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Entanglement activation from quantum coherence and superposition
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Quantum entanglement and coherence are two fundamental features of nature, arising from the superposition
principle of quantum mechanics. While considered as puzzling phenomena in the early days of quantum theory,
it is only very recently that entanglement and coherence have been recognized as resources for the emerging
quantum technologies, including quantum metrology, quantum communication, and quantum computing. In
this work we study the limitations for the interconversion between coherence and entanglement. We prove
a fundamental no-go theorem, stating that a general resource theory of superposition does not allow for
entanglement activation. By constructing a quantum controlled-NOT gate as a free operation, we experimentally
show that such activation is possible within the more constrained framework of quantum coherence. By
using recent results from coherence theory, we further show that the trace norm entanglement is not a strong
entanglement monotone.
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I. INTRODUCTION

Quantum resource theories provide a fundamental frame-
work for studying general notions of nonclassicality, includ-
ing quantum entanglement [1–4] and coherence [5,6]. Any
such resource theory is based on the notion of free states and
free operations. Free operations are physical transformations
which do not consume any resources. They strongly depend
on the problem under study and are usually motivated by
physical or technological constraints. In entanglement theory,
these constraints are naturally given by the distance labora-
tory paradigm: two spatially separated parties can perform
quantum measurements in their local labs but can only ex-
change classical information between each other.

Free states of a resource theory are quantum states which
can be produced without consuming any resources. In en-
tanglement theory, these free states are called separable [7].
Various quantum protocols require the presence of entan-
glement. This includes quantum teleportation [8,9], quantum
cryptography [10], and quantum state merging [11]. As has
been demonstrated very recently, it is indeed possible to
establish and maintain a high degree of entanglement via large
distances [12].
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The resource theory of quantum coherence studies tech-
nological limitations for establishing quantum superpositions
[5,6]. This theory requires the existence of a distinguished
basis, which can be interpreted as classical and is usually
present due to the unavoidable decoherence [13]. Quantum
states belonging to this basis are then called incoherent and
considered as the free states of coherence theory. Superpo-
sitions of these free states are said to possess coherence.
Incoherent operations are free operations of coherence theory:
they correspond to quantum measurements which do not
create coherence for individual measurement outcomes [6].
Recent results show that coherence plays a crucial role for
quantum metrology [14,15] and that coherence might be more
suitable than entanglement to capture the performance of
quantum algorithms [16,17]. Recent investigations also show
that coherence and entanglement play an important role in
biological systems [18].

Due to the aforementioned significance of coherence and
entanglement for quantum technologies, it is crucial to un-
derstand how these fundamental resources can be converted
into each other. In this work we address this question and
confirm our theoretical results by an experiment with photons.
We present a fundamental no-go theorem, showing that a
general resource theory of superposition does not allow for
entanglement activation, while this is possible within the more
constrained theory of coherence. This result shares the same
spirit with the celebrated no-cloning theorem [19]: a general
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FIG. 1. The conceptual graph of the conversion process. Two
individual quantum states are generated as the system state and the
ancilla state, respectively. The system state ρ is prepared with a
nonzero amount of coherence C(ρ ), while the ancilla is initialized
in an incoherent state σi . After an incoherent operation �i acting
on the system and ancilla, the two-qubit state is either entangled
or separable, depending on whether the initial system state ρ has
coherence or not. Here, we choose the CNOT gate as the optimal
incoherent operation, which is decomposed into one controlled phase
gate and two Hadamard gates.

quantum state cannot be copied, while cloning is, in fact,
possible for a restricted set of mutually orthogonal states.
We experimentally demonstrate entanglement activation from
coherence by preparing photon states with different degrees of
coherence and activating them into entanglement by applying
an optical CNOT gate. Finally, our results lead to an inter-
esting insight about entanglement quantifiers, proving that
trace norm entanglement violates strong monotonicity. This
shows how recent results on the resource theory of quantum
coherence can be used for solving important questions in
quantum information science.

II. NO-GO THEOREM OF ENTANGLEMENT ACTIVATION

Entanglement activation from coherence has been first
studied in [20]. There, it was shown that any nonzero amount
of coherence in a quantum state ρ can be activated into
entanglement by coupling the state to an incoherent ancilla
σi and performing a bipartite incoherent operation on the total
state ρ ⊗ σi . On a quantitative level, the amount of coherence
in a state ρ bounds the amount of activated entanglement
as [20]

E(�i[ρ ⊗ σi]) � C(ρ), (1)

where �i is an incoherent operation, and E and C are general
distance-based entanglement and coherence monotones. See
Appendix A for rigorous definitions and more details. In many
relevant cases, the optimal incoherent operation saturating the
inequality (1) is the CNOT gate (see Fig. 1).

We will now study this relation from a very general per-
spective by resorting to the resource theory of superposition
[21,22]. In this theory, the free states {|ci〉} are not necessarily
mutually orthogonal. Thus, the theory of superposition is
more general than the resource theory of coherence and is

indeed powerful enough to cover also the resource theory of
entanglement, which is obtained by allowing for continuous
sets of free states. Any convex combination of the free states
{|ci〉} is also a free state, which is a very natural assumption
in any quantum resource theory. Free operations and further
properties of the resource theory of superposition have been
discussed in [21,22].

In the following we will study the resource theory of super-
position for a two-qubit system. We assume that each of the
qubits has two pure free states, which we denote by |c0〉 and
|c1〉, assuming that 0 < |〈c0|c1〉| < 1. Pure free states of both
qubits have the form |ci〉 ⊗ |cj 〉, and convex combinations
of such states are also free. We will now consider unitary
operations which do not create superpositions of the free states
on both qubits. Following the notion of Ref. [22], we will call
these unitaries superposition free. In general, these unitaries
induce the transformation

U |ck〉 |cl〉 = eiφkl |cm〉 |cn〉 (2)

with some phases eiφkl . Our main question in this context is the
following: Can a bipartite superposition-free unitary create
entanglement? The answer to this question is affirmative in the
traditional framework of quantum coherence, i.e., for orthog-
onal free states |c0〉 and |c1〉 [20]. In this case, the CNOT gate
is a superposition-free unitary which can create entanglement.
It is reasonable to believe that these ideas transfer to the more
general concept of superpositions and that superposition-free
unitaries also allow one to create entanglement.

Quite surprisingly, we will see in the following that this is
not the case for the framework considered here. This is the
statement of the following theorem.

Theorem 1. It is not possible to create entanglement via
superposition-free unitaries on two qubits.

We note that the theorem applies for the case where each of
the qubits has two superposition-free states |c0〉 and |c1〉, with
0 < |〈c0|c1〉| < 1. The proof of this theorem is a combination
of several results, which we present below.

Before we prove the above theorem, we will first show
that every superposition-free unitary on two qubits can
be decomposed into two elementary operations, which we
denote by V and W . The first elementary operation is the swap
gate V = ∑

i,j |ij〉〈ji|, which corresponds to an exchange of
the two qubits:

V |ck〉 |cl〉 → |cl〉 |ck〉 . (3)

The second elementary operation transforms an initial
superposition-free state |ck〉 |cl〉 as follows:

W |ck〉 |cl〉 = eiϕk |cmod(k+1,2)〉 |cl〉 , (4)

where the phases eiϕk are defined as

eiϕ0 = 1, eiϕ1 = 〈c0|c1〉
〈c1|c0〉 . (5)

The existence of such a unitary is guaranteed by Lemma 3 in
[23] (see also [21,24]). Note that Eq. (4) defines the action of
W onto any pure two-qubit state |ψ〉, since any such state can
be written as |ψ〉 = ∑

k,l akl |ck〉 |cl〉 with complex numbers
akl . Moreover, W can be chosen to be a local unitary, acting on
the first qubit only. With these tools, we are now in a position
to prove the following theorem.
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TABLE I. All superposition-free unitaries on two qubits. Any
superposition-free unitary on two qubits can be expressed as a
product of elementary unitaries V and W given in the main text. The
phases eiφkl in the table correspond to the phases in Eq. (2).

Unitary V 2 V WV W (V W )2 W WV V WV V W

eiφ00 1 1 1 1 1 1 1 1

eiφ11 1 1 〈c0 |c1〉2

〈c1|c0〉2
〈c0 |c1〉2

〈c1|c0〉2
〈c0 |c1〉
〈c1|c0〉

〈c0 |c1〉
〈c1|c0〉

〈c0 |c1〉
〈c1|c0〉

〈c0 |c1〉
〈c1|c0〉

eiφ01 1 1 〈c0 |c1〉
〈c1|c0〉

〈c0 |c1〉
〈c1|c0〉 1 〈c0 |c1〉

〈c1|c0〉
〈c0 |c1〉
〈c1|c0〉 1

eiφ10 1 1 〈c0 |c1〉
〈c1|c0〉

〈c0 |c1〉
〈c1|c0〉

〈c0 |c1〉
〈c1|c0〉 1 1 〈c0 |c1〉

〈c1|c0〉

Theorem 2. There exist only eight superposition-free uni-
taries for two qubits, which can all be expressed as combina-
tions of V and W .

This theorem applies to the same framework of super-
position as Theorem 1, i.e., it holds if each qubit has two
superposition-free states |c0〉 and |c1〉 with 0 < |〈c0|c1〉| < 1.
The proof of the theorem is given in Appendix B. We list all
eight possible transformations in Table I.

The tools provided so far give important insight into the
structure of superposition-free unitaries for two qubits and
allow us to complete the proof of Theorem 1. For this, it
is enough to show that both elementary operations V and
W cannot create entanglement. Clearly, entanglement cannot
be created with the swap unitary V. The second elementary
operation W also cannot create entanglement, as it can be
implemented as a local unitary acting on the first qubit only.

At this point it is interesting to compare our results to
results reported in [21,25]. Applied to the setting considered
here, the results of [21] imply that a superposition can be
converted into entanglement in a universal way: there ex-
ists a (not necessarily superposition-free) quantum operation
� which universally converts any state of the form |ψ〉 =
(α0 |c0〉 + α1 |c1〉) ⊗ |c0〉 into an entangled state whenever
both coefficients α0 and α1 are nonzero. Note that this is not
a contradiction to our results presented above, as the quantum
operation � in this conversion is not necessarily superposition
free.

We will now demonstrate how recent results in coherence
theory can be applied to the resource theory of entanglement.
For this, we recall that Eq. (1) also applies to entanglement
and coherence quantifiers based on the trace norm:

Ct (ρ) = min
σ∈I

||ρ − σ ||1, (6)

Et (ρ) = min
σ∈S

||ρ − σ ||1, (7)

where I and S are the sets of incoherent and separable
states, respectively. The trace norm ||M||1 = Tr

√
M†M is

one of the most important quantities in quantum information
theory. Its significance comes from its operational interpre-
tation, as p = 1/2 + ||ρ − σ ||1/4 is the optimal probability
for distinguishing two quantum states ρ and σ via quantum
measurements. The coherence and entanglement quantifiers
(6) and (7) thus have the operational interpretation via the
probability to distinguish a state ρ from the set of incoherent
and separable states, respectively.

Despite its clear operational significance, it is only very
recently that the trace norm has been investigated within the
resource theory of quantum coherence [26–28], and surpris-
ingly little is known about the trace norm entanglement Et

[29]. Remarkably, it was shown in [28] that Ct violates strong
monotonicity: the trace norm coherence of a state can increase
on average under a suitable incoherent operation. We refer to
Appendix A for a rigorous definition of strong monotonicity.
As we show in the following theorem, these results also extend
to the trace norm entanglement, thus solving an important
question in entanglement theory.

Theorem 3. Trace norm entanglement is not a strong en-
tanglement monotone.

The proof of the theorem can be found in Appendix C,
where we, in fact, show that the trace norm entanglement
can increase on average under a local measurement. This
finishes the theoretical part of this work, and we now focus
on experimental entanglement activation from coherence.

III. EXPERIMENTAL ENTANGLEMENT ACTIVATION
FROM COHERENCE

The results presented above impose strong constraints on
the possible activation of superpositions into entanglement.
On the other hand, it is known that activation of entanglement
from coherence is possible [20], i.e., the aforementioned
constraints can be circumvented if the free states |c0〉 and
|c1〉 are orthogonal. In this case, as is shown in Fig. 1, any
nonzero amount of coherence in a state ρ can be converted
into entanglement by adding an incoherent ancilla σi and
performing a bipartite incoherent unitary on the total state
ρ ⊗ σi . As we will see in the following, such an activation can
indeed be performed with current experimental techniques.

Following our previous discussion, the individual systems
will be qubits. As a quantifier of coherence we will use the
�1 norm of coherence, which is a strong coherence monotone
and corresponds to the sum of the absolute values of the off-
diagonal elements [6]:

C(ρ) =
∑
i �=j

|ρij |. (8)

After performing a bipartite incoherent operation on the total
state ρ ⊗ σi , the amount of entanglement in the total state
will be quantified via concurrence E. Concurrence is a natural
entanglement quantifier for two-qubit states, as it admits the
following closed expression [30]:

E(ρ) = max {0, λ1 − λ2 − λ3 − λ4}, (9)

where λi are the square roots of the eigenvalues of ρρ̃ in
decreasing order, and ρ̃ is defined as ρ̃ = (σy ⊗ σy )ρ∗(σy ⊗
σy ), with the Pauli y matrix σy , and complex conjugation is
taken in the computational basis.

As we show in Appendix D, Eq. (1) also applies in this
situation, i.e., the amount of coherence in state ρ bounds the
amount of concurrence that can be activated from the state
via incoherent operations. Moreover, the optimal incoherent
operation in the above setting is the CNOT gate, as it allows
one to saturate the inequality (1). We also note that for the
systems considered here the �1 norm coherence coincides with
the trace norm coherence [31]. Thus, the results discussed in
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FIG. 2. Experimental setup. Pairs of identical photons are generated via a type-II spontaneous parametric down-conversion process in a
BBO crystal by a 390-nm UV laser up-converted from a mode-lock Ti: sapphire oscillator. After passing the 3-nm bandpass filter (BPF), the
photon pairs are coupled into the single-mode fibers and launched to the incoherent operation section. A quarter-wave plate (QWP) and a
half-wave plate (HWP) are used for polarization compensation. A combination of HWPs and a partial polarizing beam splitter (PPBS) acts as
the incoherent operation. The system states are prepared with different amounts of coherence by rotating a HWP following of the PBS. The
two-qubit states and an additional copy of the system states are analyzed by quantum state tomography.

this section also hold if C is the trace norm coherence defined
in Eq. (6).

Here, we experimentally verify this relation between co-
herence and entanglement by the means of quantum optics,
using the fact that polarization is easy to manipulate with high
precision. By utilizing the phase flip introduced by second-
order interference, we construct the incoherent operation with
a combination of a controlled phase gate and two Hadamard
gates. We prepare a set of system states with different amounts
of coherence and observe that coherence and entanglement are
highly correlated with acceptable errors under the state of the
art of optical CNOT operation [32–34].

The sketch of our experiment setup is shown in Fig. 2. It
can be divided into three parts: the preparation of identical
photons, the incoherent operation, and the state analysis mod-
ule. We use a mode-lock Ti:sapphire oscillator emitting 130-fs
pulses centered at 780 nm with a repetition rate of 77 MHz.
The near-infrared light is frequency doubled to ultraviolet
light of 390 nm in a 1.3-mm-thick LiB3O5 (LBO) crystal.
Two identical photons are created by pumping a 2-mm-thick
β-BaB2O4 (BBO) crystal via a type-II spontaneous parametric
down-conversion process in a beamlike scheme [35,36]. Two
3-nm bandpass filters are used to improve the visibility of
interference, for it ensures the spectral indistinguishability of
the photon pairs. The photons are coupled into the single-
mode fibers, with one serving as the system photon while
the other one as the ancilla photon. A quarter-wave plate and
a half-wave plate are used in both arms to compensate the
polarization rotation induced by the single-mode fibers.

The two indistinguishable photons are then injected into
the CNOT gate module based on the second-order interference
[37]. The key feature in this optical CNOT gate scheme is
a partial polarizing beam splitter (PPBS), which perfectly
reflects vertical polarization and reflects (transmits) 1/3 (2/3)
of horizontal polarization. We mount the coupler for the an-
cilla photon on a one-dimensional translation stage to ensure
the temporal overlap between the photon pairs. The ideal
Hong-Ou-Mandel (HOM) interference visibility on this PPBS

is Vth = 80%, and we experimentally achieve Vexp = 67.9 ±
1.0%. The relative visibility is Vre = Vexp/Vth = 84.9%. The
mismatch can be attributed to the imperfection of the PPBS,
whose reflection ratio of the horizontal polarization of 29%
deviates from the ideal value of 33.3%. In order to evaluate
the performance of the CNOT gate, we measure the truth tables
and estimate the process fidelity [38]. In the ZZ basis, we
define the computational basis as |0〉z = |H 〉 and |1〉z = |V 〉
for the control qubit and |0〉z = |D〉 and |1〉z = |A〉 for the
target qubit. The CNOT gate flips the target qubit when the
control qubit is |1〉z. In the XX basis, it is equivalent to
transform the bases using a Hadamard gate, where the control
qubit is encoded in |D〉 − |A〉 basis and the target qubit in
|H 〉 − |V 〉 basis. Table II gives the normalized possibilities
of all the combinations with four different input and output
states in both ZZ and XX basis. We can see that the control
and the target qubit swap in the XX basis, where the control
qubit remains unchanged when the target qubit is |0〉x and flips
when the target qubit is |1〉x .

The fidelity can be defined as the average value of the
possibility to get the correct output over all inputs. From this
definition we can calculate Fzz = 0.87 and Fxx = 0.86. These
two complementary fidelity values can bound the quantum

TABLE II. Truth table of the CNOT gate.

ZZ 〈00| 〈01| 〈10| 〈11|
|00〉 0.929 0.034 0.033 0.004
|01〉 0.053 0.914 0.002 0.031
|10〉 0.004 0.002 0.159 0.835
|11〉 0.001 0.005 0.816 0.178

XX 〈00| 〈01| 〈10| 〈11|
|00〉 0.896 0.004 0.099 0.001
|01〉 0.002 0.173 0.001 0.824
|10〉 0.103 0.002 0.892 0.003
|11〉 0.001 0.827 0.001 0.171
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FIG. 3. Experimental results of two-qubit tomography. The density matrices with different system states cos(ϑ )|H 〉 + sin(ϑ )|V 〉 as the
input state by scanning different polarizations (a) ϑ = 0◦, (b) ϑ = 15◦, (c) ϑ = 30◦, (d) ϑ = 45◦, (e) ϑ = 60◦, (f) ϑ = 75◦, and (g) ϑ = 90◦.
From (a) to (d), it is obvious that the generated entangled states vary from separable states to maximal entangled state, while from (e) to (g),
the entanglement gradually decreases due to the decline of the coherence.

process fidelity according to [38]

Fzz + Fxx − 1 � Fprocess � Min{Fzz, Fxx}. (10)

Thus, we can estimate 0.73 � Fprocess � 0.86. The process
fidelity also benchmarks the minimal entanglement capability
C � 2Fprocess − 1, as in our case, the result is larger than 0.46.

After experimentally characterizing the incoherent opera-
tion, we generate a series of quantum states:

ρ = cos2(ϑ )|H 〉〈H | + cos(ϑ ) sin(ϑ )|H 〉〈V |
+ sin(ϑ ) cos(ϑ )|V 〉〈H | + sin2(ϑ )|V 〉〈V | . (11)

By choosing a different polarization parameter ϑ , we are
able to tune the corresponding amount of coherence in the
system qubit in the {|H 〉, |V 〉} basis. We split the system
qubit on a beam splitter and prepare the two copies with the
same polarization to test the relationship between coherence
and entanglement. The ancilla qubit is fixed to σi = |H 〉〈H |
as an incoherent state during the whole experiment. We
first conduct the one-qubit tomography with a combination
of quarter-wave plate and polarizer to reconstruct the 2×2
density matrix of the system qubit [39] and further estimate
the amount of coherence defined in Eq. (8). The other copy
of the system qubit is guided to the CNOT gate and interferes
with the ancilla qubit on the PPBS. After the incoherent
operation, the two-qubit tomography is used to evaluate the
entanglement, as quantified via concurrence in Eq. (9).

In our experiment, we prepare seven different system states
to test the relation between coherence and entanglement in
Eq. (1). As we vary the coherence parameter, the density
matrix of the entanglement states generated by the incoherent
operation correspondingly alter, as demonstrated in Fig. 3,
from separable states to a maximal entangled state. To further
evaluate the relation between coherence and entanglement, we

compare their exact values in Fig. 4. The blue bars represent
the amount of coherence and the red bars represent the amount
of entanglement. The outside frames are the theoretical pre-
diction by considering the ideal cases.

With a high-extinction polarization device, we are able to
prepare the maximal coherence state |D〉 = (|H 〉 + |V 〉)/

√
2

and the measured coherence is up to C = 0.999, which is
very close to the ideal scenario. The measured entanglement
of the generated entangled state is E = 0.864. In the next

FIG. 4. Activation of entanglement from coherence. The blue
bars represent the measured coherence of the system qubit as quan-
tified by the �1 norm of coherence in Eq. (8). The red bars represent
the measured entanglement in the two-qubit state after the incoherent
operation, quantified by the concurrence in Eq. (9). The outside
frames are the theoretical prediction for coherence and entanglement.
The experimental results show the same tendency as we vary the
parameter ϑ . All error bars are estimated by the Monte Carlo
simulation with 1000 rounds by assuming the Poissonian distribution
of the photon statistics.
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step we decrease the coherence of the system qubit, and the
corresponding entanglement changes with the same tendency.
The system with the minimal coherence in our experiment
has C = 0.09, and the corresponding activated entanglement
between the two qubits is measured to be E = 0.07. Given the
imperfection of the incoherent operation, a certain mismatch
exists between the measured entanglement and coherence. A
considerably high conversion efficiency can be expected after
certain optimization of the device.

IV. CONCLUSIONS

In this work we explored the possibilities and limitations
to activate entanglement from quantum coherence and super-
position. While coherence can be activated into entanglement
via free unitaries of the theory [20], we have shown that such
an activation is not possible within a more general theory
of quantum superposition. We have rigorously proven this
statement for a general two-qubit system, where each of the
qubits has two superposition-free states |c0〉 and |c1〉 with
0 < | 〈c0|c1〉 | < 1. We have further shown that only eight
superposition-free unitaries are possible in this setting, and
all of them can be represented in terms of two elementary
operations.

An important consequence of our discussion is the finding
that in the general framework of superposition considered here
there is no unitary which corresponds to the action of a CNOT

gate, i.e., which flips the state of the second qubit between |c0〉
and |c1〉 conditioned on the first qubit being in the state |c0〉
or |c1〉. Such a CNOT gate exists only in the more restricted
resource theory of coherence, which arises in our framework
in the limit of orthogonal states |c0〉 and |c1〉. These results are
analogous to the no-cloning theorem [19], i.e., while it is not
possible to clone a general quantum state, cloning is possible
in a more restricted theory, where the considered states are
mutually orthogonal.

We have experimentally demonstrated that entanglement
activation from coherence is indeed possible. We have pre-
pared single-qubit states with different values of coherence
by using polarized photons and experimentally activated co-
herence into entanglement via an optical CNOT gate, which
is the optimal incoherent operation in the considered setting.
We have then compared the amount of final entanglement to
the amount of initial coherence, finding a good agreement
between theory and experiment. Both quantities clearly show
the same tendency: a large amount of initial coherence leads
to a large amount of activated entanglement.

We also note that related results have been presented very
recently in [40], where cyclic interconversion between coher-
ence and entanglement has been demonstrated experimentally,
based on the framework of assisted coherence distillation
[41,42] and coherence activation from entanglement [20] and
quantum discord [43,44].

Our results also imply that the trace norm entanglement
violates strong monotonicity. This solves an important ques-
tion in quantum information theory and clearly demonstrates
how recent developments on the resource theory of quantum
coherence [5] can be applied for advancing other research
areas of quantum information and technology.
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APPENDIX A: QUANTUM RESOURCE QUANTIFICATION

An important question in any quantum resource theory is
to quantify the amount of the resource in a given quantum
state. A general resource quantifier R should at least have the
following property:

R(�f [ρ]) � R(ρ), (A1)

where �f is a free operation of the resource theory. In entan-
glement theory, �f are usually chosen to be local operations
and classical communication [3]. In the resource theory of
coherence, a possible choice for �f are incoherent operations
introduced in [6], and alternative frameworks have also been
discussed recently [45,46]. See also the review of Ref. [5] and
references therein.

Any non-negative function R which fulfills Eq. (A1) is
called a monotone of the corresponding resource theory. A
very general family consists of distance-based monotones

RD (ρ) = inf
σ∈F

D(ρ, σ ), (A2)

where F is the set of free states and D is a suitable
distance. The quantity RD fulfills monotonicity (A1) for
any distance D which is contractive under quantum oper-
ations: D(�[ρ],�[σ ]) � D(ρ, σ ). Important examples for
such distances are the quantum relative entropy S(ρ||σ ) =
Tr[ρ log2 ρ] − Tr[ρ log2 σ ] and the trace distance Dt (ρ, σ ) =
1
2 ||ρ − σ ||1 with the trace norm ||M||1 = Tr

√
M†M .

In many resource theories it is also important to consider
selective free operations. Here, an initial quantum state ρ is
transformed into an ensemble

ρ → {qi, σi} (A3)

with probabilities qi and quantum states σi . In entanglement
theory, this is motivated by the fact that the parties can, in
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principle, record the outcome of their local measurements.
Each state σi then corresponds to the state of the system for
a particular sequence of local measurement outcomes, with
a corresponding overall probability qi . A similar approach
has been taken recently in the resource theory of coherence
[5,6,45,46].

For a resource theory with selective free operations as
given in Eq. (A3), it is reasonable to demand that the corre-
sponding resource quantifier R admits strong monotonicity:

∑
i

qiR(σi ) � R(ρ), (A4)

for any ensemble {qi, σi}, which can be obtained from state
ρ by means of selective free operations. The motivation
for this requirement is similar to the standard monotonicity
(A1): the resource should not increase on average even if the
outcomes of free measurements are recorded. Entanglement
and coherence monotones based on the relative entropy fulfill
strong monotonicity [4,6]. As was shown in [28], the trace
norm coherence violates strong monotonicity. As we prove
in Appendix C, strong monotonicity is also violated by the
trace norm entanglement. Note that strong monotonicity (A4)
implies monotonicity (A1) if R is convex.

APPENDIX B: PROOF OF THEOREM 2

In the following, we will characterize all superposition-free
unitaries acting on two qubits. In particular, we will show
that any superposition-free unitary in this framework can be
decomposed into a sequence of elementary unitaries V and
W , given in Eqs. (3) and (4) of the main text. An important
ingredient for our proof is the following lemma [21,23,24]:

Lemma 4. For two sets of states {|ψi〉}Ni=1 and {|φi〉}Ni=1
there exists a unitary operation such that U |ψi〉 = |φi〉 for all
i if and only if 〈ψi |ψj 〉 = 〈φi |φj 〉 holds true for all i and j .

In general, a superposition-free unitary U acts on a
superposition-free state |ck〉 |cl〉 as follows:

U |ck〉 |cl〉 = eiφkl |cm〉 |cn〉 , (B1)

where the possible final states eiφkl |cm〉 |cn〉 are constrained
by Lemma 4. As we will see in the following, there exist
eight classes of superposition-free unitaries. For each of those
classes we will find a decomposition into the elementary
operations V and W .

Class 1. We start with the most simple transformation,
corresponding to the situation where an initial superposition-
free state remains unchanged (up to a possible phase):

|c0〉 |c0〉 → eiφ00 |c0〉 |c0〉 , (B2a)

|c1〉 |c1〉 → eiφ11 |c1〉 |c1〉 , (B2b)

|c0〉 |c1〉 → eiφ01 |c0〉 |c1〉 , (B2c)

|c1〉 |c0〉 → eiφ10 |c1〉 |c0〉 . (B2d)

Note that by Lemma 4, all phases eiφkl must be equal. It is
straightforward to see that this transformation corresponds
to V 2.

Class 2. We now consider the transformation

|c0〉 |c0〉 → eiφ00 |c0〉 |c0〉 , (B3a)

|c1〉 |c1〉 → eiφ11 |c1〉 |c1〉 , (B3b)

|c0〉 |c1〉 → eiφ01 |c1〉 |c0〉 , (B3c)

|c1〉 |c0〉 → eiφ10 |c0〉 |c1〉 . (B3d)

By applying Lemma 4, we see that, similar to the previous
case, all phases eiφkl must be equal. This transformation
corresponds to the swap unitary V .

Class 3. The next transformation that we will consider has
the following form:

|c0〉 |c0〉 → eiφ00 |c1〉 |c1〉 , (B4a)

|c1〉 |c1〉 → eiφ11 |c0〉 |c0〉 , (B4b)

|c0〉 |c1〉 → eiφ01 |c0〉 |c1〉 , (B4c)

|c1〉 |c0〉 → eiφ10 |c1〉 |c0〉 . (B4d)

Up to an overall phase, the phases eiφkl are fixed by Lemma 4
as follows:

eiφ00 = 1, (B5a)

eiφ01 = eiφ10 = ei
φ11

2 = 〈c0|c1〉
〈c1|c0〉 . (B5b)

This transformation corresponds to the unitary WV W .
Class 4. In the next step we consider the following trans-

formation:

|c0〉 |c0〉 → eiφ00 |c1〉 |c1〉 , (B6a)

|c1〉 |c1〉 → eiφ11 |c0〉 |c0〉 , (B6b)

|c0〉 |c1〉 → eiφ01 |c1〉 |c0〉 , (B6c)

|c1〉 |c0〉 → eiφ10 |c0〉 |c1〉 . (B6d)

It can be verified by inspection that (up to an overall phase)
Lemma 4 fixes the phases eiφkl in the same way as in Eq. (B5).
Note that this transformation corresponds to the transforma-
tion of Class 3, followed by a swap. Thus, it corresponds to
the unitary (V W )2.

Class 5. We now consider the transformation

|c0〉 |c0〉 → eiφ00 |c1〉 |c0〉 , (B7a)

|c1〉 |c1〉 → eiφ11 |c0〉 |c1〉 , (B7b)

|c0〉 |c1〉 → eiφ01 |c1〉 |c1〉 , (B7c)

|c1〉 |c0〉 → eiφ10 |c0〉 |c0〉 . (B7d)

Up to an overall phase, Lemma 4 fixes the phases eiφkl as
follows:

eiφ00 = eiφ01 = 1, (B8a)

eiφ11 = eiφ10 = 〈c0|c1〉
〈c1|c0〉 . (B8b)

This transformation corresponds to the unitary W .
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Class 6. In the next step we consider the transformation

|c0〉 |c0〉 → eiφ00 |c1〉 |c0〉 , (B9a)

|c1〉 |c1〉 → eiφ11 |c0〉 |c1〉 , (B9b)

|c0〉 |c1〉 → eiφ01 |c0〉 |c0〉 , (B9c)

|c1〉 |c0〉 → eiφ10 |c1〉 |c1〉 . (B9d)

By applying Lemma 4, we see that the phases eiφkl are fixed
as follows:

eiφ00 = eiφ10 = 1, (B10a)

eiφ11 = eiφ01 = 〈c0|c1〉
〈c1|c0〉 . (B10b)

As can be verified by inspection, this transformation corre-
sponds to the unitary WV .

Class 7. The next transformation that we will consider has
the following form:

|c0〉 |c0〉 → eiφ00 |c0〉 |c1〉 , (B11a)

|c1〉 |c1〉 → eiφ11 |c1〉 |c0〉 , (B11b)

|c0〉 |c1〉 → eiφ01 |c0〉 |c0〉 , (B11c)

|c1〉 |c0〉 → eiφ10 |c1〉 |c1〉 . (B11d)

Up to an overall phase, Lemma 4 fixes the phases eiφkl as in
Eqs. (B10). This transformation corresponds to the transfor-
mation of Class 6 followed by a swap, and the corresponding
unitary is V WV .

Class 8. Our final transformation has the following form:

|c0〉 |c0〉 → eiφ00 |c0〉 |c1〉 , (B12a)

|c1〉 |c1〉 → eiφ11 |c1〉 |c0〉 , (B12b)

|c0〉 |c1〉 → eiφ01 |c1〉 |c1〉 , (B12c)

|c1〉 |c0〉 → eiφ10 |c0〉 |c0〉 . (B12d)

Up to an overall phase, Lemma 4 fixes the phases eiφkl as in
Eq. (B8). This transformation corresponds to the transforma-
tion of Class 5 followed by a swap, and the corresponding
unitary is V W .

As we will discuss in the following, these eight classes
indeed characterize all superposition-free unitaries on two
qubits. This can be seen by inspection, applying Lemma 4
to all the remaining permutations of the superposition-free
states. As an example, consider the following transition:

|c0〉 |c0〉 → eiφ00 |c0〉 |c0〉 , (B13a)

|c1〉 |c1〉 → eiφ11 |c1〉 |c0〉 , (B13b)

|c0〉 |c1〉 → eiφ01 |c0〉 |c1〉 , (B13c)

|c1〉 |c0〉 → eiφ10 |c1〉 |c1〉 . (B13d)

A transition of this form can be regarded as CNOT operation
in the resource theory of superposition, as (up to a phase)
the state of the second qubit is flipped between |c0〉 and |c1〉,
conditioned on the first qubit being in one of these states.

The transition in Eqs. (B13) is not covered by the above
classes and it is indeed impossible via unitary operations. If
such a transition was possible via unitaries, this would lead to
a violation of Lemma 4. In particular, Lemma 4 together with
Eqs. (B13a) and (B13b) implies that

〈c0|c1〉2 = ei(φ11−φ00 ) 〈c0|c1〉 , (B14)

which cannot be true for any choice of the phases eiφ00 and
eiφ11 in the considered range 0 < |〈c0|c1〉| < 1. By similar
arguments, all transitions which are not covered by the above
classes can be ruled out, and the proof is complete.

APPENDIX C: PROOF OF THEOREM 3

In the following, we will use results from [27], where
the authors provided an important link between Et and Ct .
In particular, theorems 2 and 3 in [27] imply the following
equality:

Et

⎛
⎝ 1

d

d−1∑
i,j=0

|ii〉〈jj |
⎞
⎠ = Ct

⎛
⎝ 1

d

d−1∑
i,j=0

|i〉〈j |
⎞
⎠ = 2 − 2

d
. (C1)

Equipped with these tools, we are now in a position to prove
Theorem 3 of the main text.

We will consider the bipartite state

ρ = p

2

1∑
i,j=0

|ii〉〈jj | + 1 − p

3

4∑
k,l=2

|kk〉〈ll| (C2)

with probability 0 � p � 1. Consider now local measurement
on the first party with Kraus operators

K1 =
1∑

i=0

|i〉〈i| ⊗ 1, K2 =
4∑

j=2

|j 〉〈j | ⊗ 1. (C3)

It is straightforward to check that the corresponding measure-
ment probabilities take the form

q1 = Tr[K1ρK
†
1] = p, (C4)

q2 = Tr[K2ρK
†
2] = 1 − p. (C5)

Moreover, the postmeasurement states are given as

σ1 = K1ρK
†
1

p1
= 1

2

1∑
i,j=0

|ii〉〈jj | , (C6)

σ2 = K2ρK
†
2

p2
= 1

3

4∑
k,l=2

|kk〉〈ll| . (C7)

We will now complete the proof of the theorem by showing
that for a suitable choice of the probability p it holds that

q1Et (σ1) + q2Et (σ2) > Et (ρ). (C8)

For this, we define the separable state δ = 1
2

∑1
i=0 |ii〉〈ii|

and note that it provides an upper bound on the trace norm
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FIG. 5. Violation of strong monotonicity of trace norm entangle-
ment for the state ρ given in Eq. (C2). Solid line shows an upper
bound on the trace norm entanglement of ρ. Dashed line shows
the average entanglement q1Et (σ1) + q2Et (σ2) after a suitable local
measurement. Violation of strong monotonicity is obtained in the
range 0.4 < p < 1.

entanglement, i.e., Et (ρ) � ||ρ − δ||1. Moreover, it is
straightforward to verify that

||ρ − δ||1 =
{

2 − 2p for p < 1
2 ,

1 for p � 1
2 .

(C9)

On the other hand, using Eq. (C1) we obtain

Et (σ1) = 1, Et (σ2) = 4
3 . (C10)

Using these results, we immediately see that Eq. (C8) is
fulfilled for 0.4 < p < 1, see also Fig. 5.

APPENDIX D: ACTIVATION OF �1-NORM COHERENCE
INTO CONCURRENCE

We will now show that the inequality

E(�i[ρ ⊗ σi]) � C(ρ) (D1)

holds for �1-norm coherence C and concurrence E, where ρ

and σi are single-qubit states, and �i is a bipartite incoherent
operation. Moreover, we will also see that equality in Eq. (D1)
is achieved if �i is a CNOT gate.

For proving the statement, we first recall the definition
of geometric entanglement [47,48] and geometric coher-
ence [20],

Eg(ρ) = 1 − max
σ∈S

F (ρ, σ ), (D2)

Cg(ρ) = 1 − max
σ∈I

F (ρ, σ ), (D3)

with fidelity F (ρ, σ ) = ||√ρ
√

σ ||21. Note that these quantities
fulfill Eq. (D1), and equality is attained if �i is a CNOT

gate [20].
For a single-qubit state ρ, the geometric coherence Cg is

related to the �1 norm coherence C as follows [20]:

Cg(ρ) = 1
2 [1 −

√
1 − C(ρ)2]. (D4)

It is now crucial to note that the same functional relation holds
between the geometric entanglement Eg and the concurrence
E for any two-qubit state μ [47,48]:

Eg(μ) = 1
2 [1 −

√
1 − E(μ)2]. (D5)

Recalling that Eq. (D1) is fulfilled for the geometric entan-
glement Eg and geometric coherence Cg, these results imply
that Eq. (D1) also holds for the �1 norm of coherence C

and concurrence E. Moreover, for these quantifiers the CNOT

gate must also be the optimal incoherent operation, attaining
equality in Eq. (D1). Our results also hold if C is chosen to be
the trace norm coherence, as for single-qubit states the trace
norm coherence coincided with the �1 norm coherence [31].
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