles, sufficiently cover the desired scope of
the investigation. Starting from the basic concept, in three-dimensional
space rotations via each axis are given as rotation 𝜔 via 𝑥 axis (8), 𝜑
via (9) and 𝜅 via 𝑧 axis (10).

𝐑𝑥(𝜔) =
⎡

⎢

⎢

⎣

1 0 0
0 cos(𝜔) − sin(𝜔)
0 sin(𝜔) cos(𝜔)

⎤

⎥

⎥

⎦

(8)

𝐑𝑦(𝜑) =
⎡

⎢

⎢

⎣

cos(𝜑) 0 sin(𝜑)
0 1 0

− sin(𝜑) 0 cos(𝜑)

⎤

⎥

⎥

⎦

(9)

𝐑𝑧(𝜅) =
⎡

⎢

⎢

⎣

cos(𝜅) − sin(𝜅) 0
sin(𝜅) cos(𝜅) 0
0 0 1

⎤

⎥

⎥

⎦

(10)

There are two different conventions for the definition of the rota-
tion axes — proper Euler angles (𝑹𝑧-𝑹𝑥-𝑹𝑧, 𝑹𝑥-𝑹𝑦-𝑹𝑥, 𝑹𝑦-𝑹𝑧-𝑹𝑦,
3

𝑹𝑧-𝑹𝑦-𝑹𝑧, 𝑹𝑥-𝑹𝑧-𝑹𝑥, 𝑹𝑦-𝑹𝑥-𝑹𝑦) and Tait–Bryan angles (𝑹𝑥-𝑹𝑦-𝑹𝑧, w
𝑹𝑦-𝑹𝑧-𝑹𝑥, 𝑹𝑧-𝑹𝑥-𝑹𝑦, 𝑹𝑥-𝑹𝑧-𝑹𝑦, 𝑹𝑧-𝑹𝑦-𝑹𝑥, 𝑹𝑦-𝑹𝑥-𝑹𝑧). For the con-
venience, in this research the rotation in SE(3) is calculated in arbitrary
chosen Tait–Bryan convention (𝑹𝑥-𝑹𝑦-𝑹𝑧) — Eq. (11),

𝑹(𝜔,𝜑, 𝜅) = 𝐑𝑥(𝜔)𝑹𝑦(𝜑)𝑹𝑧(𝜅) =
⎡

⎢

⎢

⎣

𝑐(𝜑)𝑐(𝜅) −𝑐(𝜑)𝑠(𝜅) 𝑠(𝜑)
𝑐(𝜔)𝑠(𝜅) + 𝑠(𝜔)𝑠(𝜑)𝑐(𝜅) 𝑐(𝜔)𝑐(𝜅) − 𝑠(𝜔)𝑠(𝜑)𝑠(𝜅) −𝑠(𝜔)𝑐(𝜑)
𝑠(𝜔)𝑠(𝜅) − 𝑐(𝜔)𝑠(𝜑)𝑐(𝜅) 𝑠(𝜔)𝑐(𝜅) + 𝑐(𝜔)𝑠(𝜑)𝑠(𝜅) 𝑐(𝜔)𝑐(𝜑)

⎤

⎥

⎥

⎦

(11)

where 𝑠 is sin and 𝑐 is cos functions.

2.5.1. Weighted non-linear least squares optimization
We start by rearranging Eq. (7) to form (12) by concatenating all

residual blocks into sum square errors for the clarity of further notation.

𝑆𝑆𝑅 =
𝐶
∑

𝑖=1
𝑟2𝑖 =

𝐶
∑

𝑖=1

(

𝑦𝑖 − 𝜳 [𝜷](𝒙𝑖)
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(12)

The model function 𝜳 [𝜷](𝒙𝑖) contains n parameters of 𝜷, thus there are
𝑛 gradient Eqs. (13) derived from (12).

𝜕𝑆𝑆𝑅
𝜕𝛽𝑗

= 2
𝐶
∑

𝑖=1

𝜕𝑟𝑖
𝜕𝛽𝑗

𝑟𝑖 = −2
𝐶
∑

𝑖=1

𝜕𝜳 [𝜷](𝒙𝑖)
𝜕𝛽𝑗

𝑟𝑖 = 0 (𝑗 = 1,… , 𝑛) (13)

Such a system can be solved in some cases by so-called closed form so-
lution [17,18], thus the solution is obtained in a single step, otherwise
it has to be solved using an iterative approach by solving Eq. (14),
𝜳
𝑱 ⊺

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝛥𝒚 (14)

where
𝜳
𝑱 is the Jacobian of the model function 𝜳 . Extending Eq. (12) by

weights 𝑤 provides a mechanism to control the impact of each observa-
tion equation into the optimization process and it is formulated as (15).

𝑆𝑆𝑅 =
𝐶
∑

𝑖=1
𝑤𝑖𝑟

2
𝑖 (15)

The optimal solution that minimizing 𝑆𝑆𝑅 can be found with solving
formula (16),
𝜳
𝑱 ⊺𝑾

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝑾 𝛥𝒚 (16)

where 𝑾 is a diagonal weight matrix, thus it is easy to provide the
independent impact for each observation equation. Once we introduce
rotation matrix 𝑹 that provides a correlation mechanism to 𝑾 the final
Weighted non-linear Least Squares Optimization is formulated as (17).

𝜳
𝑱 ⊺𝑹𝑾𝑹⊺

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝑹𝑾𝑹⊺𝛥𝒚

𝑹𝑾𝑹⊺=𝜴
⇒

𝜳
𝑱 ⊺𝜴

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝜴𝛥𝒚

𝜴=𝜮−1

⇒

𝜳
𝑱 ⊺𝜮−1

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝜮−1𝛥𝒚

(17)

where 𝜴 = 𝑹𝑾𝑹⊺ is the information matrix and 𝜮 = 𝜴−1 is the
ovariance matrix. This covariance matrix is crucial to form Normal
istributions Transform elaborated in Section 2.6 and for uncertainty
f the motion model that bounds the result of the optimization process.

.5.2. Solver
In this research, we consider Gauss–Newton optimization method

ith predefined number of iterations. For observation Eq. (1) the
auss–Newton method is expressed as (18),

𝑘+1 = 𝜷𝑘 +

(

𝜳
𝑱 ⊺

𝜳
𝑱

)−1 𝜳
𝑱 ⊺𝒓(𝜷𝑘) (18)

𝑘+1
here 𝜷 is an updated vector state of the optimization step.
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Fig. 2. Laboratory tests in 10 × 10 meters region. Mobile robot repeats executing the
same mission (START/TURNING GOAL/FINISH) 20 times. All trajectories are marked
by red color. It can be seen that repetitiveness is on decimeter level.

Fig. 3. Intersection of the nuclear power plant and region of EnRicH trial (red color).

2.6. Normal distributions transform

Normal Distributions Transform [14] is an alternative technique to
ICP for point cloud data registration and it is available in a well-known
Point Cloud Library [19] open source project. It is limited to the pair-
wise matching of two point clouds, thus a contribution of the proposed
research is a novel approach to NDT enabling fusing it with pose graph
SLAM. The key element of the NDT is the representation of the data as a
set of normal distributions organized in the regular grid over 3D space.
These distributions describe the probability of finding a 3D point at a
certain position. The advantage of the method is that it gives a smooth
representation of the point cloud, with continuous first and second-
order derivatives. Thus, standard optimization techniques described
in this paper can be applied. Another advantage of NDT over ICP is
its much less computational complexity since the consumptive nearest
neighborhood search procedure is not needed. Authors of [9] also
elaborates this advantage. The 3D space decomposition into the regular
grid introduces some minor artefacts, but in a presented experiment it
is a negligibly small disadvantage. For each bucket from a regular grid
containing a sufficient number of measured points NDT calculates the
mean given by Eq. (19) and the covariance given by Eq. (20).

𝝁 = 1
𝑚

𝑚
∑

𝑘=1
𝑷 𝑔

𝑘 (19)

𝜮 = 1
𝑚
∑

(𝑷 𝑔
𝑘 − 𝝁)(𝑷 𝑔

𝑘 − 𝝁)⊺ (20)
4

𝑚 − 1 𝑘=1
Fig. 4. Working conditions during EnRicH trial. The surface is rather flat. The distance
between obstacles is large. The lightning conditions are satisfactory. Dynamic obstacles
not evident. Challenge 1: limited communication. Challenge 2: limited time for task
execution.

The likelihood of having measured point 𝑷 𝑔
𝑚 is given by Eq. (21).

𝑝(𝑷 𝑔
𝑚) =

1

(2𝛱)
1
2
√

|𝜮|

exp

(

−
(𝑷 𝑔

𝑚 − 𝝁)⊺𝜮−1(𝑷 𝑔
𝑚 − 𝝁)

2

)

(21)

Each 𝑝(𝑷 𝑔
𝑚) can be seen as an approximation of the local surface within

the range of the bucket. It describes the position 𝝁 of the surface as well
as its orientation and smoothness given by 𝜮. Let 𝜳 ([𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟,𝑷

𝑙
𝑚)

will be a transformation function of the local measurement point
[𝑷 𝑙

𝑚, 1]
⊺ via pose [𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟 expressed as (22).

𝜳 ([𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟,𝑷
𝑙
𝑚) = 𝑷 𝑔

𝑚 = [𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟

[

𝑷 𝑙
𝑚
1

]

(22)

Thus, the NDT optimization problem is defined as the maximization of
the likelihood function given in Eq. (23).

[𝑹, 𝒕]3×4,∗𝑊←𝐿𝑖𝑑𝑎𝑟 = max
[𝑹,𝒕]𝑊←𝐿𝑖𝑑𝑎𝑟

𝑁
∏

𝑘=1
𝑝(𝜳 ([𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟,𝑷

𝑙
𝑚)) (23)

Furthermore, the optimization problem is equivalent to the minimiza-
tion of the negative log-likelihood given in Eq. (24).

[𝑹, 𝒕]3×4,∗𝑊←𝐿𝑖𝑑𝑎𝑟 = min
[𝑹,𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟

−
𝑁
∑

𝑘=1
log

(

𝑝(𝜳 ([𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟,𝑷
𝑙
𝑚))

)

(24)

The proposed NDT implementation is using already discussed point-
to-point observation equation. The target value is [0, 0, 0]⊺ and the
model function is 𝜳 ([𝑹, 𝒕]3×4𝑊←𝐿𝑖𝑑𝑎𝑟,𝑷

𝑙
𝑚) − 𝝁. The information matrix 𝜴

is calculated as an inverse of the covariance matrix from Eq. (20).
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Fig. 5. Base station of autonomous mobile robot Jackal. Graphical user interface shows layout (sparse red dots) of the environment perceived by elaborated SLAM, current local
map (dense gray dots), path and goals.
Fig. 6. Result of the MSAS EnRicH 2023 trial with marked most dangerous region of
the environment (opened hatch to one level down, robot can be lost forever here).
Grid 1 × 1 meter.

3. Laboratory tests

Laboratory tests were performed to verify the repetitiveness of the
mission execution. The layout of the environment is shown in Fig. 2.
Robot repeats the same mission (START/TURNING GOAL/FINISH) 20
times. All trajectories are marked by red dots. It can be seen that the
system is capable follow predefined trajectory with the accuracy less
than 10 centimeters (see zoomed bottom down rectangle in Fig. 2).
Trajectory START to TURNING GOAL slightly differs from trajectory
TURNING GOAL to FINISH. First robot is navigation forward. Once
it reaches last goal of the trajectory (TURNING GOAL) it navigates
backward to the initial pose (START).
5

Fig. 7. System setup for accuracy, precision, robustness and repeatability assessment.
1: main LiDAR (3D map building and navigation), 2: physically mounted hand held
mobile mapping system [20] for trajectory tracking and 3D map to ground truth data
registration.

4. EnRicH (THE EUROPEAN ROBOTICS HACKATHON) trial

EnRicH trials are important for qualitative and quantitative evalu-
ation of the autonomous mobile robots. Qualitative and quantitative
evaluation is performed by judges observing trials, thus many teams
were compared. The mobile mapping system presented in this paper
received ‘‘EnRicH 2023 3D Mapping award’’, thus it was best in class
according to its capacity for performing mission with highest level of
autonomy. Fig. 3 shows intersection of the nuclear power plant and
region 25 × 25 meters of EnRicH trial (red color). Working conditions
during EnRicH trial are shown in Fig. 4. It can be seen that the
surface is rather flat. The distance between obstacles is large. The
lightning conditions are satisfactory. There are no dynamic obstacles.
The first challenge is limited communication, thus robot should perform
mission in fully autonomous mode. The second challenge is a negative
obstacle marked by red circle in 3D map provided by robot during
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Fig. 8. Ground truth point cloud data acquired with TLS Z+F IMAGER 5010. Underground garage 100 × 25 [m], top view.
Fig. 9. Ground truth point cloud data acquired with TLS Z+F IMAGER 5010. Underground garage 100 × 25 [m], perspective view.
Fig. 10. 3D map accuracy assessment. Red color: 3D map obtained with proposed system, gray scale color: ground truth point cloud acquired with TLS Z+F IMAGER 5010.
autonomous drive close to it (Fig. 6). To reach such a performance
robot should have robust localization. Another challenge is limited time
up to 15 min for task execution. For this reason our robot moved at
maximum speed of 2 m/s. Fig. 5 shows base station of autonomous
mobile robot Jackal. Graphical user interface shows layout (sparse red
6

dots) of the environment perceived by elaborated SLAM, current local
map (dense gray dots), path and goals. Base station allows generating
predefined trajectory that robot follows. Due to centimeter accuracy
of the path execution, assumption of the non dynamic obstacles and
accurate localization robot could perform mission repetitively during
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Fig. 11. Intersection 1 from Fig. 10. The maximum deviation of the map (red dots) to ground truth (black color) is 𝛥Z = 9.1 [cm].
Fig. 12. Intersection 2 from Fig. 10. The maximum deviation of the map (red dots) to ground truth (black color) is 𝛥Z = 21.3 [cm].
entire 15 min trial. Robot delivered map (Fig. 6). Map is accurate on
centimeter level.

5. Accuracy, precision, robustness and repeatability

Performance measures such as accuracy, precision, robustness and
repeatability were performed with the mobile robot equipped addition-
ally with physically mounted hand held mobile mapping system [20]
shown in Fig. 7. Thanks to this it was possible to track the robot in
indoor and outdoor environments. Two experiments were conducted:
in underground garage and in the forest.

5.1. Map accuracy assessment (underground garage experiment)

Map accuracy assessment was performed with respect to ground
truth data obtained with Terrestrial Laser Scanner (TLS) Z+F IMAGER
5010. This TLS is industrial grade measurement device assuring mil-
limeter accuracy and precision of the registered point cloud data. Fig. 8
shows top view of the underground garage 100 × 25 [m]. Fig. 9
shows perspective view of this scene. The goal was to build 3D map
with proposed system. The resulting RMS is 0.0937, thus the system is
capable mapping with decimeter accuracy. Figs. 10–12 show 3D map
accuracy assessment. Two intersections were chosen manually and the
maximum deviation of the map to ground truth was measured. It is 𝛥Z
= 9.1 cm for intersection 1 and 𝛥Z = 21.3 cm for intersection 2.

5.2. Navigation performance measures (underground garage experiment)

Mobile robot from Fig. 7 was deployed in underground garage
shown in Fig. 7. The navigation system was set up to automatically
traverse the garage from START → END and backward via certain
number of goals. The performance measures were performed based on
mobile mapping data registration (see Fig. 7) [20] to ground truth (see
Figs. 8, 9). Mobile robot was navigating ten times repetitively from
START → END and backward in underground garage. The maximum
deviation of the trajectories is around 0.3 [m]. It can be seen the
centimeter precision/repetitiveness of the START → END and END →
START trajectories. It means the navigation system is capable to repeat
the mission with decimeter accuracy. The repetitiveness in structured
environment is confirmed.

5.3. Navigation performance measures (forest experiment)

This experiment was performed in forest environment (see Figs. 16
and 17). Mobile robot from Fig. 7 was deployed in START position.
Similarly to previous experiment the navigation system was set up
to automatically traverse the same path from START → END and
backward via certain number of goals. The maximum deviation of
the trajectories is around 52 [cm]. It can be seen the centimeter
precision/repetitiveness of the START → END and END → START
7

trajectories. It means the navigation system is capable to repeat the
mission with decimeter accuracy. The repetitiveness and robustness in
harsh environment is confirmed.

6. Software and hardware requirements

This project is designed assuming minimal need for 3rd party li-
braries. Basic functionality requires:

• https://github.com/JanuszBedkowski/observation_equations.git
(observation equations)

• https://github.com/nlohmann/json.git (IO)
• https://github.com/LASzip/LASzip.git (IO)
• https://github.com/xioTechnologies/Fusion.git (IMU filter)
• https://gitlab.com/libeigen/eigen.git (math operations)
• https://github.com/ocornut/imgui (graphical user interface)

The software requires ROS1. GPU is not mandatory since all calcu-
lations are done on CPU (see Fig. 19). This software was successfully
tested also on Raspberry PI 4B (8 GB RAM). Thanks to dr MichałPełka
the upgrade to ROS2 is maintained at https://github.com/michalpelka/
msas_enrich_2023.

7. Impact and applications

This software is dedicated for mobile robotic domain. It is first
end to end solution for nuclear power plant inspection available in
literature. Moreover current end users cover the following applications:

• culture heritage (creating virtual trips),
• urban search and rescue (research on creating a digital twin of

training facilities),
• ground truth for AGV and forklifts,
• precision forestry (research on volume calculation and AI for tree

classification),
• agricultural robotics (creating maps for navigation),
• underground mining (research on safety application, digital twin),
• critical infrastructure inspection.

8. Conclusions

This paper shows the novel approach for nuclear facility inspection.
Autonomous mobile robot is equipped with non repetitive scanning
pattern Lidar Livox Mid 360. This Lidar can cover 99% of the field
of view within one second, thus robot can retrieve full 3D model of
the environment even without motion. The implementation is based
on feature less single core SLAM that can localize robot at 100 Hz
rate. This method is the candidate for real time application since
the calculation time is bounded and it uses only one core of Intel
Celeron CPU G1840 2.8 GHz. It fuses Normal Distributions Transform

and motion model for simultaneous map building and current pose

https://github.com/JanuszBedkowski/observation_equations.git
https://github.com/nlohmann/json.git
https://github.com/LASzip/LASzip.git
https://github.com/xioTechnologies/Fusion.git
https://gitlab.com/libeigen/eigen.git
https://github.com/ocornut/imgui
https://github.com/michalpelka/msas_enrich_2023
https://github.com/michalpelka/msas_enrich_2023
https://github.com/michalpelka/msas_enrich_2023
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Fig. 13. Mobile robot during experiment in underground parking.

Fig. 14. Result of navigation performance measures. Mobile robot was navigating ten times repetitively START → END and backward. The maximum deviation between
forward–backward trajectories is around 0.3 m. Gray-scale: map of the garage, red: navigation trajectories, green: grid 1 × 1 [m].
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Fig. 15. Zoomed maximum deviation between forward–backward trajectories from Fig. 14.

Fig. 16. Mobile robot during experiment in forest.
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Fig. 17. Forest experiment. Mobile robot from Fig. 16 was deployed in the forest. It was navigating ten times repetitively from START → FINISH and backward. This experiment
proofs the robustness of the system in the forest environment. Black: point cloud data, red: robot trajectory, both obtained with mobile mapping system attached to the robot
using methodology elaborated in [20].
Fig. 18. Zoomed trajectory from forest experiment (Fig. 17). The maximum deviation between forward–backward trajectories is 𝛥XY ≈ 52 [cm]. Green: grid 1 × 1 [m].
Fig. 19. CPU and RAM usage during forest experiment. It can be seen 7% usage of first core, 100% usage of second core and 1.4G of RAM.
estimation. It was tested both (i) during EnRicH 2023 — the European
robotics hackathon (MSAS team), (ii) laboratory conditions. The system
is capable providing map on centimeter level. It can navigate in this
map also on centimeter level what was evaluated in laboratory and
realistic conditions. Future work will be a loop closure and a multi
robot system. This work is dedicated for researchers that would test
this approach. Thus, open source project is provided at https://github.
com/JanuszBedkowski/msas_enrich_2023.
10
Disclaimer

The software is provided ‘‘as is’’, without warranty of any kind,
express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement.
In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in an action of contract, tort
or otherwise, arising from, out of or in connection with the software or
the use or other dealings in the software.

https://github.com/JanuszBedkowski/msas_enrich_2023
https://github.com/JanuszBedkowski/msas_enrich_2023
https://github.com/JanuszBedkowski/msas_enrich_2023
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