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1Institut de Ciències Fotòniques, 08860 Castelldefels, Barcelona, Spain
2Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik III, D-40225 Düsseldorf, Germany

(Received 4 September 2013; published 22 September 2014)

Entanglement distribution with separable states has recently attracted considerable attention. Recent results
suggest that quantum discord, a measure for quantum correlations beyond entanglement, is responsible for
this counterintuitive phenomenon. In this work we study this question from a different perspective and find
minimal requirements for a separable state to be useful for entanglement distribution. Surprisingly, we find that
the presence of quantum discord is not sufficient to ensure entanglement distribution: There exist states with
nonzero quantum discord that nevertheless cannot be used for entanglement distribution. As a result, we show
that entanglement distribution is not possible with rank-2 separable states. Our work sheds light on the task of
entanglement distribution with separable states and reveals a classification of quantum states with respect to their
usefulness for this task.
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A fundamental task in quantum information processing is
the distribution of entanglement between two distant parties. It
has been shown in [1] that, counterintuitively, this task can be
achieved by sending a particle that exhibits no entanglement
with the rest of the system. Such entanglement distribution
with separable states was also studied for Gaussian states [2,3]
and experiments with continuous [4,5] and discrete variables
[6] have been presented very recently (see also [7]). Quantum
discord, a different type of quantum correlations going beyond
entanglement [8–10], has been identified as the figure of
merit for this puzzling phenomenon [11,12]. This finding
is in accordance with earlier results, supporting the crucial
role of quantum discord and related quantifiers of quantum
correlations [13–18] in quantum information theory. These
results include thermodynamic approaches [19,20] and the
relations to entanglement creation in the quantum measure-
ment process [21–23] and to entanglement consumption in
quantum state merging [24,25]. Recently, the role of quantum
discord for quantum metrology [26–28], encoding [29], and
sharing [30–32] of information has also been subjected to
scrutiny. Quantum discord was further proposed to be the
figure of merit for the quantum computing protocol known
as DQC1 (quantum computation with one quantum bit) [33]
and for the task of remote state preparation [34]. Some of the
arguments are still controversial [17,35,36] and the ongoing
debate about the physical interpretation of quantum discord
[37,38] is further amplified by the finding that quantum discord
can be created by local operations [17,39–41]. On the one
hand, these results suggest that quantum discord can also be
regarded as a measure for the local quantumness of a state
[42]. On the other hand, these findings underpin the role of
general quantum correlations for tasks that are not covered by
the traditional concept of entanglement.

In this paper we aim to find minimal requirements for
entanglement distribution with separable states. To this end we
consider a general distribution protocol and identify properties
for a separable state to be a resource for entanglement
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distribution. In the following we call a state ρAB useful for
entanglement distribution if it is possible to divide party B in
two parties B1 and B2 in such a way that sending particle A

from side 1 to side 2 leads to an increase of entanglement:

EB1|B2A > EAB1|B2 (1)

(see also Fig. 1). Certainly, any entangled state is useful for
entanglement distribution, as can be seen by giving the full sys-
tem B to side 1, i.e., B1 = B. This implies that the presence of
entanglement between A and B is sufficient for entanglement
distribution. On the other hand, the finding that entanglement
can be distributed with separable states [1] demonstrates
that the presence of entanglement is not necessary and that,
in general, some other kind of quantum correlation beyond
entanglement is responsible for this process.

Recently, quantum discord was identified as the key
resource for entanglement distribution: The distribution of
any finite amount of entanglement needs the transmission
of at least the same amount of quantum discord [11,12].
These results show that, in contrast to entanglement, quantum
discord is implicitly required if one wishes to increase the
amount of entanglement between two parties. As a conse-
quence, all classical-quantum states, i.e., states of the form
ρcq = ∑

i pi |i〉 〈i|A ⊗ ρB
i , cannot be used for entanglement

distribution since all those states have zero quantum discord
[9]. On the other hand, the results presented in [11,12] support
the intuition that the presence of quantum discord in a state ρAB

already ensures its usefulness for entanglement distribution.
This idea leads us to the main question of this paper: Are all
states with nonzero quantum discord useful for entanglement
distribution?

To approach the answer to this question, we first consider
the most simple class of potentially useful separable states

ρAB = p |ψ1〉 〈ψ1|A ⊗ |φ1〉 〈φ1|B
+ (1 − p) |ψ2〉 〈ψ2|A ⊗ |φ2〉 〈φ2|B . (2)

Noting that this state has nonzero discord for a generic choice
of the states |ψA

i 〉 and |φB
i 〉 and the probability p, it is

reasonable to conjecture that this state is generically useful
for entanglement distribution. Surprisingly, as we will see in
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FIG. 1. (Color online) A quantum system consisting of two
parties A and B (upper figure) is useful for entanglement distribution
if party B can be divided in two parties B1 and B2 (middle figure) in
such a way that sending particle A from side 1 to side 2 leads to an
increase of entanglement (lower figure).

the following, this intuition is not correct. This implies that
the answer to the question stated above is negative, leading to
strong limitations on entanglement distribution with separable
states.

In the following we will show that the state given in Eq. (2)
cannot be used for entanglement distribution, regardless of the
choice of states |ψA

i 〉 and |φB
i 〉 and probability p. In particular,

we will show that for any division of party B into two parties
B1 and B2, sending particle A from one side to the other will
never change the amount of entanglement [43]:

EB1|B2A
n = EAB1|B2

n . (3)

Here En is the logarithmic negativity, defined for a state
ρ = ρXY as E

X|Y
n = log2 ||ρTX ||1, where TX denotes partial

transposition and ‖M‖1 = Tr
√

M†M is the trace norm of an
operator M [44]. Together with the closely related negativity
NX|Y = (||ρTX ||1 − 1)/2, which was first introduced in [45],
the logarithmic negativity is a well-established quantifier of
entanglement [46]. Its significance for quantum information
theory comes from several desirable properties, such as being
an entanglement monotone [47], which is computable and
additive [44]. The logarithmic negativity is an upper bound
on the distillable entanglement [44] and a lower bound on the
positive partial transpose (PPT) entanglement cost, which is
the entanglement cost under quantum operations preserving
the positivity of the partial transpose [48]. Moreover, it was
shown that En coincides with the PPT entanglement cost in a
large number of scenarios, including all two-qubit states [49],
Gaussian states [48], and general Werner states [48]. Since En

is zero only on separable and bound entangled states [50] and
bound entanglement is known to be absent in bipartite states
with rank smaller than 4 [51–53], En is a faithful quantifier of
entanglement for the states presented in Eq. (2).

To prove Eq. (3) we consider the partially transposed
density matrices ρTB1 and ρTAB1 of the total state ρ = ρAB =
ρAB1B2 given in Eq. (2), where B1 and B2 are two subsystems
of B. In particular, we will show that the matrices ρTB1 and

ρTAB1 are equal up to a unitary operation and thus share
the same set of eigenvalues. To show this we start with
the partially transposed density matrix ρTB1 = p |ψ1〉 〈ψ1|A ⊗
MB

1 + (1 − p) |ψ2〉 〈ψ2|A ⊗ MB
2 with MB

i = (|φi〉 〈φi |)TB1 . In
the next step we will show that a partial transposition of this
matrix ρTB1 with respect to the subsystem A is equivalent to
a unitary operation, i.e., ρTAB1 = UρTB1 U †. This can be seen
by considering the Bloch vectors r and s corresponding to
the states |ψA

1 〉 and |ψA
2 〉, i.e., |ψ1〉 〈ψ1|A = 1

2 (1 + ∑
i riσi)

and |ψ2〉 〈ψ2|A = 1
2 (1 + ∑

i siσi) with Pauli matrices σi . The
transposition of the states |ψA

1 〉 and |ψA
2 〉 takes them to new

states |ψ̃A
1 〉 and |ψ̃A

2 〉 with Bloch vectors r̃ and s̃. At this point, it
is crucial to note that the product of the Bloch vectors does not
change under transposition: r̃ · s̃ = r · s. This implies that the
transposition of subsystem A is equivalent to a joint rotation of
the Bloch vectors r → r̃ and s → s̃, which, on the other hand,
corresponds to a unitary operation acting on subsystem A. This
proves that the matrices ρTB1 and ρTAB1 are equal up to a unitary
operation, implying that the eigenvalues of both matrices must
be the same. Starting from this result, Eq. (3) is seen to
be correct by recalling that the logarithmic negativity E

X|Y
n

depends only on the eigenvalues of the partially transposed
density matrix ρTX [44].

The results presented so far imply crucial constraints on the
possibility to distribute entanglement with separable states. In
particular, we have seen that the distribution of entanglement
is not possible if the corresponding separable state is a mixture
of two pure product states [see Eq. (2)]. In the next step we
will see that this limitation can be surpassed if the pure states
|ψA

i 〉 in Eq. (2) are replaced by mixed states ρA
i . In this case

the total state takes the form

ρAB = pρA
1 ⊗ |φ1〉 〈φ1|B + (1 − p)ρA

2 ⊗ |φ2〉 〈φ2|B . (4)

The use of this state for entanglement distribution can be
demonstrated for the probability p = 1/2 by a proper choice
of the states ρA

i and |φB
i 〉. This can be achieved by defining the

states ρA
i of subsystem A as follows: ρA

1 = 1
6 |0〉 〈0| + 5

6 |1〉 〈1|
and ρA

2 = 2
3 |a〉 〈a| + 1

3 |b〉 〈b|. Here |a〉 and |b〉 are nonorthog-
onal qutrit states, defined as |a〉 = (|0〉 + |1〉 + |2〉)/√3 and
|b〉 = (|0〉 + i |1〉)/√2. Finally, party B consists of two sub-
systems B1 and B2 and the corresponding states |φB

i 〉 can
be chosen as |φB

1 〉 = (|00〉 + |01〉 + i |11〉)/√3 and |φB
2 〉 =

cos α |00〉 + sin α |11〉. As can be seen from the difference
�En = E

B1|B2A
n − E

AB1|B2
n , shown in Fig. 2 as a function of α,

this particular setting allows one to distribute a finite amount
of entanglement �En > 0 in the range 0 < α < π/4, where
α is the parameter of the state |φB

2 〉.
The example presented above should be regarded as a proof

of principle: It explicitly demonstrates that some separable
states that are mixtures of only two product states can, in
principle, be used for entanglement distribution. In particular,
we have seen that a successful distribution of entanglement
can be achieved by a specific choice of mixed qutrit states
ρA

1 and ρA
2 . As we will see in the following, it is indeed

crucial that the transmitted particle A is not a qubit: For
entanglement distribution with separable states as given in
Eq. (4) the dimension of A needs to be at least 3. To prove
this statement it is enough to show that for a two-dimensional

032323-2



LIMITS FOR ENTANGLEMENT DISTRIBUTION WITH . . . PHYSICAL REVIEW A 90, 032323 (2014)

0 Π

16

Π

8

3 Π

16
Π

4

Α

2 10 4

4 10 4

6 10 4

En

FIG. 2. (Color online) Entanglement distribution with separable
states by sending a qutrit: The plot shows the amount of distributed
entanglement �En = EB1|B2A

n − EAB1|B2
n for the state given in Eq. (4)

as a function of the parameter α. For details see the main text.

subsystem A the state given in Eq. (4) cannot be used for
entanglement distribution, i.e., Eq. (3) is satisfied. This can
be seen by observing that the arguments given in the proof of
Eq. (3) for mixtures of two pure product states remain valid if
the pure states |ψA

1 〉 and |ψA
2 〉 are replaced by arbitrary qubit

states ρA
1 and ρA

2 .
On the one hand, we have seen that entanglement distribu-

tion with separable states is impossible if the separable state is
a mixture of two pure product states only. On the other hand,
we have also demonstrated a possibility to avoid this problem
by using two mixed states ρA

1 and ρA
2 for the exchanged

particle A. In the next step we will show that mixedness
of both states is essential: Entanglement distribution is not
possible if ρA

1 or ρA
2 is pure, regardless of the dimension

of the exchanged particle A. We will prove this statement
by showing that Eq. (3) is satisfied for all states given in
Eq. (4) as long as either ρA

1 or ρA
2 is pure. Without loss of

generality we can assume that ρA
1 = |ψ〉 〈ψ |A is pure and

the state ρA
2 = τA is diagonal in the computational basis

τA = ∑
i λi |i〉 〈i|A. Using similar lines of reasoning as above

we will prove the validity of Eq. (3) by showing that the
partially transposed density matrices ρTB1 and ρTAB1 are equal
up to a unitary operation. In particular, the matrix ρTB1 now has
the form ρTB1 = p |ψ〉 〈ψ |A ⊗ MB

1 + (1 − p)τA ⊗ MB
2 with

MB
i = (|φi〉 〈φi |)TB1 . From this expression we can obtain the

matrix ρTAB1 by performing partial transposition on subsystem
A: ρTAB1 = p |ψ̃〉 〈ψ̃ |A ⊗ MB

1 + (1 − p)τA ⊗ MB
2 . Here we

used the fact that τA = ∑
i λi |i〉 〈i|A is diagonal in the com-

putational basis and thus does not change under transposition.
The relation between the state |ψA〉 and the transposed state
|ψ̃A〉 can be seen by expanding both states in the computational
basis |ψ̃A〉 = ∑

j c∗
j |jA〉, where cj are the coefficients of

the state |ψA〉, i.e., |ψA〉 = ∑
j cj |jA〉. In the final step it

is important to note that the states |ψA〉 and |ψ̃A〉 = U |ψA〉
are related by the unitary operation U = ∑

j e−2iφj |j 〉 〈j |A,
where φj is the phase corresponding to the coefficient
cj = |cj |eiφj . Since this unitary operation is diagonal in the
computational basis, it does not change the state τA and thus

we obtain the desired result ρTAB1 = UρTB1 U †. This proves that
for a successful distribution of entanglement with separable
states as given in Eq. (4) both states ρA

1 and ρA
2 must be mixed.

The results presented above indicate that the structure of
the separable state is crucial if the separable state is to be used
as a resource for entanglement distribution. While a mixture
of only two product states does not allow one to distribute
any entanglement by sending a single qubit, this limitation
disappears if the exchanged particle has dimension 3. We also
note that this result remains valid if the pure states |φB

i 〉 of
subsystem B are replaced by mixed states ρB

i . In particular,
states of the form ρAB = pρA

1 ⊗ ρB
1 + (1 − p)ρA

2 ⊗ ρB
2 can

only be used for entanglement distribution if the transmitted
particle A has at least dimension 3 and if both states ρA

1 and
ρA

2 are not pure.
In the next step it is natural to ask about the situation where

the separable state used for entanglement distribution is more
general. As we will see in the following, qubits can still be used
to distribute entanglement if the separable state is a mixture of
at least three product states. This can be demonstrated on the
following state:

ρAB = 1

3

3∑

i=1

|ψi〉 〈ψi |A ⊗ |φi〉 〈φi |B , (5)

where the qubit states |ψA
i 〉 are chosen as follows: |ψA

1 〉 =
(|0〉 + |1〉)/√2, |ψA

2 〉 = (|0〉 + i |1〉)/√2, and |ψA
3 〉 = |0〉.

Party B consists of two subsystems B1 and B2 and the
corresponding states |φB

i 〉 are defined as |φB
1 〉 = |01〉, |φB

2 〉 =
(|00〉 + i |11〉)/√2, and |φB

3 〉 = cos α |00〉 + sin α |11〉. As
can be seen from Fig. 3, this state allows one to distribute
a finite amount of entanglement �En = E

B1|B2A
n − E

AB1|B2
n in

the range 0 < α < π/2, where α is the parameter of the state
|φB

3 〉.
As will become clear in a moment, the reason why the state

in Eq. (5) is useful for entanglement distribution lies in the
structure of the states |ψA

i 〉. In particular, their Bloch vectors
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FIG. 3. (Color online) Entanglement distribution with separable
states by sending a single qubit: The plot shows the amount of
distributed entanglement �En = EB1|B2A

n − EAB1|B2
n for the state

given in Eq. (5) as a function of the parameter α. For details see
the main text.
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are given by r1 = (1,0,0)T , r2 = (0,1,0)T , and r3 = (0,0,1)T .
Observe that these three vectors are linearly independent, i.e.,
they are not all in the same plane. We will see in the following
that this feature is crucial for entanglement distribution, where
at the same time we will generalize our results to arbitrary
separable states, i.e., states of the form ρAB = ∑

i piρ
A
i ⊗ ρB

i ,
where the exchanged particle A is a qubit. Following the
same arguments as in the preceding discussion, we consider
the partially transposed matrices ρTB1 = ∑

i piρ
A
i ⊗ MB

i and
ρTAB1 = ∑

i pi ρ̃
A
i ⊗ MB

i with MB
i = (ρB

i )TB1 . Recall that the
state ρAB cannot be used for entanglement distribution if the
two matrices ρTB1 and ρTAB1 are equal up to a unitary operation.
On the one hand, this is the case whenever the transposition on
subsystem A of the matrix ρTB1 corresponds to a joint rotation
of the Bloch vectors ri → r̃i , i.e., whenever there exists a
special orthogonal 3 × 3 matrix O such that r̃i = O · ri [54].
Here ri and r̃i are the Bloch vectors of ρA

i and the transposed
state ρ̃A

i , respectively. On the other hand, it is crucial to note
that the Bloch vector r̃ corresponding to a transposed state
ρ̃ = ρT is related to the Bloch vector r of the initial state ρ

via a reflection on the xz plane, i.e., (r̃1,r̃2,r̃3) = (r1, − r2,r3).
Combining these results, we can say that ρAB cannot be used
for entanglement distribution if for all the Bloch vectors ri

a reflection on the xz plane is equivalent to a rotation. Note
that this is always fulfilled if the number of Bloch vectors
is 2, in accordance with the finding that mixtures of two
product states cannot be used for entanglement distribution
by sending a qubit. For more than two vectors a reflection
does not necessarily correspond to a rotation, supporting the
finding that qubits can be used for entanglement distribution if
the number of product states is more than 2. Finally, we point
out that reflection is equivalent to rotation for any number
of Bloch vectors, whenever all the Bloch vectors are in the
same plane. This immediately leads to a generalization of
our previous results: Entanglement distribution with separable
states by sending a single qubit is only possible if the
corresponding Bloch vectors ri are not all in the same
plane.

In conclusion, we established minimal requirements for a
separable state to be a resource for entanglement distribution.
Here both the dimension of the exchanged particle and the
number of product terms in the decomposition play a crucial
role. Our results provide an answer to the main question of
this paper: There are states with nonzero quantum discord that
cannot be used as a resource for entanglement distribution.
In particular, we have shown that a separable state cannot
be used for this task if it is a mixture of only two pure
product states. Since all rank-2 separable states are mixtures of

two pure product states [55], we conclude that entanglement
distribution with separable states requires states with rank of
at least 3. Starting from this result, we also presented general
criteria for entanglement distribution with separable states by
sending a single qubit. In this case, entanglement distribution
is impossible if the separable state is a mixture of two product
states only, regardless of whether the corresponding product
states are pure or mixed. Two possible solutions were presented
to surpass this limitation: either by sending a qutrit or by
using a separable state that is a mixture of at least three
product states. Our results further imply that any tripartite
state ρAB1B2 of rank 2 that is separable between A and B1B2

cannot be used for entanglement distribution since for all
these states the logarithmic negativity does not depend on the
location of the exchanged particle A: EB1|B2A

n = E
AB1|B2
n . If the

particle A is a qubit, the same arguments further apply to all
separable states ρAB1B2 = pμA ⊗ μB1B2 + (1 − p)νA ⊗ νB1B2

that are mixtures of two product states only. Noting that the
corresponding tripartite state ρAB1B2 can, in principle, have
an arbitrary amount of entanglement, we can say that the
presence of entanglement in a multipartite quantum state alone
does not ensure its usefulness for entanglement distribution.
We also point out that the presented approach is significantly
different from the recent approach by Kay [56]. There the
author investigated the usefulness of Bell diagonal states for
entanglement distribution with separable states. It is important
to note that the definition of useful states in [56] is different
from ours, making the two approaches independent and com-
plementary contributions to the ongoing discussion of entan-
glement distribution with separable states. Finally, the results
presented in this paper apply to two fundamental quantifiers
of entanglement: the logarithmic negativity En and the closely
related negativity N , which has recently received a physical
interpretation as an estimator of entanglement dimension [57].
Extension of our results to other entanglement measures is
the subject of ongoing research and the investigation of this
question may be instrumental for creation of new protocols for
entanglement distribution and for the gain of new insights into
the properties of quantum entanglement and general quantum
correlations.
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