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Quantum algorithms can outperform their classical counterparts in various tasks, the most prominent example
being Shor’s algorithm for efficient prime factorization on a quantum computer. It is clear that one of the reasons
for the speedup is the superposition principle of quantum mechanics, which allows a quantum processor to
be in a superposition of different states at the same time. While such a superposition can lead to entanglement
across different qubits of the processors, there also exist quantum algorithms that outperform classical ones using
superpositions of individual qubits without entangling them. As an example, the Bernstein-Vazirani algorithm
allows one to determine a bit string encoded into an oracle. While the classical version of the algorithm requires
multiple calls of the oracle to learn the bit string, a single query of the oracle is enough in the quantum case. In
this article, we analyze in detail the quantum resources in the Bernstein-Vazirani algorithm. For this, we introduce
and study its probabilistic version, where the goal is to guess the bit string after a single call of the oracle. We
show that in the absence of entanglement, the performance of the algorithm is directly related to the amount
of quantum coherence in the initial state. We further demonstrate that a large amount of entanglement in the
initial state prevents the algorithm from achieving optimal performance. We also apply our methods to quantum
computation with mixed states, proving that pseudopure states achieve optimal performance for a given purity
in the Bernstein-Vazirani algorithm. We further investigate quantum resources in the one clean qubit model,
showing that the model can exhibit speedup over any known classical algorithm even with an arbitrarily little
amount of multipartite entanglement, general quantum correlations, and coherence.
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I. INTRODUCTION

The nonlocal nature of quantum correlations [1–6] is one
of the key features that enables quantum states to outper-
form classical ones in different information-processing tasks
such as quantum teleportation and different cryptographic
protocols [7–10]. At present, it is quite evident that these non-
classical correlations act as resources in quantum computers,
which are more powerful than classical computers in per-
forming certain algorithms. For example, the Deutsch-Jozsa
algorithm [11] and Shor’s algorithm [12] show exponential
speedup over the best known classical algorithm [13] when
implemented on a quantum computer. Similarly, quantum
search algorithms, such as Grover’s algorithm [14], offer a
quadratic speed up over classical ones [15]. Other than these,
there are many quantum algorithms based on query com-
plexity showing potential speed up over classical computers
[16,17].

Even though entanglement plays a crucial role in many
quantum computational tasks [18–20], it has yet to be con-
cluded whether entanglement is in general necessary to obtain
some kind of quantum advantage, especially when noise is
taken into account. Indeed, various results suggest that in
certain setups, quantum computers can outperform their clas-
sical counterparts also without entanglement for some specific
definition of quantum advantage. For instance, it has been
shown that the Deutsch-Jozsa and Simon algorithms, when
implemented on mixed states which remain separable at all
times, induce nonclassical features for the output state [21].

Calling the oracle in the quantum regime only once provides
a small—but nonzero—amount of information about the com-
putational task. On the other hand, a single call of the oracle in
the classical case provides absolutely no information. Hence,
despite the fact that it does not show that an exponential ad-
vantage is kept in the presence of separable states, it indicates
that quantum computation without entanglement can be more
powerful than classical computing. The one clean qubit model
[22] allows for efficient estimation of the normalized trace of
an n-qubit unitary, which can be implemented efficiently in
terms of quantum gates, showing exponential speedup over
the best known classical algorithm [23]. The algorithm op-
erates on highly mixed quantum states, exhibiting a bounded
amount of entanglement across any bipartition [23]. The ques-
tion of whether or not quantum entanglement is necessary at
all in a general case in order to obtain a quantum speedup in
the one clean qubit model is still an open question [24–28].
In [29], it has been shown that states with a large value of
geometric entanglement are not often useful for speedup in
measurement-based quantum computation. Moreover, it has
been proven that universal quantum computation is possible
even with arbitrarily little entanglement [20].

In this article, we investigate quantum resources in
the Bernstein-Vazirani (BV) algorithm, which allows us to
identify an unknown bit string a encoded as a linear function
in an oracle [30,31]. While it is not possible to obtain complete
information about the bit string by calling the oracle only
once in the classical case, in the quantum domain a single call
of the oracle is enough for this purpose [30]. We introduce
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the probabilistic Bernstein-Vazirani algorithm, where the goal
is to guess the bit string a after a single call of the oracle
with maximal probability. While the BV algorithm does not
require entanglement in principle [30], our methods allow
for a rigorous quantitative investigation of entanglement and
coherence in the protocol. We estimate the maximal guess-
ing probability for all pure initial states, and we show that
without entanglement in the initial and the final states, the
performance is directly related to the amount of coherence in
the initial state.

For the BV algorithm operating on mixed states, we in-
vestigate the role of purity for the performance. We give a
closed expression for the maximal probability to guess the
bit string as a function of purity, and we also provide the
quantum states achieving optimal performance. Our results
reveal that optimal performance for a given amount of purity
is achieved for pseudopure states, which are useful for NMR
quantum computing [18,32]. These results suggest that NMR
is a suitable platform for implementing the BV algorithm,
supporting earlier experiments in this direction [33]. Another
type of quantum algorithm that is relevant for NMR quantum
computing is the one clean qubit model [22]. For this model,
we show that a large class of quantum resource and correlation
quantifiers can be made arbitrarily small without influencing
the performance of the algorithm for normalized trace esti-
mation. This includes widely used quantifiers of multipartite
entanglement, general quantum correlations, quantum coher-
ence, and mutual information.

II. COHERENCE AND ENTANGLEMENT
QUANTIFICATION IN MULTIPARTITE SYSTEMS

We will now present quantifiers of coherence and entan-
glement that will be used in this article. Given an incoherent
reference basis {|i〉}, the amount of coherence of a state ρ can
be quantified via the robustness of coherence [34,35],

R(ρ) = min
τ

{
s � 0 :

ρ + sτ

1 + s
∈ I

}
. (1)

Here, τ is a density matrix and I is the set of incoherent states,
i.e., quantum states that are diagonal in the reference basis. A
similar measure can also be defined for quantum entanglement
[36,37] and general quantum resource theories, where it has
an operational interpretation via channel discrimination tasks
[38,39]. For bipartite systems, the reference basis is naturally
defined as {|i〉 | j〉}, where {|i〉} and {| j〉} are the incoherent
bases of the individual subsystems. Extension to multipartite
systems is done in a similar fashion [40–42]. A maximally
coherent state in a basis of interest is the superposition of all
the orthonormal vectors in that basis with the same magnitude
of coefficients [42].

To quantify entanglement in multipartite systems, we will
use distance-based measures of the form [6,43,44]

E (ρ) = inf
σ∈S

D(ρ, σ ), (2)

where S is the set of separable states. D is a (pseudo)distance
fulfilling D(ρ, σ ) � 0 with equality if and only if ρ =
σ , and the data processing inequality D(�[ρ],�[σ ]) �
D(ρ, σ ) for any quantum operation �. An important

example for a distance with such properties is the quantum
relative entropy S(ρ||σ ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ ], and
the corresponding entanglement measure is known as the rel-
ative entropy of entanglement [43,44]. Another entanglement
measure that will be used in this article is the geomet-
ric entanglement [45–47], which is obtained from Eq. (2)
by choosing D(ρ, σ ) = 1 − F (ρ, σ ) with fidelity F (ρ, σ ) =
{Tr[(

√
ρσ

√
ρ )1/2]}2. We note that quantum coherence can

also be quantified with measures of the form (2) if the set of
separable states S is replaced by the set of incoherent states I
[42,48].

III. PROBABILISTIC BERNSTEIN-VAZIRANI
ALGORITHM

The goal of the BV algorithm [30] is to find an unknown N-
bit string a = a1, . . . , aN with ai ∈ {0, 1} encoded as a linear
function

f (x) = a · x mod 2 =
(

N∑
k=0

akxk

)
mod 2 (3)

on the N-bit string x = x1, . . . , xN . In particular, one aims to
find the string a with a minimal number of queries of the
function f . Classically, the optimal strategy is to evaluate f
for each input x where one of the bits is set to 1, and all the
other N − 1 bits are set to 0, resulting in N queries of the
function f [30].

However, in the quantum domain we only need to make
one call of the function to learn the bit string a [30]. For
this, we make the standard assumption that the bit string x
is encoded into an N-qubit quantum state of the form |x〉 =
⊗N

i=1 |xi〉. Moreover, we assume that the function is encoded
into an oracle, which is represented by a unitary Ua acting on
states of the form |i〉 |x〉 with i ∈ {0, 1} as follows:

Ua(|i〉 |x〉) = |i ⊕ f (x)〉 |x〉 , (4)

and ⊕ denotes addition modulo 2. In the following, the first
qubit will be called the oracle register, whereas the remaining
N qubits will be called system qubits. If the oracle unitary Ua is
applied onto the state |−〉 |+〉⊗N with |±〉 = (|0〉 ± |1〉)/

√
2,

the final state is given by
∑

x(−1)a·x |−〉 |x〉 /2N . Discarding
the oracle register and applying a Hadamard gate on each
of the qubits, the overall state is converted into |a〉. Finally, the
bit string a can be obtained by measuring each of the qubits in
the computational basis [30].

So far we have seen that the BV algorithm shows optimal
performance if the initial state is |−〉 |+〉⊗N . We will now
analyze the performance of the algorithm for general input
states. In general, we cannot expect that the procedure works
optimally if the initial state is different from |−〉 |+〉⊗N . To
capture the performance in the general setup, we assume that
we have no prior knowledge about the bit string a, i.e., each of
the possible bit strings can occur with equal probability. Since
there are 2N possible bit strings, the probability of each bit
string is given by 1/2N . To learn a, we can apply the oracle
unitary Ua onto a general quantum state ρ and perform a gen-
eral quantum measurement onto the final state UaρU †

a . We call
this protocol the probabilistic Bernstein-Vazirani algorithm.
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The performance of the probabilistic BV algorithm can
now be defined via the optimal probability to guess the bit
string a, corresponding to the maximal probability to guess
the oracle unitary Ua. This is analogous to the definition for
the average guessing probability in channel discrimination
tasks; see, e.g., [39]. For a set of quantum channels �i, each
applied with probability pi, channel discrimination can be
achieved by applying the channel onto an initial quantum state
ρ and performing a positive operator-valued measure (POVM)
{Mi} on the final state. The average probability for correctly
guessing the channel is then given by

∑
i piTr[�i(ρ)Mi]. We

are now ready to define the performance of the probabilistic
BV algorithm as the maximum probability of success to guess
the bit string a over all POVM measurements:

P(ρ) = 1

2N
max
{Ma}

∑
a

Tr[UaρU †
a Ma]. (5)

Having defined the performance of the BV algorithm for
general input states, we will now provide a closed expression
for the performance for all pure initial states. For this, note
that every pure state of N + 1 qubits can be written as

|μ〉 = a |+〉 |φ′〉 + b |−〉 |φ〉 , (6)

where |φ〉 and |φ′〉 are states of N qubits. In the following, cx

denote the coefficients of the state |φ〉 in the computational
basis, i.e., |φ〉 = ∑

x cx |x〉.
Theorem 1. The performance of the probabilistic BV algo-

rithm for a pure initial state is given as

P(|μ〉) = 1

2N

[
1 + |b|2R(|φ〉〈φ|) + 2|b|

∑
x 	=0

|cx|

×
(√

1 − |b|2
(

1 − |c2
0|

)
− |b||c0|

)]
, (7)

where R is the robustness of coherence in the computational
basis.

We refer the reader to Appendix A for the proof of
the theorem. As we further discuss in Appendix A, max-
imal performance P(|μ〉) = 1 is achievable only if |μ〉 =
|−〉 |ψmax〉, where |ψmax〉 is a maximally coherent state of
N qubits. Moreover, we can generalize the result of the
theorem to a class of mixed quantum states. We assume
that we initiate the BV algorithm in the mixed state of the
form ρ = ∑

i pi |μi〉〈μi| with |μi〉 = ai |+〉 |φ〉 + bi |−〉 |ψi〉,
|ai|2 + |bi|2 = 1, and 〈00 · · · 0|ψi〉 = 0. For this class of
mixed states, the performance of the algorithm is given by

P(ρ) = 1 + R′(ρ)

2N
, (8)

where R′ is the robustness of coherence in the basis
{|+〉 |φ〉} ∪ {|−〉 |x〉}. See Appendix A for more details.

We will now compare the probabilistic version of the BV
algorithm presented above to its classical counterpart. For this,
we first define the classical version of the probabilistic BV al-
gorithm. In the classical case, the BV algorithm transforms the
N + 1 bit string (i, x) into (i ⊕ f (x), x). Assuming that each
of the possible functions f is applied with equal probability

1/2N , the performance of the classical BV algorithm can be
defined as the probability for guessing the bit string a if the
algorithm is applied onto the bit string (i, x). As we will see in
Appendix B, the probability for correctly guessing a is given
by

Pc(x) =
{

1
2N if x = 0,

1
2N−1 otherwise.

(9)

Comparison of Eqs. (9) and (7) shows that in the classical
version of the algorithm it is not possible to achieve a per-
formance higher than 1/2N−1 in one call of the oracle. A
better performance is possible in the quantum case, where
optimal performance P = 1 is achievable for some initial
states.

IV. PROBABILISTIC BERNSTEIN-VAZIRANI
ALGORITHM WITHOUT ENTANGLEMENT

As can be seen from Theorem 1, quantum coherence plays
an important role in the performance of the BV algorithm. The
performance of the algorithm is given explicitly in Eq. (7) and
here the total initial state |μ〉 can be an entangled one or a
separable one. As entanglement is considered an expensive
resource in quantum-information theory [6], it is reasonable
to investigate the performance of the algorithm in the absence
of entanglement between all the N + 1 qubits both before and
after the action of the oracle.

We will first focus on pure initial states, and we extend our
discussion to mixed states below. As we show in Appendix C,
for the probabilistic BV algorithm to exhibit nontrivial per-
formance above 1/2N [49] without entanglement in the initial
and the final state, the total initial state must have the form

|μ〉 = |−〉 |φ〉 (10)

with an N-qubit product state |φ〉. The action of the unitary Ua

on such states can be written as

Ua(|−〉 |φ〉) = |−〉 ⊗ (Va |φ〉), (11)

where the N-qubit unitary Va can be implemented by applying
σz on the ith qubit conditioned on the value of ai, i.e., Va =
⊗N

i=1σ
ai
z,i. Note that Va does not create entanglement in the N-

qubit system.
To be certain that entanglement does not play any role in

the algorithm, we will also check whether the optimal POVM
{Ma} in Eq. (5) is implementable without using entanglement.
While the density matrix right before applying the POVM is
a mixture of nonentangled states that we need to distinguish
to deduce the bit-string a, it could still be that performing
the POVM maximizing Eq. (5) requires nonlocal operations
[50,51]. In Appendix D we show that the optimal POVM is
indeed implementable without entanglement.

As we directly see from Theorem 1, for states of the
form (10) the performance can be given as P(|−〉 |φ〉) =
[1 + R(|φ〉)]/2N . This result applies regardless of whether the
N-qubit state |φ〉 is a product or not, and it also extends to
mixed states:

P(|−〉〈−| ⊗ σ ) = 1 + R(σ )

2N
. (12)
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See Appendix A for more details. The relation Eq. (12) sug-
gests an operational meaning for the robustness of coherence
of ρ in terms of quantum computation. We note that in
general entanglement must be implemented in order for the
POVM to achieve optimal performance for mixed states as in
Eq. (12).

V. MULTIPARTITE ENTANGLEMENT IN THE
BERNSTEIN-VAZIRANI ALGORITHM

As we have seen so far, entanglement is not required to
reach optimal performance. If the initial state is given by
|−〉 |+〉⊗N , it is possible to perfectly learn the bit string a
with a single application of the oracle unitary. We will now go
one step further and investigate how multipartite entanglement
between the N system qubits influences the performance of
the probabilistic BV algorithm. We investigate the relation
between robustness of coherence and geometric entanglement
for N-qubit systems, and we show that a large amount of
geometric entanglement in the system state can be disadvan-
tageous for the performance.

For this, we focus on N-qubit W-states [52]:

|�W 〉 = 1√
N

(
eiφ1 |ψ1〉 |ψ2〉 · · · |ψ⊥

N 〉 + eiφ2 |ψ1〉

· · · |ψ⊥
N−1〉 |ψN 〉 + · · · + eiφN |ψ⊥

1 〉 |ψ2〉
· · · |ψN 〉 )

, (13)

where |ψi〉 and |ψ⊥
i 〉 are orthogonal. Note that for N = 3,

the W-states are the only type of states achieving maximal
geometric entanglement [53]. As we show in Appendix E, a
W-state for N > 2 is never maximally coherent. For N = 3
this implies that for initial states of the form |−〉 |ψ〉 there
is a threshold on the geometric entanglement of |ψ〉 above
which it is not possible to reach optimal performance P = 1.
This result is similar in spirit to the results presented in [29],
showing that quantum states can be too entangled to be useful
for quantum computation.

VI. PURITY IN THE PROBABILISTIC
BERNSTEIN-VAZIRANI ALGORITHM

We will now apply the results presented above, obtaining
the optimal performance of the BV algorithm in the presence
of noise. For this, we assume that the initial state of the
algorithm has bounded purity, i.e., Tr[ρ2] � γ . The following
theorem provides the optimal initial states in this case.

Theorem 2. Having the oracle register in the state |−〉,
the optimal initial state of the N-qubit system maximizing
the performance of the BV algorithm with bounded purity
Tr[ρ2] � γ is given by

ρmax,γ = d

2λ1
|ψmax〉〈ψmax| + λ2

2λ1
1 (14)

with

λ1 =
d
√

1 − 1
d

2
√

γ − 1
d

, λ2 =
√

1 − 1
d√

γ − 1
d

− 1, (15)

and |ψmax〉 being a maximally coherent state. The optimal
performance in this case is given as

P(ρmax,γ ) = 1

d
+ d − 1

2λ1
, (16)

where d = 2N .
We refer the reader to Appendix F for the proof.
As we see, the state maximizing the robustness of coher-

ence for a bounded fixed amount of purity is a pseudopure
state that can be prepared with the NMR technique [18,54,55].
Also, if we choose |ψmax〉 to be a product state, ρmax,γ will
have no entanglement. As the performance P(ρ) is monotoni-
cally related to the robustness of coherence, we conclude that
NMR quantum computing is a suitable platform for imple-
mentation of the probabilistic BV algorithm.

Several results presented in this article also apply for a
generalized version of the BV algorithm where, instead of
qubits, we have particles with a D-dimensional Hilbert space.
More details can be found in Appendix G.

VII. QUANTUM RESOURCES AND THE POWER
OF ONE QUBIT

Earlier we showed that NMR is a suitable platform for
implementing the BV algorithm. Another quantum computa-
tional model that is often discussed in the context of NMR is
deterministic quantum computation with one qubit (DQC1)
[22]. Here, the initial state is given by ρ ⊗ 1N/2N , with
a single-qubit state ρ = (1 + ασx )/2, maximally mixed N-
qubit state 1N/2N , and parameter 0 � α � 1. As discussed in
[23], it is possible to efficiently estimate the normalized trace
of an N-qubit unitary UN by applying a controlled version of
it to the initial state, with the first qubit as the control and the
remaining N qubits as the target:

VN = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ UN . (17)

We assume that VN can be implemented efficiently in terms
of quantum gates. By performing a measurement on the first
qubit of the final state, it is possible to efficiently estimate
the normalized trace Tr(UN )/2N whenever α > 0 [23]. As of
today, no efficient classical algorithm for solving this problem
is known [23].

Various works have tried to identify the reason for the
quantum speedup in this task by analyzing the properties
of the quantum states of the processor in the algorithm
[23,24,27,56]. The amount of bipartite entanglement in the
final state was analyzed in [23]. The authors investigated
entanglement generated by the DQC1 algorithm in different
bipartitions, as quantified by negativity [57,58]. The authors
of [23] concluded that negativity is bounded by a constant,
which is independent of the number of qubits. Motivated
by these findings, it has been suggested that other types of
quantum correlations, such as quantum discord [59,60], are
responsible for the speedup, since a typical instance of the
algorithm exhibits nonzero quantum discord in a certain bi-
partition [24]. Nevertheless, there is evidence for exponential
speedup even without discord [27], and it has been argued
that the performance of trace estimation with DQC1 is related
instead to quantum coherence in the algorithm [56].
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We will now show that normalized trace estimation with
DQC1 can be implemented efficiently even though a very
general class of quantum resource and correlations quantifiers
is arbitrarily small in every step of the algorithm. We will start
our analysis with general quantifiers of entanglement, and we
extend it to other measures below. We will show that any
measure of entanglement of the form (2) is bounded by a con-
stant in the DQC1 protocol. For this, note that the maximally
mixed state of N + 1 qubits 1N+1/2N+1 is fully separable, and
thus E (σ ) � D(σ, 1N+1/2N+1) for any (N + 1)-qubit state σ .
Recall that the initial state of the DQC1 protocol is given by
ρ ⊗ 1N/2N with a qubit state ρ. After the application of VN ,
we obtain

E

(
VNρ ⊗ 1N

2N
V †

N

)
� D

(
VNρ ⊗ 1N

2N
V †

N ,
1N+1

2N+1

)

= D

(
ρ ⊗ 1N

2N
,
1N+1

2N+1

)
= D

(
ρ,

11

2

)
. (18)

Here, we used the fact that any distance D that fulfills the
data processing inequality is invariant under unitaries and un-
der attaching or discarding ancillary systems, i.e., D(ρ, σ ) =
D(UρU †,UσU †) and D(ρ, σ ) = D(ρ ⊗ τ, σ ⊗ τ ).

Recalling that DQC1 allows for efficient estimation of the
normalized trace of UN for any ρ = (1 + ασx )/2 as long as
α > 0 [23], we see that multipartite entanglement in the algo-
rithm is bounded by a constant as long as D(ρ, 1/2) � c for
all qubit states ρ. For any continuous distance D, this constant
can be chosen arbitrarily small by choosing α appropriately.

Note that the form of the unitary VN is not relevant in
Eq. (18); the result holds for any unitary acting on the total
(N + 1)-qubit state. Because of this, it applies also to the inter-
mediate states of the algorithm ρi, which are the states of the
quantum processor after the application of i quantum gates.
This proves that normalized trace estimation with DQC1 is
possible with an arbitrarily small amount of multipartite en-
tanglement at all times.

The method presented above applies not only to entan-
glement, but to a general class of quantum resource and
correlation quantifiers that vanish on maximally mixed states.
To see this, let us consider a general quantity of the form

M(ρ) = inf
σ∈F

D(ρ, σ ), (19)

where F is some set of (N + 1)-qubit states containing the
maximally mixed state, and D is a distance with the properties
discussed above. It is immediately clear that the arguments
from Eq. (18) apply to any such quantity. To see that the above
results apply to the quantum mutual information

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (20)

recall that the mutual information can also be written as in
Eq. (19) if D is the quantum relative entropy and F is the
set of product states [61]. Here, the systems A and B can be
any subsets of the N + 1 qubits. The results also apply to
various measures of quantum correlations beyond entangle-
ment [59,60] if F is the set of classically correlated states
ρcc = ∑

i, j pi j |ai〉〈ai| ⊗ |b j〉〈b j | or classical-quantum states
ρcq = ∑

i pi |ai〉〈ai| ⊗ σi with local orthonormal bases {|ai〉}
and {|b j〉} and general local states σi. Our results also apply to

the relative entropy of coherence [48] if F is the set of inco-
herent states and D is the quantum relative entropy. Finally, if
F contains only the maximally mixed state of N + 1 qubits,
the quantifier M becomes a measure of purity [62–64].

In summary, we see that efficient normalized trace esti-
mation with DQC1 is possible even if the protocol exhibits
an arbitrarily small amount of multipartite entanglement, mu-
tual information, general quantum correlations, coherence, or
purity in every step of the computation. We expect that our
methods are also applicable to other quantum algorithms op-
erating on mixed states, such as the mixed-state version of
Shor’s algorithm [65,66]. The role of coherence in this im-
plementation of Shor’s algorithm was studied very recently in
[67].

VIII. CONCLUSION

In this work, we have introduced and studied the prob-
abilistic version of the Bernstein-Vazirani algorithm, where
the goal is to optimally guess a bit string a encoded into an
oracle unitary. We have evaluated the optimal performance
of the algorithm for all pure initial states, using the maximal
guessing probability of the bit string to quantify the perfor-
mance. For the case in which no entanglement is present in
the initial and the final state of the algorithm, we show that
the performance is directly related to the amount of coherence
in the initial state. We also show that a large amount of geo-
metric entanglement can prevent the algorithm from reaching
optimal performance.

Our methods are also applicable to quantum computation
with mixed initial states. For the probabilistic Bernstein-
Vazirani algorithm operating on noisy states, we show that
pseudopure states achieve optimal performance for a given
amount of purity. Since pseudopure states are useful in NMR
quantum computation, our results suggest that NMR is a
suitable platform for the probabilistic Bernstein-Vazirani al-
gorithm. We further analyze quantum features in the DQC1
model, allowing us to estimate the normalized trace of an
n-qubit unitary, which can be implemented efficiently in terms
of quantum gates. We show that the DQC1 circuit can be
implemented efficiently with a vanishingly small amount of
quantum resources and correlations. This applies to a gen-
eral class of resource and correlation quantifiers, including
multipartite entanglement, mutual information, quantum co-
herence, and purity. These results suggest that the reason for
the speedup of DQC1 is unlikely to be rooted in the properties
of the quantum states of the processor.
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APPENDIX A: PROOF OF THEOREM 1

To prove the result in Theorem 1, we first prove Eq. (12) in
the main text. The robustness of asymmetry of a given density
matrix ρ is defined as follows [35]:

RA(ρ) = min
τ

{
s � 0 :

ρ + sτ

1 + s
∈ F

}
, (A1)

in which F is the set of symmetric states with respect to
the action of a group. As indicated in [35], the robustness of
asymmetry can be expressed as a semidefinite program (SDP).
As the resource theory of quantum coherence can be seen as a
special case of resource theory of asymmetry by considering
the symmetry with respect to the U (1) group [35], we can
extrapolate the SDP for the robustness of coherence and it
can be expressed as the following SDP maximization over X
[34,35]:

R(ρ) = max
X

[Tr(ρX ) − 1], (A2a)

X � 0, (A2b)

E (X ) = 1, (A2c)

where E (X ) = 1
d

∑
a uaXu†

a and ua = ∑
x ei 2π

d ax |x〉〈x|.
To prove the expression in Eq. (12) of the main text, we will

show that P(|−〉〈−| ⊗ ρ) is both lower- and upper-bounded
by [1 + R(ρ)]/d with d = 2N . As discussed in the main text,
the action of the oracle unitaries Ua onto states of the form
|−〉〈−| ⊗ ρ can be expressed as

Ua |−〉〈−| ⊗ ρU †
a = |−〉〈−| ⊗ VaρV †

a (A3)

with the N-qubit unitaries Va = ⊗N
i=1σ

ai
z,i. The performance of

the probabilistic BV algorithm can thus be written as

P(|−〉〈−| ⊗ ρ) = max
{Ma}

1

d

∑
a

Tr(VaρV †
a Ma). (A4)

To prove Eq. (12) of the main text, we will now show that

max
{Ma}

1

d

∑
a

Tr(VaρV †
a Ma) � 1 + R(ρ)

d
. (A5)

For this, we define the following operators:

M ′
a = 1

d
VaXV †

a , (A6)

where X is the operator maximizing the SDP in Eqs. (A2).
The operators M ′

a are positive because X is positive. Since
E (X ) = 1, we have

1

d

d∑
k=1

Xx,x = 1, (A7)

where Xx,y are the components of the matrix X . Thus, the
diagonal elements of X are the same and equal to 1. Noting
that 1

d

∑
a ei 2π

D a·(x−x′ ) = δx,x′ and Va are diagonal unitaries, we
have∑

a

M ′
a = 1

d

∑
f

VaXV †
a =

∑
x,y

1

d

∑
a

ei 2π
D a·(x−y)Xx,y |x〉〈y| = 1.

(A8)

Therefore, {M ′
a} forms a POVM. Thus, we must have

1

d

∑
a

Tr(VaρV †
a M ′

a) = 1

d

∑
a

1

d
Tr(VaρV †

a VaXV †
a )

= 1

d
Tr(ρX ) = 1 + R(ρ)

d

� max
{Ma}

1

d

∑
a

Tr(VaρV †
a Ma). (A9)

Above, we use the definition of the robustness of coherence to
obtain Tr(ρX ) = 1 + R(ρ).

Now, we are going to indicate that [1 + R(ρ)]/d is also an
upper bound for the performance. From the definition of the
robustness of coherence, it follows that

ρ = [1 + R(ρ)]σ − R(ρ)τ, (A10)

with some quantum state τ and some incoherent state σ .
Hence, for any POVM {Ma} we have∑

a

Tr(VaρV †
a Ma) = [1 + R(ρ)]

∑
a

Tr(VaσV †
a Ma)

− R(ρ)
∑

a

Tr(VaτV †
a Ma)

� [1 + R(ρ)]
∑

a

Tr(VaσV †
a Ma). (A11)

As σ is an incoherent state, it holds that VaσV †
a = σ and

∑
a

Tr(VaσV †
a Ma) = Tr

(
σ

∑
a

Ma

)
= 1. (A12)

Thus, we arrive at the inequality

max
{Ma}

1

d

∑
a

Tr(VaρV †
a Ma) � 1 + R(ρ)

d
. (A13)

From Eqs. (A9) and (A13) we have

max
{Ma}

1

d

∑
a

Tr(VaρV †
a Ma) = 1 + R(ρ)

d
. (A14)

This completes the proof of Eq. (12) of the main text.
Now we prove the result in Theorem 1. Recall that the

oracle acts as follows:

|μ〉 = a |+〉 |φ′〉 + b |−〉 |φ〉 → |μa〉
= a |+〉 |φ′〉 + b |−〉 |ψa〉 . (A15)

We now reorder the final state |μa〉 in a suitable manner. Let
us consider the computational basis {|x〉}x. We have

|ψa〉 =
∑

x

cx(−1)a·x |x〉 , (A16)

where cx is the coefficient of the state |φ〉 = ∑
x cx |x〉. For

convenience, we denote 0 = 00 · · · 0 (the string with N zeros).
Hence,

|μa〉 = a |+〉 |φ′〉 + b |−〉 (c0 |0〉⊗N ) + b |−〉

×
( ∑

x	=0

cx(−1)a·x |x〉
)

. (A17)
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Here the dimension of the whole system along with the oracle
register is considered to be 2N+1. Now,

|μa〉 =
√

|a|2 + |b|2|c0|2|ψ ′
0〉 + b

∑
x	=0

cx(−1)a·x|ψ ′
x〉 (A18)

with the states

|ψ ′
0〉 = a |+〉 |φ′〉 + bc0 |−〉 |0〉⊗N√

|a|2 + |b|2|c0|2
(A19)

and |ψ ′
x〉 = |−〉 |x〉 for x 	= 0. Note that the state |ψ ′

x〉 is or-
thogonal to the state |ψ ′

0〉 for all x 	= 0. Constructing a new
basis with these orthogonal states, we can rewrite the final
state as

|μa〉 =
∑

x

c′
x(−1)a·x |ψ ′

x〉 (A20)

with c′
0 =

√
|a|2 + |b|2|c0|2 and c′

x = bcx for x 	= 0.
Using this result, we see that for an initial state |μ〉, the

oracle unitary acts in the same way as the unitary U ′
a =∑

x(−1)a·x |ψ ′
x〉〈ψ ′

x|, which is diagonal in the basis {|ψ ′
x〉}x.

Thus, we can estimate the optimal performance by evaluating
the maximal probability to distinguish the unitaries U ′

a, when
applied on the state |μ〉. In full analogy to Eq. (A14), we
obtain

P(|μ〉) = 1 + R′(|μ〉〈μ|)
2N

, (A21)

where R′ is the robustness of coherence in the basis {|ψ ′
x〉}x.

Using the structure of the states |ψ ′
x〉 and the properties

of the robustness of coherence, this result can be expressed
in terms of the robustness of coherence R with respect to the
computational basis:

P(|μ〉) = 1

2N

[
1 + |b|2R(|φ〉〈φ|) + 2|b|

∑
x 	=0

|cx|

×
(√

1 − |b|2(1 − |c2
0|

) − |b||c0|
)]

. (A22)

This completes the proof of Theorem 1.
As we can see from Eq. (A21), if we want to achieve the

maximum performance P = 1, we must have R(|μ〉〈μ|) =
2N − 1. Thus, |μ〉 must be a maximally coherent state in the
basis {|ψ ′

x〉}x, which implies

|b|2|cx|2 = 1

2N
∀x 	= 0, (A23)

|a|2 + |b|2|c0|2 = 1

2N
. (A24)

As
∑

x	=0 cx = 1 − |c0|2 and |a|2 = 1 − |b|2, we can rewrite
the above equations as follows:

|b|2|c0|2 = 1

2N
, (A25)

1 − |b|2(1 − |c0|2) = 1

2N
. (A26)

Solving these two equations for |b| and |c0|, we obtain |b| = 1
and c0 = 1√

2N
. From Eq. (A23) we also have |cx| = 1√

2N
for

all x. This implies that in order to have the maximum per-
formance, the initial state must be |μ〉 = |−〉 |ψmax〉, where

|ψmax〉 is a maximally coherent state in the computational
basis.

Furthermore, we can generalize the result of Theorem 1 for
mixed states. If we initiate the BV algorithm in a state of the
form ρ = ∑

i pi |μi〉〈μi| with |μi〉 = ai |+〉 |φ〉 + bi |−〉 |ψi〉,
|ai|2 + |bi|2 = 1, and 〈00 · · · 0|ψi〉 = 0, the action of the ora-
cle unitary on this state is

U =
∑
x	=0

(−1)a·x |−〉〈−| ⊗ |x〉〈x| + |+〉〈+| ⊗ |φ〉〈φ| .

(A27)
In this case and in the basis {|+〉 |φ〉} ∪ {|+〉 |x〉}x	=0, the ac-
tion of U is the same as the action of the oracle unitary on
the system qubit in the computational basis when the oracle
register is in the state |−〉. Hence, by Eq. (A14) we have

P(ρ) = 1 + R′(ρ)

2N
(A28)

in which R′(ρ) is the robustness of coherence in the basis
{|+〉 |φ〉} ∪ {|+〉 |x〉}x.

APPENDIX B: CLASSICAL PROBABILISTIC
BV ALGORITHM

In this Appendix, we provide the success probability of the
classical BV algorithm. For the case x = 0 we have f (x) = 0,
which means that the oracle does not imprint any information
onto the bit string (i, x). Thus, the probability of success in
this case is equal to 1/2N . Now we prove that for any r ∈
{0, 1} and any string x 	= 0 with xi ∈ {0, 1}, there are 2N−1

strings a with ai ∈ {0, 1} such that a · x mod 2 = r. Note that
N is the length of the strings a and x. We have

a · x mod 2 =
(∑

i

aixi mod 2

)
mod 2. (B1)

As x 	= 0, there is at least one xl = 1 (l ∈ {1, 2, . . . , N}).
Therefore,

a · x mod 2 =
([ ∑

i 	=l

aixi

]
mod 2 + al

)
mod 2 = r. (B2)

From this result we see that there are 2N−1 different bit strings
a for a given r. Thus, knowing (i ⊕ f (x), x) for any x 	= 0,
the success probability for correctly guessing a is equal to
1/2N−1.

APPENDIX C: AVOIDING ENTANGLEMENT IN
THE BV ALGORITHM

We prove that for the probabilistic BV algorithm to exhibit
performance above 1/2N without entanglement in the initial
and the final state, the total initial state must have the form

|μ〉 = |−〉 |φ〉 (C1)

with an N-qubit product state |φ〉. Recall that any pure initial
state of N + 1 qubits can be written as |μ〉 = a |+〉 |φ′〉 +
b |−〉 |φ〉. After the action of the oracle unitary Ua, the state
takes the form

Ua |μ〉 = a |+〉 |φ′〉 + b |−〉 |ψa〉 (C2)
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with |ψa〉 = ∑
x cx(−1)a·x |x〉. Tracing out the oracle register,

the reduced state of the N-qubit system takes the form

ρa = |a|2 |φ′〉〈φ′| + |b|2 |ψa〉〈ψa| . (C3)

For the state Ua |μ〉 to be separable for all bit strings a, it must
be either |a| = 1 or |b| = 1, or |ψa〉 = |φ′〉 for all a. In the
latter case, the final state Ua |μ〉 does not depend on a, which
means that the performance will be minimal in this case. The
same is true if |a| = 1. The only remaining case is |b| = 1,
which proves that the initial state must be of the form (C1).

The arguments presented above show that the only possi-
bility to avoid entanglement in the initial and the final state of
the algorithm (while maintaining the nontrivial performance)
is to initialize the algorithm in a state of the form |−〉 |φ〉, with
a product state |φ〉.

APPENDIX D: OPTIMAL POVM IN THE ABSENCE
OF ENTANGLEMENT

Here, we prove that in the case of qubits initialized in |μ〉 =
|−〉 |φ〉, where |φ〉 = ⊗N

i=1 |φi〉, it is possible to achieve the
maximum in Eq. (5) with nonentangling measurements. For
this, we consider a POVM with elements Ma = ⊗N

i=1 M (i)
ai

,
where {M (i)

ai
} is a single-qubit POVM acting on the ith qubit.

Using the fact that the action of the oracle on |−〉 |φ〉 is to
implement the unitary Va = ⊗N

i=1σ
ai
z,i on |φ〉, we have

1

2N

∑
a

Tr[Ua |μ〉〈μ|U †
a Ma]

=
N∏

i=1

1

2

∑
ai

Tr
[
σ

ai
z,i |φi〉〈φi| σ ai

z,iM
(i)
ai

]
. (D1)

Now, as P(|μ〉〈μ|) is the maximum over all POVMs of the
right-hand side of Eq. (5), we have

P(|μ〉〈μ|) � max
{M (i)

ai }

N∏
i=1

1

2

∑
ai

Tr
[
σ

ai
z,i |φi〉〈φi| σ ai

z,iM
(i)
ai

]
. (D2)

Our goal is now to show that the inequality (D2) is actu-
ally an equality. To show this, we recall that P(|μ〉〈μ|) =
[1 + R(|φ〉〈φ|)]/2N ; see Eq. (12) of the main text. Using the
fact that for pure states the robustness of coherence and the
�1-norm of coherence coincide [35], and using the properties
of the �1-norm of coherence [68], the following equality is
true:

1 + R(|φ〉〈φ|) =
N∏

i=1

[1 + R(|φi〉〈φi|)]. (D3)

Now, we can choose Mi
ai

such that it satisfies the following
for any i ∈ [1, N]:

1

2
max
{M (i)

ai }

∑
ai

Tr
[
σ ai

z |φi〉〈φi| σ ai
z M (i)

ai

] = P(|−〉 |φi〉)

= 1 + R(|φi〉〈φi|)
2

. (D4)

This result comes from the fact that the BV algorithm in the
pure single-qubit case has its maximal performance equal to

[1 + R(|φi〉〈φi|)]/2. Finally, as

P(|μ〉〈μ|) � max
{M (i)

ai }

N∏
i=1

1

2

∑
ai

Tr
[
σ

ai
z,i |φi〉〈φi| σ ai

z,iM
(i)
ai

]

�
N∏

i=1

1

2
max
{M (i)

ai }

∑
ai

Tr
[
σ

ai
z,i |φi〉〈φi| σ ai

z,iM
(i)
ai

]
, (D5)

we deduce

P(|μ〉〈μ|) �
N∏

i=1

1 + R(|φi〉〈φi|)
2

= 1 + R(|φ〉〈φ|)
2N

. (D6)

As we know that P(|μ〉〈μ|) = [1 + R(|φ〉〈φ|)]/2N , we pro-
vided a concrete example of a nonentangling POVM that
allows us to maximize Eq. (5) for the case when the system
is in a pure product state of N qubits.

APPENDIX E: W-STATES CANNOT
BE MAXIMALLY COHERENT

Here we prove that W-states with the number of particles
N � 3 can never be maximally coherent. Let us consider the
most general form of a W-state in a given N-qubit system [52]:

|�W 〉 = 1√
N

(eiφ1 |ψ1〉 |ψ2〉 · · · |ψ⊥
N 〉 + eiφ2 |ψ1〉

· · · |ψ⊥
N−1〉 |ψN 〉 + · · · + eiφN |ψ⊥

1 〉 |ψ2〉 · · · |ψN 〉)

= 1√
N

[|ψ1〉 (eiφ1 |ψ2〉 · · · |ψ⊥
N 〉

+ · · · + eiφN−1 |ψ⊥
2 〉 · · · |ψN 〉)

+ |ψ⊥
1 〉 eiφN |ψ2〉 · · · |ψN 〉] (E1)

with {|ψi〉 , |ψ⊥
i 〉}N

i=1 forming a basis and φi are some phases.
Let us now define

|�〉N−1 = 1√
N − 1

(eiφ1 |ψ2〉 · · · |ψ⊥
N 〉

+ · · · + eiφN−1 |ψ⊥
2 〉 · · · |ψN 〉),

|�⊥〉N−1 = eiφN |ψ2〉 · · · |ψN 〉 . (E2)

Note that |�⊥〉N−1 is orthogonal to the state |�〉N−1. Hence
|�W 〉 can be expressed as

|�W 〉 =
√

N − 1√
N

|ψ1〉 |�〉N−1 + 1√
N

|ψ⊥
1 〉 |�⊥〉N−1 . (E3)

Substituting

|ψ1〉 = a |0〉 + b |1〉 , (E4)

|ψ⊥
1 〉 = b∗ |0〉 − a∗ |1〉 (E5)

with |a|2 + |b|2 = 1, we further obtain

|�W 〉 = |0〉
(√

N − 1√
N

a |�〉N−1 + 1√
N

b∗ |�⊥〉N−1

)

+ |1〉
(√

N − 1√
N

b |�〉N−1 − 1√
N

a∗ |�⊥〉N−1

)
.

(E6)
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Note that any N-qubit maximally coherent state |ψmax,N 〉
can be written as

|ψmax,N 〉 = 1√
2
(|0〉 |ψmax,N−1〉 + |1〉 |ψ ′

max,N−1〉), (E7)

where |ψmax,N−1〉 and |ψ ′
max,N−1〉 are (N − 1)-qubit maxi-

mally coherent states. Comparing Eqs. (E6) and (E7), we see
that for a W-state to be maximally coherent, it must be that the
(unnormalized) states

√
N−1√

N
a |�〉N−1 + 1√

N
b∗ |�⊥〉N−1 and

√
N−1√

N
b |�〉N−1 − 1√

N
a∗ |�⊥〉N−1 have the same norm. Eval-

uating the norm for these two states and equating them, we
obtain

(N − 1)|a|2 + |b|2 = (N − 1)|b|2 + |a|2. (E8)

This equation implies that |a|2 = |b|2. We have the exact same
reasoning for other qubits. Hence, for |�W 〉 to be a maximally
coherent state, it is necessary to have

|ψi〉 = |0〉 + eiθi |1〉√
2

, (E9)

|ψ⊥
i 〉 = |0〉 − eiθi |1〉√

2
(E10)

with some phases θi. Now we consider the following N-qubit
W-state:

|W 〉 = 1√
N

N∑
j=1

eiφ j |(+)N−1, (−) j〉 (E11)

with |(+)N−1, (−) j〉 = |+〉1 |+〉2 · · · |−〉 j · · · |+〉N and

|±〉 j = |0〉±eiθ j |1〉√
2

. We also define |1k〉 = eiθk |1〉 and |0k〉 = |0〉.
We want to see if |W 〉 is a maximally coherent state in the
computational basis. If it is a maximally coherent state, then
all the states in the computational basis occur with the same
probability. Since |(0)N−1, 1 j〉 = |0〉1 |0〉2 · · · |1〉 j · · · |0〉N
are the same vectors in the computational basis but with
different phases, provided that |W 〉 is a maximally coherent
state, they must have the coefficients with the magnitude of

1√
2N

while the state |W 〉 is expanded in the computational
basis. Expanding |W 〉 in the computational basis, we
denote the coefficient of the state |x〉 with f (|x〉), i.e.,
|W 〉 = ∑

x f (|x〉) |x〉. Let us first evaluate f ( |(0)N−1, 1k〉 )
and f (|0〉⊗N ):

f (|0〉⊗N ) = 1√
N2N

N∑
j=1

eiφ j , (E12)

f ( |(0)N−1, 1k〉 ) = 1√
N2N

( N∑
j=1

eiφ j − 2eiφk

)
. (E13)

If |W 〉 is a maximally coherent state, we must have

f (|0〉⊗N ) = 1√
N2N

N∑
j=1

eiφ j = eiα0

√
2N

, (E14)

f ( |(0)N−1, 1k〉 ) = 1√
N2N

( N∑
j=1

eiφ j − 2eiφk

)
= eiαk

√
2N

(E15)

for some αk and α0. As only the relative phases are important,
we set the phase α0 = 0 and we get the following equations:

N∑
j=1

eiφ j =
√

N, (E16)

N∑
j=1

eiφ j − 2eiφk =
√

Neiαk . (E17)

We can solve this set of equations for all φk . Substituting the
first equation in the second one and simplifying it, we obtain

√
N

1 − eiαk

2
= eiφk

⇐⇒
√

N

2

√
1 − cos αkei arctan

( − sin αk
1−cos αk

)
= eiφk . (E18)

These equations imply that cos αk = 1 − 2
N and

φk = ± arctan
| sin αk|

|1 − cos αk| = ± arctan
√

N − 1. (E19)

Now, let us calculate f (|0〉⊗N−2 ⊗ |1〉 ⊗ |1〉):

f (|0〉⊗N−2 ⊗ |1〉 ⊗ |1〉)

= 1√
N2N

( N∑
j=1

eiφ j − 2eiφN−1 − 2eiφN

)
. (E20)

If the |W 〉 state is a maximally coherent state, this coefficient
should also be equal to eiθ√

2N
for some phase θ . Substituting

φk = ± arctan
√

N − 1 and
∑N

j=1 eiφ j = √
N in Eq. (E20) and

equating the coefficient with eiθ√
2N

, we have

1√
2N

[
1 − 2√

N

(
e±i arctan

√
N−1 + e±i arctan

√
N−1

)] = eiθ

√
2N

.

(E21)

Simplifying the above equation, we obtain

1 − 2√
N

(
e±i arctan

√
N−1 + e±i arctan

√
N−1

) = eiθ . (E22)

The last equation does not have any solutions for N ∈ N and
N > 2. This proves that the magnitude of coefficients of the
states |0〉⊗N−2 ⊗ |1, 1〉 and |(0)N−1, 1k〉, when we expand the
|W 〉 state in the computational basis, cannot be the same and is
equal to 1√

2N
. This proves that a W-state cannot be maximally

coherent for N > 2.

APPENDIX F: COHERENCE OF THE STATES
WITH A BOUNDED AMOUNT OF PURITY

To prove the results discussed in Theorem 2, first we show
that for any pseudopure maximally coherent state, the robust-
ness of coherence coincides with the �1-norm of coherence,
defined as C�1 (ρ) = ∑

i 	= j |ρi j | [48]. Consider that the pseu-
dopure maximally coherent state, which we denote here by
ρs, is defined as

ρs = p |ψmax〉 〈ψmax| + (1 − p)1d , (F1)
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in which d is the dimension of the Hilbert space, 0 � p � 1,
and |ψmax〉 is a maximally coherent state. For C�1 (ρs), we have

C�1 (ρs) =
∑

x,y,x 	=y

|ρs,xy| = p(d − 1). (F2)

Here, ρs,xy are the elements of the density matrix of ρs in
the basis {|x〉}. We use the SDP form of the robustness of
coherence to evaluate R(ρs):

R(ρs) = max
X

Tr(ρsX ) − 1

=
[

p〈ψmax|X ∗|ψmax〉 + (1 − p)
1

d
Tr(X ∗)

]
− 1, (F3)

where X ∗ is the matrix maximizing the SDP.
Referring to Eq. (A7), we know that the diagonal elements

of the matrix X ∗ are the same and are equal to 1 and also it
is a positive matrix, hence we can write X ∗ ≡ dρx with some
quantum state ρx. We further obtain

max
X

Tr(ρsX ) − 1 = d p 〈ψmax|ρx|ψmax〉 − p. (F4)

Note that the restriction on X ∗ only demands that all
the diagonal elements of ρx are the same. Now, the term
〈ψmax| ρx |ψmax〉 in Eq. (F4) is maximum when we consider ρx

as the maximally coherent state |ψmax〉〈ψmax|, which fulfills
the criterion of X ∗. This can be seen as X ∗ = d |ψmax〉〈ψmax|
maximizes the SDP for ρs. Thus

R(ρs) = p(d − 1) = C�1 (ρs). (F5)

Now we use the Lagrange multipliers method to maximize
the value of the �1-norm of coherence for a given amount of
purity. The purity of the density matrix ρ can be expressed in
terms of the absolute value of the components |ρi, j | as below:

Tr(ρ2) =
∑
i, j

|ρi, j |2. (F6)

The goal is to maximize the �1-norm of coherence with a
γ amount of purity. Note that, instead of maximizing C�1 ,
we maximize the function g = ∑

i, j |ρi, j | = C�1 + 1 with the
constraint

∑
i= j ρi, j = 1, which implies maximizing the C�1

function.
Therefore, our maximization problem is as follows:
(i) Constraint 1: C1 = ∑

i, j |ρi, j |2 − γ = 0.
(ii) Constraint 2: C2 = ∑

i= j ρi, j − 1 = 0.
(iii) λ1 and λ2 are the Lagrange multipliers corresponding

to C1 and C2 constraints, respectively.
(iv) The function g = ∑

i, j |ρi, j |, which is aimed to be
maximized with respect to the variables |ρi, j |.

Note that we also have two other constraints, namely the
hermiticity and positivity of the density matrix ρ. We do not
apply these constraints during the maximization, but we will
check them in the end for the maximizing state.

Applying the Lagrange multipliers method, we obtain the
following equations:

dg

d|ρi, j | − λ1
dC1

d|ρi, j | − λ2
dC2

d|ρi, j | = 0. (F7)

Simplifying these equations and considering the constraints,
we have the following set of equations:

for i 	= j, 1 − 2λ1|ρi, j | = 0, (F8)

for i = j = k, 1 − 2λ1|ρk,k| + λ2 = 0, (F9)

C1 =
∑
i, j

|ρi, j |2 − γ = 0, (F10)

C2 =
∑
i= j

|ρi, j | − 1 = 0. (F11)

Solving these equations for |ρi, j |, λ1 and λ2 result in

i 	= j, |ρi, j | = 1

2λ1
, (F12)

i = j = k, |ρk,k| = 1 + λ2

2λ1
. (F13)

Considering a d-dimensional system, we obtain

λ2 =
√

1 − 1
d√

γ − 1
d

− 1, (F14)

λ1 =
d
√

1 − 1
d

2
√

γ − 1
d

. (F15)

As |ρi, j | = |ρ j,i| and also because we have the freedom to
choose the phases in ρi, j = |ρi, j |eiφi, j , we can choose φi, j so
that ρmax,γ is Hermitian.

Using ρi, j obtained, we can write the maximizing state
ρmax,γ in the following form:

ρmax,γ = d

2λ1
|ψmax〉〈ψmax| + λ2

2λ1
1. (F16)

As λ1, λ2 � 0 and d
2λ1

+ dλ2
2λ1

= 1, ρmax,γ is a valid density
matrix and maximizes the �1-norm of coherence with the
bounded purity of γ . Also, the maximum amount of coherence
is

C�1,max = d2 − d

2λ1
. (F17)

As we already proved that the amount of �1-norm of coher-
ence coincides with the amount of robustness of coherence for
any pseudopure maximally coherent state and R(ρ) � C�1 (ρ)
for any ρ [34,35], the state ρmax,γ in Eq. (F16) also maxi-
mizes R(ρ) with the same amount as C�1,max, given the purity
Tr(ρ2) = γ :

Rmax = d (d − 1)

2λ1
. (F18)

APPENDIX G: PROBABILISTIC BV ALGORITHM
FOR QUDITS

In the BV algorithm with qudits, the goal is to learn the
string k with ki ∈ {1, . . . , D} encoded into the linear function

f (x) = k · x mod D =
N∑

i=1

kixi mod D, (G1)
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where xi ∈ {1, . . . , D}. Similar to the qubit version of the
algorithm, we assume that the function is encoded into an
oracle unitary acting as

Uk | j〉 |x〉 = | j + f (x) mod D〉 |x〉 (G2)

with j ∈ {0, . . . , D − 1}. As we will now see, there will be no
entanglement between the oracle register and the qudit system
if the oracle unitary is applied onto a state of the form |−D〉 |φ〉
with

|−D〉 = 1√
D

D−1∑
k=0

e−i 2π
D k |k〉 , (G3)

and |φ〉 is a product state of N qudits. Moreover, the perfor-
mance of the protocol, when applied onto states of the form
|−D〉〈−D| ⊗ ρ, can be evaluated as follows:

P(|−D〉 〈−D| ⊗ ρ) = 1 + R(ρ)

d
, (G4)

where R(ρ) is the robustness of coherence in the computa-
tional basis, and d = DN .

Having the relation in Eq. (G4), similar to the qubit case,
we can also show that if the state of the oracle register is |−D〉,
then the state of system qudits maximizing the performance
P(ρ) with bounded purity Tr(ρ) = γ must be of the form

ρ = p |ψmax〉〈ψmax| + (1 − p) 1
DN (G5)

with 0 � p � 1 and |ψmax〉 is an N-qudit maximally coherent
state. The proofs of the aforementioned results for qudits are
very similar to the proofs of the corresponding ones for qubits
that have been discussed before.

First, we will prove that in the probabilistic BV algorithm
with qudits, if the oracle register is in the |−D〉 state, then after
the action of the oracle there will be no entanglement between
the oracle register and the system qudits, and also Uk will act
as a nonentangling gate. Let |x〉 be an arbitrary vector in the
computational basis. We have

Uk |−D〉 |x〉 = 1√
D

D−1∑
j=0

e−i 2π
D jUk | j〉 |x〉 . (G6)

The oracle unitary acts as Uk | j〉 |x〉 = | j + f (x) mod D〉 |x〉
with f (x) = k · x = ∑N

i=1 kixi. Thus, we can write

Uk |−D〉 |x〉 = 1√
D

D−1∑
j=0

e−i 2π
D j | j + f (x) mod D〉 |x〉

= ei 2π
D f (x) 1√

D

D−1∑
j=0

e−i 2π
D jUk | j〉 |x〉

= ei 2π
D f (x) |−D〉 |x〉 . (G7)

Thus, as we see if the state of the oracle regis-
ter is |−D〉, the oracle unitary acts as the nonentan-
gling unitary 1 ⊗ ∑D−1

j=0 ei 2π
D k1 j | j〉〈 j| ⊗ ∑D−1

j=0 ei 2π
D k2 j | j〉〈 j| ⊗

· · · ⊗ ∑D−1
j=0 ei 2π

D kN j | j〉〈 j|.
Now we prove the result in Eq. (G4). In full analogy to

the qubit case, the robustness of coherence can be evaluated
with a semidefinite program; see Eqs. (A2). In contrast to

the qubit setting, we have E (X ) = 1
d

∑
k ukXu†

k and uk =∑
x ei 2π

d kx |x〉〈x|.
To prove the expression in Eq. (G4), we will show that

P(|−D〉〈−D| ⊗ ρ) is both lower- and upper-bounded by [1 +
R(ρ)]/d . As discussed above, the action of the oracle unitaries
Uk onto states of the form |−D〉〈−D| ⊗ ρ can be expressed as

Uk |−D〉〈−D| ⊗ ρUk = |−D〉〈−D| ⊗ VkρV †
k (G8)

with the N-qudit unitaries

Vk =
D−1∑
j=0

ei 2π
D k1 j | j〉〈 j| ⊗

D−1∑
j=0

ei 2π
D k2 j | j〉〈 j| ⊗

· · · ⊗
D−1∑
j=0

ei 2π
D kN j | j〉〈 j| . (G9)

In the case of qubits, this unitary will become Vk = ⊗N
i=1σ

ki
z,i

and ki ∈ {0, 1} [69]. The performance of the probabilistic BV
algorithm can thus be written as

P(|−D〉〈−D| ⊗ ρ) = max
{Mk}

1

d

∑
k

Tr(VkρV †
k Mk). (G10)

In the next step, we will show that

max
{Mk}

1

d

∑
k

Tr(VkρV †
k Mk) � 1 + R(ρ)

d
. (G11)

For this, we define the following operators:

M ′
k = 1

d
VkXV †

k . (G12)

Note that X is the operator maximizing the SDP in Eqs. (A2).
The operators M ′

k are positive because X is positive. Since
E (X ) = 1, we have

1

d

d∑
k=1

Xx,x = 1, (G13)

where Xx,y are the components of the matrix X , thus the
diagonal elements of X are the same and equal to 1. Note that
as 1

d

∑
k ei 2π

D k·(x−x′ ) = δx,x′ and Vk are diagonal unitaries, we
have∑

k

M ′
k = 1

d

∑
f

VkXV †
k =

∑
x,y

1

d

∑
k

ei 2π
D k·(x−y)Xx,y |x〉〈y|=1.

(G14)

Therefore, {M ′
k} form a set of POVM operators. Thus we must

have

1

d

∑
k

Tr(VkρV †
k M ′

k) = 1

d

∑
k

1

d
Tr(VkρV †

k VkXV †
k )

= 1

d
Tr(ρX ) = 1 + R(ρ)

d

� max
{Mk}

1

d

∑
k

Tr(VkρV †
k Mk). (G15)

Above we use the definition of the robustness of coherence to
obtain Tr(ρX ) = 1 + R(ρ).
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Now, we will show that the performance is also upper-
bounded by [1 + R(ρ)]/d . From the definition of the robust-
ness of coherence, it follows that

ρ = [1 + R(ρ)]σ − R(ρ)τ, (G16)

with some quantum state τ and some incoherent state σ .
Hence, for any POVM {Ma} we have∑

k

Tr(VkρV †
k Mk) = [1 + R(ρ)]

∑
k

Tr(VkσV †
k Mk)

− R(ρ)
∑

k

Tr(VkτV †
k Mk)

� [1 + R(ρ)]
∑

k

Tr(VkσV †
k Mk). (G17)

As σ is an incoherent state, it holds that VkσV †
k = σ and

∑
k

Tr(VkσV †
k Mk) = Tr

(
σ

∑
k

Mk

)
= 1. (G18)

Thus, we arrive at the inequality

max
{Mk}

1

d

∑
k

Tr(VkρV †
k Mk) � 1 + R(ρ)

d
. (G19)

From Eqs. (G15) and (G19) we have

max
{Mk}

1

d

∑
k

Tr(VkρV †
k Mk) = 1 + R(ρ)

d
. (G20)

This completes the proof of Eq. (G4).
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