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b Department of Engineering, University of Naples Parthenope, 80133 Naples, Italy   

A R T I C L E  I N F O   

Keywords: 
Size effect 
Mass sensor 
Micro- and nanobeam 
Nonlocal 
Inverse problem 

A B S T R A C T   

Studying the dynamics of small-scale beams with attached particles is crucial for sensing applications in various 
fields, such as bioscience, material science, energy storage devices, and environmental monitoring. Here, a stress- 
driven nonlocal model is presented for the free transverse vibration of small-scale beams carrying multiple 
masses taking into account the eccentricity of the masses relative to the beam axis. The results show excellent 
agreement with the experimental and numerical data in the literature. New insights into the frequency shifts and 
mode shapes of the first four vibrational modes of stress-driven nonlocal beams with up to three attached par-
ticles are presented. The study investigates the inverse problem of detecting the location and mass of an attached 
particle based on natural frequency shifts. The knowledge acquired from the present study provides valuable 
guidance for the design and analysis of ultrasensitive mechanical mass sensors.   

1. Introduction 

1.1. Micro- and nanostructures 

Micro- and Nanoelectromechanical Systems (MEMS and NEMS) 
represent one of the most significant and effective technological ad-
vancements of recent decades. Nowadays, these miniaturized systems 
are integrated into numerous devices in our daily lives. They are cost- 
effective and easy to manufacture while offering high precision and 
accuracy in multitasking. Due to their excellent characteristics, MEMS 
and NEMS have been extensively utilized in various fields of science, 
technology, and industry, including transportation, communication, 
manufacturing, environmental monitoring, healthcare, energy, and 
aerospace [1]. Currently, they are widely used in the fabrication of 
microfluidic devices, capacitive micromachined ultrasonic transducers, 
sensors, switches, and inkjet printer heads, among others. The use of 
MEMS and NEMS continues to expand, introducing new possibilities to 
our world every day. 

A recent example of a miniaturized system with crucial functionality 
is the micro-shutter arrays used in NASA’s James Webb Space Telescope. 
Another example is the mechanical mass sensors based on micro- and 
nanobeams. These compact sensors provide highly sensitive and real- 
time mass detection capabilities [2]. Information about the mass can 

contribute to advancing concepts related to the structure and nature of 
biological entities. Additionally, mass sensors play a crucial role in 
medical diagnosis [3], the monitoring of air pollution [4], the evaluation 
of hydrogen storage capacity in energy storage devices [5], and the 
study of fundamental phenomena in surface science, such as phase 
transitions and diffusion [6]. These sensors are typically employed in 
either static mode, measuring deflection caused by surface stresses 
resulting from the binding of entities, or dynamic mode, measuring 
frequency shifts following the attachment of ultrasmall masses and 
molecules. 

1.2. Modeling techniques 

The presence of size dependence distinguishes the study of micro- 
and nanostructures from their large-scale counterparts. The size 
dependence has been repeatedly observed in experimental works such as 
those reported in [7,8] and is due to several physical reasons. One factor 
contributing to this size dependence is the intrinsic length of the mate-
rial, such as the lattice parameter and grain size, becoming comparable 
to the geometrical dimensions in micro- and nanostructures. Other 
physical causes for the emergence of size-dependent structural behavior 
include the rearrangement of atoms or molecules near the surface and 
long-range influences from dislocations and voids. While atomistic 
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models [9] such as molecular dynamics and molecular mechanics can 
accurately predict the mechanical response of micro- and nano-
structures, they are inherently burdened by complex formulations and 
substantial computational costs. Therefore, the scientific community 
highly appreciates studying miniaturized structures without excessive 
mathematical complexity using the continuum mechanics-based ap-
proaches. This modeling approach necessitates appropriate constitutive 
laws to account for micro- and nanoscale size effects in the formulation, 
something the classical continuum mechanics models do not account 
for. 

Numerous pioneering nonclassical continuum mechanics-based 
models have been developed to explore the size-dependent mechanical 
behavior of micro- and nanostructures. The frequently utilized theories 
are based on the modified couple stress, the strain gradient, and the 
nonlocal theories. For instance, both linear and nonlinear Bernoulli–E-
uler and Timoshenko beam models, based on the modified couple stress 
theory, are developed in the seminal papers [10–13] to study the statics 

and dynamics of micro- and nanobeams. Structural theories based on the 
strain gradient elasticity theory are formulated in [14–18] to study 
different size-dependent mechanical problems in micro- and nanoscale 
tubes, beams, and plates. Review papers [19,20] thoroughly examine 
theoretical analyses and numerical formulations based on several 
nonclassical continuum mechanics approaches to study the linear and 
nonlinear behavior of miniaturized beams, plates, and shells, with a 
focus on bending, buckling, and dynamic characteristics. 

Among several pioneering nonclassical continuum mechanics-based 
approaches, the nonlocal elasticity theory stands out as one of the most 
efficient for studying the size-dependent response of structures with 
small-scale dimensions. In this approach, the constitutive relation is 
assumed to have a nonlocal nature, meaning that instead of using a 
pointwise stress-strain relation, the stress or strain of a given point is 
influenced by the stress or strain of all points in the domain. A weighting 
kernel function is required to control the intensity of nonlocality in a 
given problem. This idea was introduced by Eringen [21] and has since 
been used by many others to study the size-dependent response of 
structures with micro- and nanoscale dimensions, e.g., [22–25]. The 
Eringen nonlocal theory is also known as the strain-driven nonlocal 
theory since the stress at a given point is defined as an integral convo-
lution of the strains at all points of the body and a kernel function. As far 
as the differential form of the Eringen nonlocal theory is concerned, the 
formulation may become mathematically ill-posed for some problems 
with technological importance, such as a cantilever beam with an end 
force [26]. 

More recently, an innovative type of nonlocal theory, namely the 
stress-driven nonlocal theory, which is free of inconsistencies, has 

Fig. 1. The miniaturized beam with attached particles.  

Fig. 2. Comparisons between the predictions of the present model and the experimental results reported in [49] for the frequency reduction of the (a) first, (b) 
second, (c) third, and (d) fourth modes of vibration. 

H. Darban et al.                                                                                                                                                                                                                                 



Thin-Walled Structures 201 (2024) 112005

3

gained much attention [27]. The idea is to define the strain at any 
reference point in terms of the stresses at all points of the body. Since 
models based on the stress-driven approach always yield a well-posed 
formulation, the approach has been widely applied to study various 
problems of micro- and nanostructures, e.g. [28]. The capability of the 
stress-driven nonlocal theory to model dynamic and static experiments 
at small scales is illustrated in [29]. Important contributions are made 
[30,31], where stress-driven nonlocal theories are formulated for 
studying problems with non-smooth fields. In such problems, the solu-
tion can be obtained by decomposing the domain at the locations where 
the discontinuities exist. The discontinuities can be in the form of 
concentrated loads, kinematic constraints, cracks, or attached masses at 
the interior parts of the structure. 

1.3. Micro- and nanostructures with attached masses 

Dynamics analysis of small-scale structures with attached masses is 
important for mass sensing applications. This problem has been explored 
through experimental, numerical, and theoretical approaches. Some of 

the experimental works on the micro- and nanomechanical mass sensors 
for applications related to the environmental, chemical, and biological 
fields are discussed in the review article [2]. In [32], a novel class of 
nanoplate-based mass sensors with corner point supports is studied 
using a nonlocal elasticity theory. A novel sandwich mass sensor 
composed of (i) a smart core made of a functionally graded 
magneto-electro-elastic nanofilm and (ii) graphene faces, is introduced 
and modeled using a nonlocal strain gradient theory and a first-order 
shear deformation plate theory [33]. In [34], the frequency shifts of a 
single-layered graphene sheet, caused by the attachment of particles in 
the presence of a magnetic field, are examined using nonlocal 
Kirchhoff-Love plate theory. The analysis of nanobeams and nanorods 
with single-point masses is conducted through the application of the 
modified strain gradient theory [35,36]. The study in [37] investigates 
the large-amplitude, size-dependent dynamics of a functionally graded 
microcantilever with an intermediate spring support and a tip mass, 
employing the modified couple stress theory. Exploration of the coupled 
axial-flexural vibration in cantilever mass nanosensors is carried out in 
[38], employing a two-phase local/nonlocal elasticity approach. The 
axial vibration behavior of mass sensors based on single-walled carbon 
nanotubes is studied in [39] using Eringen’s nonlocal elasticity theory. It 
is demonstrated that the axial vibration behavior of single-walled car-
bon nanotubes can be effectively utilized in mass sensors with 

Fig. 3. Dimensionless natural frequencies ω of a cantilever beam with an attached mass at the free end for λ = 0.04 and h = 0.0385. The eccentricity of the tip mass 
is neglected. Results are presented for the first and second modes of vibration, varying the tip mass M1, and compared with those obtained in [40] using the 
stress-driven nonlocal theory and Bernoulli-Euler beam model. 

Table 1 
Dimensionless natural frequencies ω of a cantilever beam with an attached mass 
at the free end, x1 = 1, for λ = 0 (local model), and H1 /h = 2. Results are 
presented for the first three modes of vibrations, different values of h and M1, 
and compared with the numerical results obtained in [38] through the Gener-
alized Differential/Integral Quadrature method based on the Bernoulli-Euler 
beam theory and considering coupling between the axial and transverse vibra-
tions due to the eccentricity of the attached mass.  

h = 0.05 

Mode M1 = 0.01 M1 = 0.1 M1 = 0.2 

Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] 

1st 3.4448 3.4426 2.9582 2.9564 2. 6000 2.5983 
2nd 21.4554 21.4550 18.6331 18.6285 17.1033 17.0906 
3rd 59.3869 59.3840 49.9877 49.6582 45.0700 44.3382 

h = 0.1 

Mode M1 = 0.01 M1 = 0.1 M1 = 0.2 

Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] 

1st 3.4362 3.4341 2.9297 2.9278 2.5621 2.5604 
2nd 20.9716 20.9715 16.6354 16.5804 14.3308 14.2235 
3rd 55.9357 53.3060 39.2107 37.4013 33.9692 32.2436  

Table 2 
Dimensionless natural frequencies ω of a cantilever beam with an attached mass 
at the free end, x1 = 1, and at the mid-span, x1 = 0.5, for λ = 0 (local model), 
h = 0.01, and H1 = 0.02. Results are presented for the first two modes of vi-
brations, and different values of M1, and compared with the numerical results 
obtained in [38] through the FE Method.  

x1 = 1 

Mode M1 = 0.005 M1 = 0.02 M1 = 0.04 

Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] 

1st 3.4813 3.4814 3.3828 3.3830 3.2634 3.2636 
2nd 21.8161 21.8209 21.2423 21.2522 20.6141 20.6299 

x1 = 0.5 

Mode M1 = 0.005 M1 = 0.02 M1 = 0.04 

Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] Present 
Model 

Ref. [38] 

1st 3.5119 3.5120 3.4998 3.4999 3.4838 3.4840 
2nd 21.9204 21.9233 21.5993 21.6021 21.1977 21.2005  
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Table 3 
Dimensionless natural frequencies ω of a clamped-clamped beam with two attached masses,λ = 0 (local model), h = 0.01, and H1 = H2 = 0.02. Results are presented 
for the first three modes of vibrations, different values of masses and their locations, and compared with the numerical data obtained in [50] through the Laplace 
transform.  

x1 = 0.25; x2 = 0.75 

Mode M1 = M2 = 0.01 M1 = M2 = 0.1 

Present Model Present Model h = H = 0 Ref. [50] Present Model Present Model h = H = 0 Ref. [50] 

1st 22.2055 22.2082 22.2082 20.8381 20.8552 20.8552 
2nd 60.4102 60.4223 60.4223 51.6927 51.7112 51.7112 
3rd 118.6536 118.7195 118.7195 104.5430 104.7477 104.7477 

x1 = 1 /3; x2 = 2 /3 

Mode M1 = M2 = 0.01 M1 = M2 = 0.1 

Present Model Present Model h = H = 0 Ref. [50] Present Model Present Model h = H = 0 Ref. [50] 

1st 22.0373 22.0392 22.0392 19.5667 19.5765 19.5765 
2nd 60.4265 60.4361 60.4361 51.7571 51.7786 51.7786 
3rd 120.5615 120.7219 120.7219 118.2381 119.4187 119.4187  

Fig. 4. Frequencies vs. mass location and its eccentricity for the first four vibration modes in a miniaturized cantilever sensor with h = M1 = 0.1 and λ = 0.3.  
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zeptogram-scale mass sensitivity. These are just a few examples of 
theoretical studies in the literature on the size-dependent structural 
dynamics of mass sensors based on nonlocal theories. 

The application of the stress-driven theory of nonlocal elasticity for a 
comprehensive exploration of size effects in micro- and nanomechanical 
mass sensors is very rare. One contribution is outlined in [40], focusing 
solely on the scenario of a nanocantilever with a single attached particle 
positioned at the free end. However, in reality, multiple particles may 
simultaneously bind to different positions along the sensor. Addressing 
this gap, [31] employed the stress-driven theory of nonlocal elasticity to 
investigate the impact of size dependence on the precision of micro- or 
nanomechanical mass sensors. To maintain generality, the study 
considered the scenario of a mass sensor with multiple attached particles 
at arbitrary locations. Nevertheless, the model presented in [31] is 
developed under the assumption that the attached particles are rela-
tively small compared to the sensor dimensions, thus neglecting the 
eccentricity of the particles with respect to the axis line of the sensor. 

In reality, the particles are attached to the surfaces of the sensors. 
Therefore, the center of mass of an attached particle is always located at 
a distance from the axis of the sensor. In many cases, where the size of a 
biological entity is negligible compared to the size of a relatively large 
mechanical mass sensor with a length of a few hundred microns, the 

effect of the eccentricity of the attached particle may be neglected. 
However, micro- and nanomechanical mass sensors show great promise, 
especially when they have smaller dimensions, lengths below 10 μm, 
and thicknesses on the order of tens of nanometers. This is because only 
at these diminutive ranges do the sensors exhibit enhanced sensitivity to 
detect even single cells and viruses [3]. For instance, gold-coated silicon 
nanomechanical cantilever mass resonators with femtogram-level mass 
sensitivity were fabricated in [41], measuring 2 to 6 µm long and 50 to 
100 nm thick. Considering that the size of numerous biological entities, 
such as viruses, bacteria, and proteins, becomes comparable to the di-
mensions of ultrasensitive micro- and nanomechanical mass sensors, 
neglecting the eccentricity of attached particles in analyzing such sen-
sors becomes questionable. For instance, cantilever mass sensors with 
lengths as small as 15 µm and thicknesses of 320 nanometers were used 
in [42] to detect Escherichia coli cells with lengths, widths, and thick-
nesses of approximately 1.43, 0.73, and 0.35 µm, respectively. Similarly, 
silicon cantilevers with a length of 6 µm and a thickness of 150 nm were 
used [43] to detect the mass of a nonpathogenic insect baculovirus with 
a length of 0.5 µm and a thickness of 25 nm. Similar studies are reported 
in [44,45], where Listeria bacteria, proteins, and vaccinia virus particles 
are detected using ultrasensitive mechanical silicon mass sensors with 
dimensions comparable to those of the attached particles. Therefore, it is 

Fig. 5. Frequencies vs. mass location and its eccentricity for the first four vibration modes in a miniaturized clamped-clamped sensor with h = M1 = 0.1 and λ = 0.3.  
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important to account for the effect of the eccentricity of attached masses 
when analyzing micro- and nanomechanical mass sensors. Furthermore, 
incorporating the eccentricity of attached particles into sensor modeling 
not only captures the underlying physics more accurately but also en-
hances our comprehension and enriches the existing knowledge of ul-
trasensitive mass sensors. 

1.4. Objective 

The objective of this work is to formulate a model for the size- 
dependent free transverse vibration of micro- and nanobeams with 
multiple eccentric masses using the stress-driven nonlocal theory. The 
model formulated in this paper extends the work in [31] in three main 
aspects: (i) considering the eccentricity of the attached masses, which 
enhances the accuracy of the results for sensing large entities, (ii) pre-
senting results for clamped-clamped beams, commonly used in practical 
applications as mass sensors, and (iii) exploring the inverse problem of 
detecting the intensity of the mass and its location based on the fre-
quency shifts. The axial vibration caused by the eccentricity of the 
attached masses is not considered, assuming that this mode of vibration 
does not affect the transverse vibration of the beam. This assumption, 
previously used in the literature (e.g., in [46]), simplifies the complexity 
of the problem. Additionally, the assumption is acceptable for slender 

beams. In such cases, this paper validates the assumption by comparing 
the model predictions with available experimental results in the 
literature. 

The article is organized as follows. In Section 2, the problem is 
defined, and the nonlocal formulation and the solution technique are 
presented. The results obtained by the formulated model are presented 
and discussed in Section 3, which starts by comparing the predictions of 
the model with the experimental and theoretical results from the liter-
ature. Additionally, the section presents the results of the size-dependent 
frequency shifts of the beams with one, two, and three eccentric masses 
attached at different locations. The inverse problem is also investigated 
in Section 3. The concluding remarks are presented in Section 4. 

2. Problem and modeling 

The problem is a mechanical mass sensor, illustrated in Fig. 1, which 
involves a miniaturized beam with a rectangular cross-section. The 
beam, made of a homogeneous isotropic material with Young’s modulus 
E, has dimensions of length (L), in-plane thickness (h), and out-of-plane 
width (b). For the sake of generality, the formulation is developed for the 
case with the attachment of n different point masses Mi to the beam at 
various locations xi, for i = 1, …, n, with numbering proceeding from left 
to right. The distance between the mass centroid of the i th particle and 

Fig. 6. Frequencies vs. mass eccentricity and aspect ratio of the miniaturized cantilever sensor with M1 = 0.1, x1 = 1 and λ = 0.3 for the first four vibration modes.  
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the mid-thickness of the beam is represented by Hi. Given that micro- 
and nanomechanical mass sensors typically adopt clamped-free or 
clamped-clamped configurations, only these boundary conditions are 
considered. The slender nature of the beam allows the utilization of the 
Bernoulli-Euler model to analyze the free transverse vibration under 
plane stress conditions. The problem is formulated using a Cartesian 
coordinate system, as depicted in Fig. 1. 

It is possible to introduce a mass-spring system to model the 
connection of the particles to the mass sensor. The spring-like behavior 
may arise due to the local flexibility of the attachment point where the 
particle connects to the sensor. For instance, the spring-mass approach is 
used in [47] to account for the elastic connection between the nanoplate 
and the attached nanoparticle. The mass-spring representation of the 
attached particles forms a coupled mechanical system in which the 
motion of the sensor, spring, and attached particle are interconnected. 
While the spring-mass approach may offer a more general representa-
tion of real-world physics, it is notable that many researchers have 
developed analytical models under the assumption that the attached 
masses are perfectly connected to the sensor surface [32–36,38]. It is 

apparent from the data presented in the seminal papers [42,43,48] that 
the results obtained under this simplification are consistent with 
experimental findings. Similarly, we adopt the assumption here that 
point masses are perfectly connected to the sensor surface, implying 
they have no additional degree of freedom relative to the sensor. This 
assumption simplifies the model while still capturing essential aspects of 
sensor behavior. 

To investigate the free transverse vibration of the micro- or nano-
beam shown in Fig. 1, the domain is segmented at the mass locations. In 
the formulation, the superscript (i) on the left of a quantity indicates its 
association with the i th segment, while on the right, it denotes the i th 
derivative with respect to x. Additionally, a dot over a function signifies 
the derivative with respect to time, t. 

2.1. Equations of motion 

Under the kinematic assumption of the Bernoulli-Euler theory, the 
displacement components of the i th segment of the beam, where i 
ranges from 1 to n + 1, are expressed as follows: 

Fig. 7. Frequencies vs. mass eccentricity and aspect ratio of the miniaturized clamped-clamped sensor with M1 = 0.1, x1 = 1 /2 and λ = 0.3 for the first four vi-
bration modes. 
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(i)u(x, z, t)=(i)w(1)(x, t)z
(i)v(x, z, t)=(i)w(x, t)

(1)  

where (i)u(x, z, t) and (i)v(x, z, t) are, respectively, the axial and the 
transverse displacements in the i th segment of the beam. The 
displacement function (i)w(x, t) refers to the transverse displacement of 
the mid-thickness. Using the linear displacement-strain relationship, the 
normal strain along the x-axis in the i th segment of the beam, (i)ε(x,z,t), 
is derived as: 

(i)ε(x, z, t)=(i)w(2)(x, t)z (2)  

for i = 1, …, n + 1. 
The Hamilton principle is applied to obtain the weak form of the 

governing equations:   

Here, t1 and t2 represent arbitrary time instances, (i)σ and δ(i)ε denote 
the axial stress and variation of the axial strain of the i th segment of the 
beam, δ(i)u and δ(i)v are variations in displacements of the i th segment of 
the beam, and ρ is the mass density. The variations of displacements are 
assumed to be arbitrary, independent, and consistent with the compat-
ibility conditions, vanishing at times t1 and t2. The first term on the left- 
hand side of Eq. (3) defines the contribution from the strain energy of the 
beam. The second and third terms pertain to the kinetic energy of the 
beam. The last two terms account for the kinetic energy of the attached 
particles associated with axial and transverse velocities. 

By utilizing Eqs. (1) and (2) to express the variations in strain and 
displacements in terms of the displacement function (i)w(x, t) and 
applying Green’s theorem wherever applicable, the following standard 
equations of motion are derived after some manipulations: 

(i)M(2)
moment − I2

(i)ẅ(2)
+ I0

(i)ẅ = 0 (4)  

for i = 1, …, n + 1. The parameters 

(Io, I2) =
∫

Aρ
(
1, z2)dA =

(
m,mh2 /12

)
where m is the mass per unit 

length of the beam. The bending moment has a conventional definition 
of Mmoment =

∫

AσzdA. The middle term on the left-hand side of the 
equation represents the effect of rotary inertia. 

The equations of motions (4) are subjected to the following varia-
tionally consistent continuity conditions:  

for i = 1, …, n, and the boundary conditions at the beam’s ends, x = 0 
and L: 

(1)w(x = 0, t) = 0
(1)w(1)(x = 0, t) = 0

}

clamped

(n+1)w(x = L, t) = 0
(n+1)w(1)(x = L, t) = 0

}

if clamped

(n+1)Mmoment(x = L, t) = 0
(n+1)M(1)

moment(x = L, t) − I2
(n+1)ẅ(1)

(x = L, t) = 0

⎫
⎬

⎭
if free

(6) 

The scenario involving a micro- or nanobeam loaded with a single 
particle at the free end is described by Eqs. (4)–(6) for x1 = L. 

2.2. Size-dependent governing equations in terms of displacements 

In the stress-driven nonlocal theory, the constitutive equation of the 
beam, which establishes a relationship between curvature χ and moment 
Mmoment, is expressed as [27]: 

χ(x, t) =
∫ L

0
ϕLC

(x − ξ)CMmoment(ξ, t)dξ (7)  

with C = 1 /(EI), where I = bh3 /12. The inclusion of size dependence in 
the formulation involves expressing curvature as the result of the inte-
gral convolution described above, considering moments across all cross- 
sections and the smoothing kernel function ϕLC

(x). The selection of the 
kernel function is quite flexible, as long as the chosen function is both 
mathematically and physically acceptable. For the sake of mathematical 
simplicity, the kernel function is commonly assumed as: 

ϕLC
(x) =

1
2LC

e

(

−
|x|
LC

)

(8)  

with LC being a characteristic length parameter. The particular kernel 
function given in Eq. (8) enables the conversion of the integral consti-
tutive Eq. (7), which is over the entire beam length, to n + 1 differential 
equations at various segments of the beam: 

(i)χ − L2
C
(i)χ(2) = C(i)Mmoment (9)  

∫ t2

t1

{
∑n+1

i=1

∫

A

∫ xi

xi− 1

(i)σδ(i)εdxdA +
∑n+1

i=1

∫

A

∫ xi

xi− 1

ρ(i)üδ(i)udxdA +
∑n+1

i=1

∫

A

∫ xi

xi− 1

ρ(i)v̈δ(i)vdxdA+

+
∑n

i=1
Mi

(i)v̈(xi,Hi, t)δ(i)v(xi,Hi, t) +
∑n

i=1
Mi

(i)ü(xi,Hi, t)δ(i)u(xi,Hi, t)

}

dt = 0

(3)   

(i)w(xi, t)=(i+1)w(xi, t)
(i)w(1)(xi, t)=(i+1)w(1)(xi, t)
(i)Mmoment(xi, t) + MiH2

i
(i)ẅ(1)

(xi, t)=(i+1)Mmoment(xi, t)
(i)M(1)

moment(xi, t) − I2
(i)ẅ(1)

(xi, t) − Mi
(i)ẅ(xi, t)=(i+1)M(1)

moment(xi, t) − I2
(i+1)ẅ(1)

(xi, t)

(5)   
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for i = 1, …, n+ 1, subjected to the following higher-order constitutive 
continuity conditions at the segment’s ends: 

(i)χ(1)(xi− 1, t) =
1
LC

[

(i)χ(xi− 1, t) −
∑i− 1

k=1

∫ xk

xk− 1

(
1
LC

e
ξ− xi− 1

LC C(k)Mmoment(ξ, t)
)

dξ

]

(i)χ(1)(xi, t) = −
1
LC

[

(i)χ(xi, t) −
∑n+1

k=i+1

∫ xk

xk− 1

(
1
LC

e
xi − ξ
LC C(k)Mmoment(ξ, t)

)

dξ

]

(10)  

for i = 1, …, n+ 1. The derivations of Eqs. (9) and (10) are purely 
mathematical and straightforward as presented in [30]. For i = 1 at x0 =

0 and i = n + 1 at xn+1 = L, the constitutive continuity conditions (10) 
yield the constitutive boundary conditions [27]: 

(1)χ(1)(0, t) =
1
LC

(1)χ(0, t)

(n+1)χ(1)(L, t) = −
1
LC

(n+1)χ(L, t)
(11) 

Recalling the curvature-deflection relation of the Bernoulli-Euler 
theory, (i)χ = (i)w(2), the constitutive Eqs. (9)–(11) in terms of the 
transverse displacements, (i)w, are: 

(i)w(2) − L2
C
(i)w(4) = C(i)Mmoment (12) 

Fig. 9. Frequency shifts related to the first four vibration modes in a miniaturized cantilever sensor with h = 0.1 and H1 = 0.2 after mass attachment at the free end.  

Fig. 8. First four mode shapes of a nonlocal (λ = 0.5) micro- or nanocantilever 
sensor with an attached mass, M1 = 0.1, at the free end, x1 = 1, and h = 0.1, 
for H1 = 0.1, 0.2, and 0.3. 
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for i = 1, …, n+ 1, and  

for i = 1, …, n+ 1, which for i = 1 at x0 = 0 and i = n +1 at xn+1 = L 
yield 

(1)w(3)(0, t) =
1
LC

(1)w(2)(0, t)

(n+1)w(3)(L, t) = −
1
LC

(n+1)w(2)(L, t)
(14) 

Now, the governing Eqs. (4)–(6) can be written solely in terms of the 

transverse displacements, (i)w, using the bending moment definition 
given by the constitutive Eq. (12): 

L2
C
(i)w(6) − (i)w(4) +

Cmh2

12
(i)ẅ(2)

− Cm(i)ẅ = 0 (15)  

for i = 1, …, n+ 1, and 

Fig. 10. Frequency shifts related to the first four vibration modes in a miniaturized cantilever sensor with h = 0.1 and H1 = 0.2 after mass attachment at the 
mid-span. 

(i)w(3)(xi− 1, t) =
1
LC

[

(i)w(2)(xi− 1, t) −
∑i− 1

k=1

∫ xk

xk− 1

(
1
LC

e
ξ− xi− 1

LC
[
(k)w(2)(ξ, t) − L2

C
(k)w(4)(ξ, t)

]
)

dξ

]

(i)w(3)(xi, t) = −
1
LC

[

(i)w(2)(xi, t) −
∑n+1

k=i+1

∫ xk

xk− 1

(
1
LC

e
xi − ξ
LC

[
(k)w(2)(ξ, t) − L2

C
(k)w(4)(ξ, t)

]
)

dξ

] (13)   
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Fig. 11. Frequency shifts related to the first four modes of vibration in a miniaturized cantilever sensor with h = 0.1 and H1 = 0.2 after attachment of a mass with M1 

= 0.1 at different locations. 

(i)w(xi, t)=(i+1)w(xi, t)
(i)w(1)(xi, t)=(i+1)w(1)(xi, t)

L2
C
(i)w(4)(xi, t) − (i)w(2)(xi, t) − CMiH2

i
(i)ẅ(1)

(xi, t) = L2
C
(i+1)w(4)(xi, t) − (i+1)w(2)(xi, t)

L2
C
(i)w(5)(xi, t) − (i)w(3)(xi, t) +

Cmh2

12
(i)ẅ(1)

(xi, t) + CMi
(i)ẅ(xi, t) =

L2
C
(i+1)w(5)(xi, t) − (i+1)w(3)(xi, t) +

Cmh2

12
(i+1)ẅ(1)

(xi, t)

(16)   
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for i = 1, …, n, and   

The dynamic equilibrium Eq. (15), along with the variationally 
consistent continuity and boundary conditions (16) and (17), as well as 
the constitutive continuity and boundary conditions (13) and (14), all 
expressed solely in terms of the transverse displacements of the beam 

segments, (i)w, define the size-dependent free transverse vibration of the 
loaded beam. In the next section, the equation of motion (15) will be 

solved, and dimensionless equations will be provided for the calculation 
of the natural frequencies. 

2.3. Natural frequency determination 

The analytical technique of separating spatial and time variables is 

Fig. 12. Frequency shifts related to the first four modes of vibration in a miniaturized clamped-clamped sensor with h = 0.1 and H1 = 0.2 after attachment of a mass 
with M1 = 0.1 at different locations. 

(1)w(x = 0, t) = 0
(1)w(1)(x = 0, t) = 0

}

clamped

(n+1)w(x = L, t) = 0
(n+1)w(1)(x = L, t) = 0

}

if clamped

L2
C
(n+1)w(4)(x = L, t) − (n+1)w(2)(x = L, t) = 0

L2
C
(n+1)w(5)(x = L, t) − (n+1)w(3)(x = L, t) +

Cmh2

12
(n+1)ẅ(1)

(x = L, t) = 0

⎫
⎪⎪⎬

⎪⎪⎭

if free

(17)   
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utilized to solve the equation of motion (15). Therefore, the following 
form of the solution is assumed: (i)w(x, t) = (i)ψ(x)eiωt . The parameters 
(i)ψ and ω are, respectively, the spatial mode shape of section i and the 
natural frequency of free vibrations of the beam. Substitution of the 
assumed form of the solution into the equation of motion yields the 
spatial differential equation, which is represented in a dimensionless 
form using the following dimensionless parameters: 

(i)ψ =
(i)ψ
L
; x =

x
L
; h =

h
L
;ω = ωL2

̅̅̅̅̅̅̅
Cm

√
;Hi =

Hi

L
;Mi =

Mi

mL
; λ =

LC

L
(18)  

as: 

λ2(i)ψ (6)(x) − (i)ψ (4)(x) + ω2

[

(i)ψ(x) − h
2

12
(i)ψ (2)(x)

]

= 0 (19)  

for i = 1, …, n+ 1. The dimensionless variationally consistent continuity 
and boundary conditions are: 

(i)ψ(xi)=
(i+1)ψ(xi)

(i)ψ (1)(xi)=
(i+1)ψ (1)(xi)

λ2(i)ψ (4)(xi) −
(i)ψ (2)(xi) + Miω2H2

i
(i)ψ (1)(xi) = λ2(i+1)ψ (4)(xi) −

(i+1)ψ (2)(xi)

λ2(i)ψ (5)(xi) −
(i)ψ (3)(xi) −

ω2h
2

12
(i)ψ (1)(xi) − Miω2ψ(xi) =

λ2(i+1)ψ (5)(xi) −
(i+1)ψ (3)(xi) −

ω2h
2

12
(i+1)ψ (1)(xi)

(20)  

for i = 1, …, n, and 

(1)ψ(0) = 0
(1)ψ (1)(0) = 0

}

clamped

(n+1)ψ(1) = 0
(n+1)ψ (1)(1) = 0

}

if clamped

λ2(n+1)ψ (4)(1) − (n+1)ψ (2)(1) = 0

λ2(n+1)ψ (5)(1) − (n+1)ψ (3)(1) −
ω2h

2

12
(n+1)ψ (1)(1) = 0

⎫
⎪⎪⎬

⎪⎪⎭

if free

(21) 

Additionally, the dimensionless constitutive continuity and bound-
ary conditions are:  

for i = 1, …, n+ 1, which for i = 1 at x0 = 0 and i = n + 1 at xn+1 = 1 
yield, 

Fig. 13. First four mode shapes of a local (λ = 0) and nonlocal (λ = 0.5) micro- 
or nanocantilever sensor with an attached mass, M1 = 0.1, at the free end, x1 =

1, h = 0.1, and H1 = 0.2. 

Fig. 14. Dimensionless natural frequencies of the first two modes of vibration of a clamped-clamped micro- or nanosensor with two attached masses M1 = M2 =

0.15, h = 0.1, x1 = 0.25 and H1 = H2 = 0.2. 

(i)ψ (3)(xi− 1) =
1
λ

[

(i)ψ (2)(xi− 1) −
∑i− 1

k=1

∫ xk

xk− 1

(
1
λ
e

ξ− xi− 1
λc

[
(k)ψ (2)(ξ) − λ2(k)ψ (4)(ξ)

]
)

dξ

]

(i)ψ (3)(xi) = −
1
λ

[

(i)ψ (2)(xi) −
∑n+1

k=i+1

∫ xk

xk− 1

(
1
λ
e

xi − ξ
λc

[
(k)ψ (2)(ξ) − λ2(k)ψ (4)(ξ)

]
)

dξ

] (22)   
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(1)ψ (3)(0) =
1
λ
(1)ψ (2)(0)

(n+1)ψ (3)(1) = −
1
λ
(n+1)ψ (2)(1)

(23) 

The spatial Eq. (19) for the i th segment of the beam is a linear, 
homogeneous, sixth-order ordinary differential equation with constant 
coefficients. This equation is solved in a closed form utilizing the solu-
tion technique described next. The general form of the solution (i)ψ =
(i)ae(i)βx with (i)a and (i)β being unknown constants, is substituted into Eq. 
(19), to obtain the corresponding sixth-order algebraic characteristic 
equations in terms of (i)β. Using the change of variable technique, the 
characteristic equation is further simplified to a third-order algebraic 
equation, for which the closed-form solutions are available in the 
mathematics handbooks. Therefore, the solution of Eq. (19) is defined as 
(i)ψ =

∑6
j=1

(i)aje
(i)βjx in terms of six unknown constants (i)aj for j = 1, …, 6, 

which makes a total of 6× (n + 1)unknown constants for the beam with 
n attached particles. The solutions must satisfy 4 × n variationally 
consistent continuity conditions in Eq. (20), 4 variationally consistent 
boundary conditions in Eq. (21), and 2 × (n+1) constitutive continuity 
and boundary conditions in Eqs. (22) and (23). This results in a homo-
geneous system of 6 × (n+1) algebraic equations for 6 × (n +

1)unknown constants. The non-trivial solution exists only if the deter-
minant of the coefficient matrix vanishes, which leads to the determi-
nation of the natural frequencies of the micro- or nanobeam with n 
attached particles. To determine the natural frequencies, the bisection 
method is employed to find the roots of the determinant of the coeffi-
cient matrix. 

Note that the eccentricity of the attached masses, Hi for i = 1, …, n, is 
incorporated in Eq. (20). Setting their values to zero in this equation 
results in the current formulation reducing to that presented in [31]. 

3. Results and discussion 

In this section, we analyze cantilever and clamped-clamped minia-
turized beams with one to three attached particles. 

3.1. Verification 

The validity of the formulated model is verified for five different 
cases against the experimental and numerical results available in the 
literature. The predictions of the model with λ = 0 (local model) and the 
experimental data reported in [49] are compared in Fig. 2. The results 
refer to the frequency shifts of the first four modes of vibration in a 
microcantilever sensor made of SiO2 with a thickness of 940 nm coated 
with 10 nm Ti and 100 nm Au, after the attachment of a single gold bead 
with a radius of 0.9 µm and a mass of 60 pg at different locations. The 
length, thickness, and width of the microcantilever are, respectively, 
153, 1.05 and 11 µm. To calculate the distance between the mass center 
of the gold particle and the mid-thickness of the sensor, H1, the gold 
particle is assumed to be spherical. The Young’s modulus and the density 
of SiO2, Ti, and Au, are, respectively, 70, 110, and 57 GPa, and 2150, 
4500, and 19,300 kg/m3 [49]. Since the Ti layer with the highest 
Young’s modulus is relatively thin, and the Young’s modulus of the SiO2 
and Au layers are similar, the multilayered sensor is assumed to be ho-
mogeneous with the elastic modulus equal to 69 GPa calculated by the 
rule of mixture. The effective density of the sensor is also calculated as 
3805 kg/m3 using the rule of mixture. As can be seen in Fig. 2, the model 
can well predict the experimentally measured percentage change in 
frequency due to the attachment of the gold particle at different loca-
tions across the sensor for the nonlocal parameter equal to zero. This 
confirms the assumption made in the development of the model 
regarding the decoupling of bending and axial vibrations in slender 
beams with eccentric masses. 

In [40], frequencies of nanocantilevers with a single attached par-
ticle positioned at the free end are obtained using the stress-driven 

Fig. 15. Natural frequencies of local and nonlocal cantilever micro- or nanosensors with three attached masses at x1 = 0.3, x2 = 0.6, and x3 = 1, h = 0.1, and H1 =

H2 = H3 = 0.2. 
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nonlocal theory and Bernoulli-Euler beam model. In the formulation, the 
eccentricity of the tip mass is neglected. The first and second frequencies 
predicted by the current model (dashed lines) and those presented in 
[40] (circle markers) for the case of a nonlocal nanocantilever with λ =
0.04 and h = 0.0385 are depicted in Fig. 3 by varying the tip mass. As 
can be seen in the figure, the results of the present model virtually 
coincide with those presented in [40]. 

The dimensionless natural frequencies ω of the first three modes of 
vibration of a cantilever beam with an attached mass at the free end, x1 
= 1, with λ = 0 (local model), and H1 /h = 2 are presented in Table 1 for 
different dimensionless thicknesses and masses. The results are in good 
agreement with those obtained in [38] through the Generalized Differ-
ential/Integral Quadrature method based on the Bernoulli-Euler beam 
theory and considering coupling between the axial and transverse vi-
brations due to the eccentricity of the attached mass. The reduction in 
the natural frequencies is higher when the beam is loaded by a heavier 
particle. The reduction in the natural frequency is also higher at higher 
modes of vibration. For instance for the cantilever beam with h = 0.1, 
changing the mass of the attached particle at the free end from M1 =

0.01 to 0.2 causes 25, 32, and 39 % reduction in the natural frequency of 
the, respectively, first, second, and third mode of vibration. 

The dimensionless natural frequencies ω of a cantilever beam with an 

attached mass at the free end, x1 = 1, as well as at the mid-span, x1 =

0.5, for λ = 0 (the local model), h = 0.01, and H1 = 0.02 are presented 
in Table 2. Results are presented for the first two modes of vibrations, 
and the dimensionless mass equal to M1 = 0.005, 0.02, and 0.04. The 
predictions of the model are compared with the numerical results ob-
tained in [38] through the finite element method. The present model can 
predict the natural frequencies of the cantilever beam with excellent 
accuracy in comparison with the numerical results. It can be understood 
from the results in Table 2 that the effect of the attached particle on the 
natural frequencies of both modes reduces when the particle is located at 
the mid-span. For the dimensionless mass equal to M1 = 0.04, the nat-
ural frequencies of the first and second modes of vibration increase by 7 
and 3 % when the location of the attached particle changes from the free 
end to the mid-span. 

The formulation presented in this paper can be readily applied to 
calculate the natural frequencies of clamped-clamped beams with mul-
tiple particle attachments. This is shown in Table 3, where the dimen-
sionless natural frequencies ω of the first three modes of vibration of a 
clamped-clamped beam withλ = 0 (local model), h = 0.01, and loaded 
by two masses having H1 = H2 = 0.02 are presented on varying the 
dimensionless mass and location of the attached particles. The numeri-
cal results obtained in [50] through the Laplace transform are also 

Fig. 16. Frequency shifts of the (a) first, (b) second, and (c) third mode of vibration in a micro- or nanocantilever sensor due to the attachment of a mass on varying 
the dimensionless mass and location. The results are presented for the case with λ = 0.2, and h = H1 = 0.1. (d) The level sets showing the pairs (x1,M1) for which the 
changes in the frequency are constant. The level sets are shown for the first (thick lines) and second (thin lines) modes of vibration. 
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presented. The predictions of the model are in good agreement with the 
numerical results. The difference between the results is because the 
numerical results were obtained neglecting the rotary inertia term and 
the distance between the mass centroid of the particles and the 
mid-thickness of the beam. As can be seen in Table 3, the predictions of 
the model are identical to the numerical data for the case with h = H =
0, which eliminates the effects of the rotary inertia and distance be-
tween the mass centroid of the particles and the mid-thickness of the 
beam from the formulation. 

3.2. Eccentricity effect 

The effect of the eccentricity of the attached mass on the first four 
natural frequencies of both cantilever and clamped-clamped beams is 
investigated in this section. Two different scenarios are considered. 
Firstly, Figs. 4 and 5 depict the frequencies as they vary by changing the 
eccentricity and location of an attached particle, while maintaining 
constant the thickness-to-length ratio of the beam and the intensity of 
the mass, h = M1 = 0.1. The results are presented for the nonlocal beam 
with the dimensionless nonlocal parameter set to 0.3. 

The impact of eccentricity on the natural frequencies varies 
depending on the location where the particle is attached to the beam. 
For example, in Fig. 3(a) depicting the first mode of vibration for a 
cantilever beam, the influence of eccentricity on the frequency is more 
pronounced when the particle is attached closer to the free end. This 
enhanced effect stems from the relationship between the eccentricity 
and the axial velocity of the attached particle; thus, as the particle ex-
hibits higher axial velocities, the effect becomes more pronounced. 
Referring to the displacement field provided in Eq. (1), higher axial 
velocities are associated with increased bending slopes. In the case of the 
first mode of vibration for a cantilever beam, this phenomenon occurs at 
locations closer to the free end. Consequently, the effect of eccentricity 
on the frequencies is expected to diminish when the particle is attached 

at locations with lower bending slopes. This reasoning explains why the 
effect of eccentricity on the second frequency is minimized when the 
particle is attached at x1 = 0.5 and 0.6, as depicted in Fig. 4(b). Simi-
larly, since the third and fourth mode shapes feature two and three local 
maxima, respectively, where the bending slope vanishes, the surfaces in 
Fig. 4(c) and (d) exhibit two and three peaks, respectively, where the 
frequencies remain independent of the eccentricity of the attached mass. 

The first four frequencies of a clamped-clamped nonlocal beam with 
λ = 0.3 and h = M1 = 0.1are illustrated in Fig. 5. These frequencies are 
displayed while varying the eccentricity and location of the attached 
mass. Similar to the behavior observed for the cantilever beam in Fig. 4, 
the impact of eccentricity on the frequencies is primarily controlled by 
the location of the attached mass. All the presented surfaces exhibit 
symmetry with respect to the plane x1 = 0.5 due to the inherent sym-
metry of the clamped-clamped beam. In particular, the first and third 
frequencies remain unaffected by eccentricity when the mass is attached 
at the mid-span, where the bending slope of the beam remains consis-
tently zero throughout the vibration. Generally, for each mode of vi-
bration from first to fourth, there exist one to four specific locations 
where the eccentricity of the attached mass does not influence the fre-
quencies due to the vanishing bending slopes at these locations. 
Furthermore, in both the cantilever and clamped-clamped beams 
depicted in Figs. 4 and 5, the impact of the mass location on the natural 
frequencies intensifies with increasing eccentricity of the attached par-
ticles. As the eccentricity increases, the attached particle deviates 
further from the mid-thickness of the sensor, leading to a higher axial 
velocity and consequently, higher contribution to the kinetic energy of 
the system. In this scenario, the presence of the attached particle be-
comes more influential in the dynamics of the system, resulting in any 
change in its position having a greater impact on the natural frequencies. 

The first four frequencies of a cantilever nonlocal beam with λ = 0.3 
and an attached particle with M1 = 0.1 positioned at the free end, x1 =

1, are depicted in Fig. 6. These frequencies are shown while varying the 
eccentricity of the attached particle and the aspect ratio of the beam, i.e., 
the thickness-to-length ratio. Sensors with higher aspect ratios experi-
ence a greater effect of rotary inertia, resulting in increased dynamic 
loading on the sensor due to the additional inertia loading caused by the 
rotational acceleration of its elements. Therefore, as shown in Fig. 6, 
sensors with higher aspect ratios exhibit lower frequencies for all modes 
of vibration. The reduction in frequencies due to higher aspect ratios is 
particularly significant when analyzing vibration modes at higher fre-
quencies. This is because the vibrating configurations of the sensors 
associated with the higher modes of vibration are divided into relatively 
short segments by nodal points, making the effect of rotary inertia more 
significant. Additionally, it is evident from the figure that the impact of 
the eccentricity of the attached mass on the frequencies is influenced by 
the aspect ratio. 

Similar results to those shown in Fig. 6 are depicted in Fig. 7 for the 
clamped-clamped beam, where the mass is attached at the mid-span, 
x1 = 1 /2. As discussed earlier, the eccentricity of the mass positioned 
at the mid-span of a clamped-clamped beam does not affect the first and 
third frequencies, which is evident in Fig. 7(a) and (c). However, the 
eccentricity does influence the second and fourth frequencies, as 
demonstrated in Fig. 7(b) and (d). Furthermore, the effect of the aspect 
ratio on the second and fourth frequencies depends on the eccentricity of 
the attached mass. For instance, changing the aspect ratio from 0 to 0.3 
alters the second frequency by 15 % and 7 % for the cases with eccen-
tricities equal to 0 and 0.3, respectively. 

The eccentricity of an attached mass also affects the mode shapes of 
micro- and nanomechanical mass sensors. The first four vibration mode 
shapes of the nonlocal (λ = 0.5) cantilever sensor with an attached mass, 
M1 = 0.1, at the free end, x1 = 1, and h = 0.1, are shown in Fig. 8. The 
mode shapes are presented for three different values of the eccentricity 
of the attached mass, H1 = 0.1, 0.2, and 0.3. The eccentricity of the 
attached mass does not change the first mode shape noticeably. This 

Fig. 17. The level sets corresponding to -0.8 and -1.2 % change in, respectively, 
the first (thick lines) and second (thin lines) modes of vibration in a micro- or 
nanocantilever sensor due to the attachment of a mass on varying the dimen-
sionless mass and location. The results are presented for the case with h = 0.1, 
H1 = 0.2 and two different nonlocal parameters, λ, equal to 0 (local model, red 
lines) and 0.6 (black lines). The intersections of the level sets for the first and 
the second modes of vibration are marked. The locations of the intersections 
(x1,M1) are equal to (0.94,0.0044) and (0.84, 0.0055) for, respectively, the 
local (λ = 0) and nonlocal (λ = 0.6) inverse problems. 

H. Darban et al.                                                                                                                                                                                                                                 



Thin-Walled Structures 201 (2024) 112005

17

observation aligns with the findings in Fig. 4, where the first frequency 
of the micro- and nanocantilever mass sensors is less influenced by the 
eccentricity of the attached mass compared to the higher frequencies. 
However, the figure demonstrates a noticeable influence of the eccen-
tricity of the attached mass on the higher mode shapes of the sensor. 
Specifically, as the eccentricity of the attached mass increases, the lo-
cations where the mode shapes exhibit maximum deflections are drawn 
slightly closer to the free end. Moreover, higher eccentricity also affects 
the positions of the nodes, where the deflection is zero, causing them to 
shift towards the free end as well. This effect is attributed to the increase 
in kinetic energy of the attached mass associated with axial velocities as 
the eccentricity increases. The heightened kinetic energy resulting from 
higher eccentricity alters the dynamic behavior of the sensor, including 
the shapes of the higher modes of vibration. 

3.3. Size effect 

3.3.1. Single mass 
The frequency percentage change in a cantilever micro- or nano-

sensor, due to the attachment of a mass at the free end, x1 = 1, is shown 
in Fig. 9, for the first four modes of vibration. The thickness-to-length 
ratio of the sensor is h = 0.1, and the dimensionless distance between 
the mass center of the attached particle and the mid-thickness of the 
sensor is H1 = 0.2. Results are presented for the nonlocal parameter 
equal to λ = 0 (local sensor), 0.1, 0.2, 0.3, 0.4, and 0.5 on varying the 
dimensionless mass of the particle, M1. 

In all cases, an increase in the dimensionless mass of the particle 
leads to a reduction in the natural frequencies. This reduction is 
particularly significant for sensors with higher values of the nonlocal 
parameter. In general, mass sensors constructed of materials with 
characteristic lengths comparable to their dimensions (nonlocal sensors) 
exhibit greater sensitivity to the presence of mass at the free end than 
sensors with negligible material characteristic lengths compared to the 
extrinsic dimensions (local sensors). This is because according to the 
stress-driven theory, as the dimensions of the sensor decrease, it be-
comes stiffer, leading to higher sensitivity to the presence of the tip 
mass. This enhanced sensitivity is generally more pronounced in the 
second mode of vibration and less noticeable in the fourth mode. For 
instance, the changes in the frequencies of the first, second, third, and 
fourth modes of vibration of the sensor with λ = 0.5, due to the presence 
of a particle with M1 = 0.05 at the free end, are, respectively, 17, 50, 31, 
and 8 % higher than those of the sensor with λ = 0. Hence, overlooking 
size dependence can have a significant impact on the accuracy of the 
micro- or nanomechanical mass sensor and lead to misleading mass 
detections. Specifically, when the attached particle is positioned at the 
free end, disregarding size dependence leads to an overestimation of the 
particle’s mass. This overestimation becomes more pronounced when 
the mass detection relies on the frequency shift of the second mode of 
vibration. 

The extent of overestimation or underestimation of the mass of the 
attached particle resulting from neglecting the size dependence varies 
depending on the location of the mass and the mode of vibration. This 
variability is illustrated in Fig. 10, which shows the percentage changes 
in frequency for the first four modes of vibration in a micro- or nano-
cantilever sensor due to the attachment of a mass at the mid-span. The 
illustrated data in the curves are associated with the sensor having h =
0.1, and H1 = 0.2. The results are presented for varying the nonlocal 
parameter, λ, and the dimensionless loaded mass, M1. When mass 
detection relies on the first three vibration modes, neglecting the size 
effect leads to an underestimation of the mass of the attached particle. 
This underestimation is more pronounced for the third vibration mode 
and diminishes for the first and second modes. However, when mass 
detection is based on the frequency shift of the fourth mode of vibration, 
neglecting the size effect results in overestimation. 

The frequency shifts in the first four vibration modes, induced by 

attaching a mass with M1 = 0.1at different locations, are illustrated in 
Fig. 11 under the conditions of h = 0.1, and H1 = 0.2, and while varying 
the nonlocal parameter, λ. In the first vibration mode, disregarding size 
dependence leads to underestimation and overestimation of the 
measured mass for attachments within intervals approximately equal to 
x1 ≤ 0.73 and x1 > 0.73, respectively. Similar behavior is observed in 
the second mode, occurring at around x1 = 0.72. The third and fourth 
modes exhibit a more intricate pattern influenced by the attachment 
location. For instance, if the size effect is ignored, attaching a particle at 
about x1 ≤ 0.6results in a mass underestimation in the third mode, while 
attachment within 0.6 < x1 < 0.72 leads to mass overestimation based 
on the frequency change in the third mode of vibration. 

The effect of neglecting the size dependence on the accuracy of the 
micro- or nanomechanical mass sensor depends also on the boundary 
conditions. The frequency percentage changes of the first four modes of 
vibration of a clamped-clamped sensor due to the attachment of a mass 
with M1 = 0.1 at different locations are shown in Fig. 12 for the case 
with h = 0.1, and H1 = 0.2 on varying the nonlocal parameter, λ. When 
the mass detection is based on the second, third, and fourth modes of 
vibration, neglecting the size effect generally results in underestimation. 
This is true also for the mass detection based on the first mode of vi-
bration when the mass is located at distances within approximately x1 ≤

0.25 and x1 ≥ 0.75. However, if the mass is attached at any distance 
within the interval approximately equal to 0.25 < x1 < 0.75, neglecting 
size dependence results in the overestimation of the mass based on the 
frequency change of the first mode of vibration. 

The size dependence also affects the mode shapes of the micro- and 
nanomechanical mass sensors. The first four vibration mode shapes of 
the local (λ = 0) and nonlocal (λ = 0.5) micro- or nanocantilever sensor 
with an attached mass, M1 = 0.1, at the free end, x1 = 1, h = 0.1, and 
H1 = 0.2, are shown in Fig. 13. The mode shapes of a small-scale sensor 
(i.e. the nonlocal sensor) exhibit variations compared to those of a large- 
scale sensor. These changes include shifts in the location of maximum 
deflection. The influence of nonlocality on the fourth mode shape is 
comparatively subtle when compared to the other modes. This obser-
vation aligns with the findings in Fig. 9, where the frequency percentage 
changes in the fourth mode of vibration for both local and nonlocal 
sensors with M1 = 0.1 are closer to each other than those in the first 
three modes of vibration. 

3.3.2. Multiple masses 
The dimensionless natural frequencies of the first two modes of vi-

bration of a clamped-clamped micro- or nanosensor with two attached 
masses M1 = M2 = 0.15, h = 0.1, and H1 = H2 = 0.2 are shown in 
Fig. 14. Results are presented for x1 = 0.25 on varying the nonlocal 
parameter, λ, and the location of the second mass, x2, from 0.3 to 0.95. 
For both modes of vibration, increasing the nonlocal parameter in-
creases the sensitivity of the natural frequency to the location of the 
second mass. Increasing x2 results in a decrease in the natural frequency 
of the first mode of vibration for x2 ≤ 0.5, and an increase when 
x2 > 0.5. As can be seen in the figure, the effect of the location of the 
second mass on the natural frequency of the second mode of vibration is 
more complex than that of the first mode of vibration. 

The frequencies of a cantilever sensor in the presence of three 
attached masses are depicted in Fig. 15. The results refer to the case with 
the following parameters: x1 = 0.3, x2 = 0.6, x3 = 1, h = 0.1, and H1 =

H2 = H3 = 0.2. The results are shown for both local and nonlocal 
sensors, with variations in the dimensionless mass of each particle while 
maintaining the dimensionless masses of the other particles constant at 
0.2. The figure highlights that the influence of the third mass at the free 
end dominates the impact of other masses on the frequencies. This is 
because the tip mass experiences the highest axial and transverse ve-
locities, thus contributing significantly to the kinetic energy of the sys-
tem. Therefore, the mass attached to the free end of the cantilever sensor 
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plays a more critical role in determining the overall dynamic response 
and natural frequency of the system. This observation explains why the 
natural frequencies are nearly independent of the mass of the first par-
ticle, especially, and to a lesser extent, the second particle. 

3.4. Inverse problem 

In many practical applications of ultrasensitive mass sensors, the 
entities may land at any position along the sensor. Therefore, in addition 
to the mass, the location of the attached particle may be also unknown. 
The problem of finding the location and the mass of an attached particle 
based on the natural frequency changes is considered here as the inverse 
problem. The changes in the first three frequencies of a micro- or 
nanocantilever mass sensor due to the attachment of a particle are 
shown in Fig. 16 for varying the dimensionless mass and location. The 
results are presented for the case of λ = 0.2, and h = H1 = 0.1. The level 
sets showing the pairs (x1,M1) for which the changes in the frequency 
are constant are presented in Fig. 16(d) for the first (thick lines) and 
second (thin lines) modes of vibration. It can be understood from Fig. 16 
(d) that the level sets corresponding to the first and second modes of 
vibration may intersect at more than one point. Therefore, the infor-
mation regarding the frequency changes in the first and the second 
modes of vibration does not guarantee the uniqueness of the solution. In 
other words, there can be two possible solutions (x1,M1) for which the 
desired changes in the first and the second frequencies are obtained. 
Two of these possible pairs of solutions are highlighted in Fig. 16(d). In 
this case, the information regarding the third frequency change would 
be necessary to identify the mass and location of the attached particle. 

The size dependence may highly affect the solution of the inverse 
problem. This is shown in Fig. 17, where the level sets corresponding to 
-0.8 and -1.2 % change in, respectively, the first (thick lines) and second 
(thin lines) modes of vibration are presented. The results correspond to 
the case with h = 0.1, H1 = 0.2 and two different nonlocal parameters, 
λ, equal to 0 (local model, red lines) and 0.6 (black lines). The in-
tersections of the level sets for the first and the second modes of vibra-
tion are marked. The locations of the intersections (x1,M1) are equal to 
(0.94,0.0044) and (0.84,0.0055) for the local (λ = 0) and nonlocal (λ =
0.6) inverse problems, respectively. 

In other words, neglecting the size effect in sensors made of materials 
with characteristic lengths comparable to the sensor’s dimensions would 
result in inaccurate detections in terms of both the mass and the location 
of the attached particle. 

4. Conclusions 

The investigation of the size-dependent free transverse vibration of a 
micro- or nanobeam with any number of eccentric masses has been 
conducted employing the variational approach and the stress-driven 
nonlocal theory of elasticity. The kinematic field has been character-
ized using the Bernoulli-Euler beam theory. Dynamic equilibrium 
equations, along with variationally consistent boundary and continuity 
conditions at the cross-sections where the masses are attached, have 
been obtained through the Hamilton principle. The natural frequencies 
have been derived by solving the variationally consistent equations 
together with the higher-order constitutive boundary and continuity 
conditions. It has been demonstrated that the predictions of the model 
virtually coincide with the experimental and numerical results available 
in the literature. It has been shown that the eccentricity of the mass can 
greatly alter the frequencies depending on the location where the par-
ticle is attached. Furthermore, the size effect significantly influences the 
frequency shifts depending on the boundary conditions, the location of 
the particles, and the mode of vibration. The vibration mode shapes are 
also affected by the eccentricity of the attached masses and the small- 
scale size effects. In addition, the miniaturized beams are more sensi-
tive to the presence of the attached particles compared to the large-scale 

beams. The inverse problem of finding an attached particle’s location 
and mass based on the natural frequency changes has been considered. It 
has been shown that neglecting the size dependence may result in wrong 
detections of the mass and its location. 
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