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The emerging quantum technologies rely on our ability to establish and control quantum systems in nonclas-
sical states, exhibiting entanglement and quantum coherence. It is thus crucial to understand how entanglement
and coherence can be created in the most efficient way. In this Letter we study optimal ways to create a large
amount of quantum coherence via quantum channels. For this, we compare different scenarios, where the channel
is acting on an incoherent state, on states which have coherence, and also on subsystems of multipartite quantum
states. We show that correlations in multipartite systems do not enhance the ability of a quantum channel to
create coherence. We also study the ability of quantum channels to destroy coherence, proving that a channel
can destroy more coherence when acting on a subsystem of a bipartite state. Crucially, we also show that the
destroyed coherence on a multipartite system can exceed the upper bound of those on the single system when
the total state is entangled. Our results significantly simplify the evaluation of the coherence generating capacity
of quantum channels, which we also discuss.
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I. INTRODUCTION

The superposition principle of quantum mechanics is one
of the main reasons for the discrepancy between classical and
quantum physics. It leads to nonclassical phenomena, such
as quantum coherence and entanglement, which can be used
for quantum technological applications [1–3]. An important
example is quantum state merging [4], where entanglement
between remote parties can be used to merge their parts of a
shared quantum state. Having access to local coherence allows
one to reduce the entanglement consumption in this task [5].

The resource theory of coherence has been initially de-
veloped for characterizing the superposition properties of
quantum states [2,6–8]. Recently, the research has shifted
from the study of quantum states to an analysis of quantum
operations as resources [9–12]. Here, the natural problem is
to develop optimal methods for producing quantum coherence
with a given quantum channel. Addressing this question is the
main goal of this Letter.

In the resource theory of coherence, quantum states which
are diagonal with respect to a reference basis {|i〉} are called
incoherent. Correspondingly, a quantum operation is called
incoherent if it can be decomposed into Kraus operators {Kj}
which do not create coherence i.e., Kj |m〉 ∝ |n〉 [7]. Within
this theory, the basic unit is the maximally coherent qubit state
|+〉 = (|0〉 + |1〉)/

√
2. By using this state—or many copies

thereof—along with incoherent operations, it is possible to
prepare an arbitrary quantum state ρ, and to implement an
arbitrary transformation of a quantum system [7,9,10,13]. If
instead one has access to a noisy state ρ, it is possible to

*masaya.takahashi@siu.edu

extract the state |+〉 by using incoherent operations. The max-
imal rate of |+〉 states in the limit of many copies of ρ is given
by the relative entropy of coherence [8]:

Cr (ρ) = min
σ∈I

S(ρ||σ ) = S(�[ρ]) − S(ρ). (1)

Here, I is the set of incoherent states, i.e., states which are
diagonal in the reference basis {|i〉}. Moreover,

S(ρ||σ ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ ] (2)

is the quantum relative entropy, S(ρ) = −Tr[ρ log2 ρ] is the
von Neumann entropy, and �[ρ] = ∑〈i|ρ|i〉 |i〉〈i| denotes
complete dephasing in the reference basis {|i〉}.

One way to create coherence is to apply a quantum channel
� onto an incoherent state σ . The maximal amount of coher-
ence achievable in this way is called the cohering power of
� [7,14],

C(�) = sup
σ∈I

C(�[σ ]), (3)

where C is a suitable coherence quantifier. Instead of applying
the quantum channel � onto an incoherent state, it can be ad-
vantageous to have initial coherence to start with. We are then
interested in the maximal increase of coherence, maximized
over all quantum states:

C (�) = sup
ρ

{C(�[ρ]) − C(ρ)}. (4)

This quantity is known as the generalized cohering
power [15–17] of �. Clearly generalized cohering power is
never smaller than cohering power, which directly follows
from their definitions. Also, if coherence is quantified via
the relative entropy of coherence, there exists a channel �

such that C(�) < C (�) [18]. The same is true for another
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FIG. 1. A quantum channel � can be used to create quantum
coherence. In the most general setup, � can act on a part of a bipartite
quantum state ρAB. The coherence created in this way is given by
C(� ⊗ 1[ρAB]) − C(ρAB). As we show in this Letter, preestablished
correlations are not useful for coherence generation. On the other
hand, entanglement can enhance the ability of a channel to destroy
quantum coherence.

quantifier of coherence based on the �1-norm [18], which will
be discussed in more detail in Sec. IV.

In the most general case (see also Fig. 1), one can apply the
quantum channel � onto one part of a bipartite quantum state
ρAB, leading to the complete cohering power [9]

C(�) = sup
k

(
sup
ρAB

{C(� ⊗ 1k[ρAB]) − C(ρAB)}), (5)

where k is Bob’s local dimension. For a quantum channel �,
the action of the channel on an extended space is described
by � ⊗ 1k . Thus, the complete cohering power of � is equal
to the generalized cohering power of � ⊗ 1k in the limit k →
∞:

C(�) = lim
k→∞

C (� ⊗ 1k ). (6)

Hereafter, we will use 1 for identity operation when the di-
mension can be arbitrary and there is no confusion about it.

While cohering power quantifies the ability of a quantum
channel to create coherence, the decohering power quanti-
fies the maximal amount of coherence that the channel can
destroy [14]:

D(�) = sup
�[ρ] ∈I

C(ρ). (7)

In a similar way as for the cohering power, generalized and
complete decohering powers are defined as [15,17,18]

D (�) = sup
ρ

{C(ρ) − C(�[ρ])}, (8)

D(�) = sup
k

(
sup
ρAB

{C(ρAB) − C(� ⊗ 1k[ρAB])}). (9)

So far we have defined cohering and decohering powers
in a general fashion, without specifying the underlying co-
herence quantifier C. In the following, we will focus on the
relative entropy of coherence introduced in Eq. (1). Another
coherence quantifier will be discussed in Sec. IV. We recall
that a general coherence quantifier is a functional mapping

states to non-negative numbers such that C(σ ) = 0 if and only
if σ is incoherent and C(�[ρ]) � C(ρ) for any incoherent
operation � [7]. Many coherence quantifiers have additional
properties, such as convexity and strong monotonicity (see
Refs. [2,7] for more details).

In general, preestablished correlations are expected to be
useful for creating (or destroying) resources in physical pro-
cesses. So it is interesting and important to explore the role of
entanglement—possibly the strongest form of correlations—
in generating or eliminating coherence. Note that the relation
between entanglement and coherence is well established at
the static or state level [5,13,19,20], while our aim here is to
explore the connection at a dynamic level of operations.

II. PROPERTIES OF COMPLETE COHERING POWER

For a quantum system of dimension d , any maximally
coherent state has the form |+d〉 = 1√

d

∑
j eiθ j | j〉. We will

denote maximally coherent states also by |+〉, when the di-
mension is arbitrary or obvious from the context. Since any
state ρ can be obtained from a maximally coherent state
of the same dimension via incoherent operations [7], gen-
eralized cohering power is upper bounded by the coherence
of the maximally coherent state regardless of the coherence
quantifier:

C (�) � C(|+〉〈+|).
Equality can be achieved with the channel �max having Kraus
operators Ki = |+〉〈i|.

We will now investigate the properties of complete coher-
ing power. Since the dimension of the ancillary system is
in general not bounded, it is important to know if complete
cohering power is a finite quantity. While the actual value of
complete cohering power might differ for different channels,
we are interested in general bounds, which only depend on the
dimension of the system. We start with the following lemma.

Lemma 1. For any quantum-incoherent state ρAB =∑
i piρ

A
i ⊗ |i〉〈i|, there is an index n such that

Cr (� ⊗ 1[ρAB]) − Cr (ρAB) � Cr
(
�

[
ρA

n

]) − Cr
(
ρA

n

)
. (10)

Proof. Notice Cr (
∑

i piρ
A
i ⊗ |i〉〈i|) = ∑

i piCr (ρA
i ) by sim-

ple calculation. Then we have

Cr (� ⊗ 1[ρAB]) − Cr (ρAB)

= Cr

(
� ⊗ 1

[∑
i

piρ
A
i ⊗ |i〉〈i|

])

− Cr

(∑
j

p jρ
A
j ⊗ | j〉〈 j|

)

=
∑

i

pi
[
Cr

(
�

[
ρA

i

]) − Cr
(
ρA

i

)]
. (11)

Since 0 � pi � 1 for all i, there exists n satisfying∑
i

pi
[
Cr

(
�

[
ρA

i

]) − Cr
(
ρA

i

)]
� Cr

(
�

[
ρA

n

]) − Cr
(
ρA

n

)
. (12)

Substituting this into Eq. (11), we finished the proof. �
Equipped with this Lemma, we are ready to prove the

following theorem.
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Theorem 1. Complete cohering power and generalized co-
hering power coincide:

Cr (�) = Cr (�). (13)

Proof. Our goal is to show

max
ρAB

{Cr (� ⊗ 1k[ρAB]) − Cr (ρAB)}

� max
ρA

{Cr (�[ρA]) − Cr (ρA)} (14)

for any k and any quantum channel �. The left-hand side can
be expanded as

max
ρAB

{Cr (� ⊗ 1k[ρAB]) − Cr (ρAB)}

= max
ρAB

{S(� ⊗ 1k[ρAB]||�[� ⊗ 1k[ρAB]])

− S(ρAB||�[ρAB])}
= max

ρAB
{S(� ⊗ 1k[ρAB]||�B[� ⊗ 1k[ρAB]]).

+ S(�B[� ⊗ 1k[ρAB]]||�AB[� ⊗ 1k[ρAB]]).

− S(ρAB||�B[ρAB]) − S(�B[ρAB]||�AB[ρAB])}, (15)

where �B denotes dephasing in the incoherent basis of the
system B only. By monotonicity of the relative entropy under
completely positive and trace-preserving maps we have

S(� ⊗ 1k[ρAB]||�B[� ⊗ 1k[ρAB]]) − S(ρAB||�B[ρAB]) � 0.

(16)
From Eq. (15) then we get the following inequality:

Cr (�) � max
ρAB

{S(�B[� ⊗ 1[ρAB]]||�AB[� ⊗ 1[ρAB]])

− S(�B[ρAB]||�AB[ρAB])}
= max

ρAB
{Cr (�B[� ⊗ 1[ρAB]]) − Cr (�B[ρAB])}.

The proof of the theorem is completed by using Lemma 1, and
noting that �B[ρAB] is a quantum-incoherent state. �

The above theorem shows that correlations with an ancil-
lary system do not enhance the ability of a quantum channel
to create quantum coherence. Since Cr (ρA ⊗ σ B) = Cr (ρA) +
Cr (σ B), any state ρA ⊗ σ B with any σ B is optimal for com-
plete cohering power as long as ρA is optimal for generalized
cohering power. However, the other direction is not true in
general: If ρAB is an optimal input state for complete cohering
power, TrB[ρAB] does not need to be optimal for the general-
ized cohering power. This can be verified with the input state
|φ+〉 = (|00〉 + |11〉)/

√
2 and �(ρA) = HρAH† where H is

the Hadamard gate.
We now discuss applications of our results to the co-

herence generating capacity [9]. This quantity is defined in
an operational way, assuming that a quantum channel �

is applied n times onto an incoherent state, with the goal
to generate maximally coherent states [9]. In more detail,
consider a quantum channel � : A → A′ and a sequence of
bipartite incoherent operations Ii : A′ ⊗ Bi−1 → A ⊗ Bi. An
initial incoherent state ρ0 ∈ A ⊗ B0 is transformed by � ⊗ 1
into ρ ′

0 = � ⊗ 1[ρ0]. Then the incoherent operation I1 is ap-
plied on ρ ′

0, leading to the state ρ1 = I1[ρ ′
0] = I1[� ⊗ 1[ρ0]].

Iterating the procedure n times we obtain a bipartite quantum

state ρn ∈ A ⊗ Bn. The coherence generating capacity of the
channel � is now defined as [9]

Cgen(�) = sup

{
R : lim

n→∞

(
inf
{Ii}

∥∥ρn − |+2〉〈+2|⊗nR
∥∥

1

)
= 0

}
,

(17)
where ||M||1 = Tr

√
M†M is the trace norm.

As was proven in Ref. [9], complete cohering power of �

is an upper bound on its coherence generating capacity. By
using Theorem 1 the upper bound simplifies to

Cgen(�) � max
ρ

{Cr (�[ρ]) − Cr (ρ)}. (18)

If we use maximally incoherent operations (MIOs), i.e.,
all quantum operations which do not create coherence [6]
between individual applications of the channel �, the corre-
sponding coherence generating capacity CMIO

gen was shown to
be equal to the complete cohering power [21]. With Theorem
1 we directly obtain

CMIO
gen (�) = max

ρ
{C(�[ρ]) − C(ρ)}. (19)

Thus, our results significantly reduce the complexity to evalu-
ate the coherence generating capacity of quantum channels.

III. PROPERTIES OF COMPLETE DECOHERING POWER:
ADVANTAGE OF ENTANGLEMENT

We now explore the role of correlations in the process of
destroying coherence for a given quantum channel �. While
correlations are not useful for creating coherence (see The-
orem 1), we will show that correlations between the system
and an ancilla can enhance the ability of the channel to de-
stroy quantum coherence. As an example, consider the erasing
channel �[ρ] = |0〉〈0|. Let now � act on one qubit of the
two-qubit state,

|ψAB〉 = 1√
2

(|0〉|+〉 + |1〉|−〉). (20)

Observe that Cr (|ψAB〉〈ψAB|) = 2 because the state is maxi-
mally coherent. The state after applying � ⊗ 1 to |ψ〉AB is the
incoherent state |0〉〈0| ⊗ 1/2. This shows that the complete
decohering power Dr (�) is greater than or equal to 2. On
the other hand, the generalized decohering power is upper
bounded as D (�) � C(|+〉〈+|), regardless of the coherence
quantifier, with equality achieved on the erasing channel �.
We thus obtain Dr (�) = 1 which is strictly smaller than
Dr (�), as claimed.

The above results show that complete decohering power
can in general exceed the generalized decohering power. In
the next step we will provide an upper bound on the complete
decohering power, which depends only on the dimension of
the corresponding Hilbert space.

Lemma 2. Complete decohering power of a quantum chan-
nel � on the Hilbert space of dimension d is bounded above
as

Dr (�) � 2 log2 d. (21)
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If we restrict the initial states to be separable, the upper bound
will be the same with those of generalized decohering power:

sup
k

max
ρAB

sep

{
Cr

(
ρAB

sep

) − Cr
(
� ⊗ 1k

[
ρAB

sep

])}
� log2 d. (22)

Proof. For a given quantum channel � we define the bipar-
tite channel �′ = �A ⊗ 1B, and d = dA is the dimension of
(the Hilbert space of) system A. Observe that Cr (�′[ρAB]) �
Cr (ρB) from the fact that Cr does not increase under partial
trace. We obtain the following inequality:

Dr (�) � sup
k

max
ρAB

{Cr (ρAB) − Cr (ρB)}

= sup
k

max
ρAB

{S(�[ρAB])−S(ρAB)−S(�[ρB])+S(ρB)}

� sup
k

max
ρAB

{S(�[ρA]) − S(ρAB) + S(ρB)}

�max
ρA

{S(�[ρA]) + S(ρA)} � 2 log2 d. (23)

Here, we have used the subadditivity inequality S(�[ρAB]) −
S(�[ρB]) � S(�[ρA]) to get the third line and the triangle in-
equality S(ρAB) � |S(ρA) − S(ρB)| [this implies −S(ρAB) +
S(ρB) � S(ρA)] to get the last line. When the state ρAB is
separable, it is also true that −S(ρAB) + S(ρB) < 0. We apply
this to the second line of above equation and obtain the upper
bound for separable input states as follows:

Dr (�) � sup
k

max
ρAB

sep

{
S
(
�

[
ρAB

sep

]) − S(�[ρB])
}

�max
ρA

S(�[ρA])= log2 d. (24)

�
Note that the upper bounds in Lemma 2 are achieved for

the erasing channel �[ρ] = |0〉〈0| in either cases, entangled
and separable inputs. This means that these upper bounds
are the optimal bounds which depend on the dimension of
the quantum channel only. The above proof also reveals in-
teresting properties of quantum states achieving the maximal
value of complete decohering power. In order to achieve
the maximum value 2 log2 d for entangled inputs, the local
state ρA in Eq. (23) must satisfy S(�[ρA]) = S(ρA) = log2 dA,
which means that ρA must be maximally mixed. If, how-
ever, ρA is maximally coherent, i.e., S(�[ρA]) = log2 dA and
S(ρA) = 0, then the eliminated coherence cannot be greater
than log2 dA which is the maximum value of generalized de-
cohering power.

The arguments just presented suggest that a quantum chan-
nel can eliminate more coherence when acting on one part of
an entangled bipartite state. However, there are entangled in-
put states where the amount of coherence eliminated through
given � does not exceed Dr (�). Also even if two differ-
ent initial states have the same entanglement and coherence,
their coherence after the application of the channel can be
different. For example, consider the states |ψ〉 = sin θ |0+〉 +
cos θ |1−〉, |φ〉 = sin θ | + 0〉 + cos θ | − 1〉. Both states have
the same entanglement and coherence but their coherence
after the erasing channel �[ρ] = |0〉〈0| are different.

The results presented above lead to an interesting ques-
tion: If we use separable states in the definition of complete
decohering power, does it coincide with the generalized de-

cohering power? A rigorous proof of this statement would
show that entanglement can enhance the ability of a quantum
channel to destroy coherence, and provide another quantita-
tive connection between the resource theories of entanglement
and coherence. We leave these questions open for future
research.

IV. COHERENCE MEASURES BASED ON �1-NORM

We will now discuss cohering and decohering powers for
the �1-norm of coherence defined as [7]

C�1 (ρ) = min
σ∈I

||ρ − σ ||�1 =
∑
i �= j

|〈i|ρ| j〉|, (25)

with the �1-norm ||M||�1 = ∑
i, j |Mi j |. Maximum coherence

is given by C�1 (|+d〉〈+d |) = d − 1. From this result, we im-
mediately see that the generalized cohering power is at most
d − 1. As we will see in the following proposition, the com-
plete cohering power is unbounded for almost all quantum
channels.

Proposition 1. For �1-norm of coherence, complete coher-
ing power of � whose generalized cohering power is not zero
is unbounded.

Proof. Let us consider a product state ρAB = ρA ⊗ ρB as
the input for �. Using the equality [18] C�1 (ρA ⊗ σ B) =
[C�1 (ρA) + 1][C�1 (σ B) + 1] − 1 we obtain

C�1 (�) � {C�1 (� ⊗ 1k[ρAB]) − C�1 (ρAB)}
= {[C�1 (�[ρA]) + 1][C�1 (ρB) + 1]

− [C�1 (ρA) + 1][C�1 (ρB) + 1]}
= [C�1 (�[ρA]) − C�1 (ρA)][C�1 (ρB) + 1].

If we assume ρB to be the maximally coherent state and take
the dimension of system B larger, then the generated �1-norm
of coherence increases as long as C�1 (�[ρA]) − C�1 (ρA) is
not zero for some ρA, in other words, C�1 (�) > 0. So the
complete cohering power is unbounded and not equal to gen-
eralized cohering power. �

By the same reasoning as in the proof of Proposition 1, we
see that the complete decohering power of � is unbounded,
whenever � has nonzero generalized decohering power.

The two measures of coherence, the �1-norm of coherence
and relative entropy of coherence, behave very differently
with respect to the cohering and decohering powers of quan-
tum channels. For the �1-norm of coherence, both complete
cohering and decohering powers are unbounded for many
channels. Thus, the relative entropy of coherence seems better
suited for estimating the ability of quantum channels to create
or destroy coherence. A similar effect has been observed
for the geometric measure of quantum discord [22], which
can increase indefinitely depending on the attached ancillary
system [23].

V. CONCLUSIONS

In this Letter we have investigated optimal methods for
establishing and destroying quantum coherence via quantum
channels. We found that correlations with ancillary systems
do not enhance the ability of a quantum channel to create
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coherence. This result significantly simplifies the analysis
of several quantities related to coherence generation with
quantum channels, including the coherence generating capac-
ity [9]. On the other hand, we found that entanglement with
an ancillary system can improve the ability of a channel to
destroy quantum coherence. These results open the possibil-
ity that every entangled state can show a coherence decay
above generalized cohering power for some quantum channel.
Proving this statement would establish another rigorous and
operationally meaningful connection between the resource
theories of entanglement and coherence. We leave the proof
of this statement for future research.

Most of our analysis concerns coherence quantifiers de-
fined via the relative entropy, which have an operational
meaning for the resource theory of coherence in the asymp-
totic limit [8]. We have also investigated another commonly
used coherence quantifier based on the �1-norm. We found
that many channels show an unbounded coherence genera-
tion for this quantifier, if ancillary systems are taken into

account. These results suggest that coherence measures based
on the relative entropy are more suitable to describe the po-
tential of quantum channels to establish and destroy quantum
coherence.
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[22] B. Dakić, V. Vedral, and C. Brukner, Necessary and Sufficient
Condition for Nonzero Quantum Discord, Phys. Rev. Lett. 105,
190502 (2010).

[23] M. Piani, Problem with geometric discord, Phys. Rev. A 86,
034101 (2012).

L060401-5

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1002/qute.202100040
https://doi.org/10.1038/nature03909
https://doi.org/10.1103/PhysRevLett.116.240405
http://arxiv.org/abs/arXiv:quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevA.95.062327
https://doi.org/10.1103/PhysRevA.96.059903
https://doi.org/10.1103/PhysRevLett.122.190405
https://doi.org/10.22331/q-2020-04-02-249
https://doi.org/10.1103/PhysRevLett.117.020402
https://doi.org/10.1103/PhysRevA.92.032331
https://doi.org/10.1103/PhysRevA.92.022112
https://doi.org/10.26421/QIC17.13-14-8
https://doi.org/10.26421/QIC16.15-16
https://doi.org/10.1016/j.physleta.2017.03.022
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1088/1751-8121/aacc5c
https://doi.org/10.22331/q-2018-10-19-100
https://doi.org/10.1103/PhysRevLett.105.190502
https://doi.org/10.1103/PhysRevA.86.034101

