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Quantifying nonclassicality: Global impact of local unitary evolutions
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We show that only those composite quantum systems possessing nonvanishing quantum correlations have
the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation
between the global state change induced by local unitary evolutions and the amount of quantum correlations. We
prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert-Schmidt
norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary
dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated,
and are thus the ones that maximize this type of global quantum effect. Finally, we show that similar results hold
when replacing the Hilbert-Schmidt norm with the trace norm.
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I. INTRODUCTION

Although the existence of quantum correlations more
general than entanglement has been known for some time
[1–3], they have begun to attract increasing interest only after
the recent suggestion that they might constitute key resources
for quantum information and computation tasks, such as the
computational speedup in the model of deterministic quantum
computation with one pure qubit (DQC1) [4]. In this model,
the use of a mixed separable state appears to allow for the
efficient, i.e., polynomial time, computation of the trace of
any n-qubit unitary matrix [5], which is a problem believed
to fall in the NP class on a classical computer [6,7]. Given
the absence of entanglement, and assuming the essential
nonclassicality of the protocol, this has led to the suggestion
that a particular measure of bipartite quantum correlations,
the quantum discord [1], is the figure of merit for quantum
computation with mixed states [8]. Despite much progress, the
issue is, however, not yet conclusively settled [9–12]. More
recently, various operational interpretations of the quantum
discord and other measures of quantum correlations have
been established [10,13–20]. Quantum discord in its entropic
definition, i.e., as the difference between two classically
equivalent forms of mutual information [1], has been given
its first information-theoretic operational meaning in terms
of entanglement consumption in an extended quantum-state-
merging protocol. Its asymmetry, i.e., the fact that, in general,
the discord between parties A and B given that party A is
measured is different from the discord given that party B is
measured has been related to the performance imbalance in
quantum state merging and dense coding [15]. The quantum
discord has also been shown to be equal to the minimal partial
distillable entanglement, that is, the part of entanglement
that is lost when one ignores the subsystem, which is not
measured in a local projective measurement [16]. Finally, a
different measure of nonclassicality, i.e., the relative entropy of
quantumness, has been shown to be equivalent to the minimum
distillable entanglement generated between a system and local
ancillae in a suitably devised activation protocol [17].
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Notwithstanding this recent progress, several fundamental
questions on the nature and properties of quantum correlations
are yet to be addressed. Among them, a conceptually appealing
one is determining a unified mathematical framework for
the quantification of entanglement and quantumness. Such a
framework would allow one to devise a basic physical interpre-
tation of quantum correlations and formulate sharp quantitative
questions on the ensuing measure of nonclassicality, such as
the definition and properties of maximally quantum-correlated
states. In the present work, we define a distance-based measure
of quantumness that for pure states reduces to a particular
distance-based measure of entanglement, the so-called stellar
entanglement [21,22]. The latter associates pure-state bipartite
entanglement to the minimal change of a state induced by local
unitary operations. It is a bona fide entanglement monotone for
M × N -dimensional composite quantum systems and extends
to mixed states via the convex roof construction. Indeed,
the research program on the global effects of local unitary
operations acting on composite quantum systems has turned
out to be fruitful in the investigation of various other issues
[23,24], including the quantification of measurement-induced
nonlocality [25] and the theory and applications of ground-
state factorization in the study of complex quantum systems
[26–28]. Very recently, the possibility of quantifying quantum
correlations via the effect of local unitary operations has been
discussed in Ref. [29].

In the present work, we shall show that the minimal
disturbance on mixed bipartite quantum states under the action
of local unitary (Hamiltonian) time evolutions on only one of
the parties defines a faithful measure of quantum correlations
vanishing if and only if the state is classically correlated and
reducing to the stellar entanglement for pure states. This
measure enjoys a clear physical interpretation in terms of
the impact power of local unitary time evolutions, i.e., the
ability to induce a global state change. Moreover, at least for
two-qubit systems, it coincides with the geometric measure
of discord defined as the distance from the set of classically
correlated states using the Hilbert-Schmidt norm [9]. In the
case of two-qubit systems and for any value of the global state
purity, we find that the measure is maximized by the class of
two-qubit Werner states. Furthermore, for the general case of
m × n-dimensional systems, we show that the impact power
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is an upper bound to the geometric discord. Finally, we will
briefly comment on the extension of the present investigation
when the Hilbert-Schmidt norm is replaced by other norms.

II. QUANTIFYING QUANTUM CORRELATIONS BY
LEAST PERTURBING LOCAL UNITARY EVOLUTIONS

Let us begin by considering a bipartite quantum system
composed of two subsystems, A and B, so that the Hilbert
space H = HA ⊗ HB . Under the evolution driven by a local
Hamiltonian HA acting on only subsystem A, the global den-
sity matrix ρAB evolves according to the unitary Schrödinger
dynamics,

ρAB(t) = e−iHAtρABeiHAt . (1)

In order to quantify the effect of such a local unitary time
evolution on any given initial global state, we define the
impact of the Hamiltonian HA as the Hilbert-Schmidt distance
between the evolved state at time t and the initial state,

I (ρAB,HA,t) = 1
2‖ρAB(t) − ρAB‖2, (2)

where ‖ρ − σ‖2 = Tr[(ρ − σ )2] is the Hilbert-Schmidt dis-
tance. The impact vanishes if the time evolution does not affect
the initial state, as in the trivial cases in which either t = 0 or
HA ∝ 1A. On the other hand, it can never exceed unity, as can
be seen by noticing that for any two arbitrarily chosen quantum
states ρ and γ , one has 1

2‖ρ − γ ‖2 = 1
2 (Tr[ρ2] + Tr[γ 2] −

2Tr[ργ ]) � 1
2 (Tr[ρ2] + Tr[γ 2]) � 1. The above inequality

also implies that the impact reaches unity if and only if the
time evolution driven by HA takes an initial pure state into
another pure state orthogonal to it.

Given the Hamiltonian HA and the initial state ρAB , we aim
to determine the maximum possible value of the impact I with
respect to time t . Hence, we introduce the impact powerP of
a Hamiltonian HA with respect to the initial state ρAB ,

P (ρAB,HA) = max
t

I (ρAB,HA,t). (3)

If HA is trivial, i.e., HA ∝ 1A, then P (ρAB,HA) ≡ 0. Let us
consider the case in which A is a qubit while B can be any
d-dimensional system. Any nontrivial local Hamiltonians HA

can then be written as HA = E0�
A
0 + E1�

A
1 , where E0 �= E1

are the two nondegenerate energy eigenvalues and �A
i are the

orthogonal projectors onto the two energy eigenstates |0〉 and
|1〉. With this expression of HA, the impact power reads

P (ρAB,HA) = max
t

{a − b cos(�Et)}, (4)

where the energy gap �E = E1 − E0 and the time-
independent quantities a and b are

a = Tr[(ρAB)2] − Tr

[
ρAB

1∑
i=0

�A
i ρAB�A

i

]
, (5)

b = 2Tr
[
ρAB�A

1 ρAB�A
0

]
. (6)

Notice that b is non-negative, since it can be written as
2Tr[XX†] with X = �A

0 ρAB�A
1 . The fact that a and b

are constants and b � 0 implies that the impact reaches
its maximum a + b at times t (k)

max = (2k+1)π
�E

, with k integer.
Exploiting completeness,

∑
i �

A
i = 1A, one has Tr[(ρAB)2] =

Tr[ρAB(�A
0 + �A

1 )ρAB(�A
0 + �A

1 )]. As a consequence, a =

b. Indeed, this result can be obtained straightforwardly from
Eq. (4) by setting t = 0 and reminding that at t = 0, it must
be P = 0. Exploiting the equality a = b, we then have

P (ρAB,HA) = 2

{
Tr[(ρAB)2] − Tr

[
ρAB

1∑
i=0

�A
i ρAB�A

i

]}
.

(7)

The impact power P cannot exceed unity and one has strictly
P < 1 if the initial state is mixed. By maximizing over all
HA, we can define the maximal possible impact power for any
given initial state ρAB as Pmax(ρAB) = maxHA

P (ρAB,HA).
From this definition, it follows immediately that Pmax(ρAB) <

1 for all mixed states. On the other hand, it is known that
an initial pure state is a product state if and only if there
exists at least one local unitary traceless operation that leaves
it invariant [21,22]. For any given initial state ρAB , we can
then introduce the smallest possible impact power Pmin(ρAB),
defined by minimizing P over all local Hamiltonians that are
not proportional to the identity,

Pmin(ρAB) = min
HA �=α1A

P (ρAB,HA). (8)

It is evident from the definition that Pmin(ρAB) vanishes if and
only if ρAB is a product pure state. For entangled pure states,
Pmin(ρAB) cannot vanish because, due to the presence of the
entanglement, any local perturbation acting on a subsystem
will affect the entire system. Starting from this result, when
we move from the case of pure entangles states to that of
mixed nonclassical states, we find a similar behavior, but for
the important difference that the role previously played by
the entanglement is now played by the quantum correlations.
Indeed, we will now show that Pmin(ρAB) is directly related to
a well-defined measure of bipartite quantum correlations, that
is, the geometric measure of discord D

(2)
A (ρAB) [9], defined as

D
(2)
A (ρAB) = min

ωAB∈CQ
‖ρAB − ωAB‖2. (9)

In the definition of the geometric discord, the minimization is
taken over the set CQ of all classically correlated states, that is,
states of the form ωAB = ∑

i pi |i〉 〈i|A ⊗ ωB
i , where ωB

i is a
state on subsystem B. Using Eq. (7) together with the equality
Tr[ρAB

∑1
i=0 �A

i ρAB�A
i ] = Tr[(

∑1
i=0 �A

i ρAB�A
i )2], one can

immediately verify by inspection that for any nondegen-
erate single-qubit Hamiltonian HA = E0�

A
0 + E1�

A
1 , the

impact power can be written as P (ρAB,HA) = 2‖ρAB −∑1
i=0 �A

i ρAB�A
i ‖2. This implies the following order relation

between the impact power and the geometric measure of
discord:

P (ρAB,HA) � 2D
(2)
A (ρAB). (10)

Equation (10) shows that the change in the global state
due to a local unitary dynamics is bounded from below by
the geometric measure of discord and hence cannot vanish
in the presence of quantum correlations. Actually, one can
prove a much stronger relation between the minimum impact
power Pmin, which henceforth will be named the impact power
gap, and the geometric measure of discord according to the
following theorem:
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Theorem 1. If ρAB is a state of a bipartite system, where
subsystem A is a qubit, then the impact power gap Pmin is
given by

Pmin(ρAB) = 2D
(2)
A (ρAB). (11)

Proof. We will prove this equality by identifying a
Hamiltonian which explicitly minimizes the impact power
P (ρAB,HA). To this end, it is useful to recall that the
geometric measure of discord is related to local von Neumann
measurements, with local projectors �A

i , according to the
following [32]:

D
(2)
A (ρAB) = min

{�A
i }

∥∥∥∥∥ρAB −
∑

i

�A
i ρAB�A

i

∥∥∥∥∥
2

. (12)

Now let �̂A
0 and �̂A

1 be the projectors that achieve the minimum
and consider the Hamiltonian HA = E0�̂

A
0 + E1�̂

A
1 with

nondegenerate spectrum E1 �= E0. Evaluating the impact
power of HA along the same lines discussed in the cases above
yields P (ρAB,HA) = 2D

(2)
A (ρAB).

Theorem 1 exemplifies the relation between the impact
power gap and quantum correlations (see also Fig. 1). If
subsystem A is a qubit, then Pmin can be computed explicitly
by exploiting Theorem 1 and the explicit expression for D

(2)
A

provided in Refs. [9,30]. In fact, we can go one step further
and provide independent closed expressions both for Pmin and
for the maximal impact power Pmax in terms of the global state
purity:

Theorem 2. If system A is a qubit, then the maximal impact
power Pmax reads

Pmax(ρAB) = Tr[(ρAB)2] − mmin, (13)

E0 = E1

Impact Power Gap

E0 = E10

Pmin

Pmax

1

P

FIG. 1. (Color online) Possible values of the impact power P for
an arbitrary initial state ρAB . The impact power is zero if the spectrum
of the local Hamiltonian HA is degenerate: E0 = E1 (yellow line). For
E0 �= E1, the impact power can only take values between Pmin and
Pmax (green-blue area). The impact power gap is the region between 0
and Pmin. Its width is measured by the amount of quantum correlations
present in the initial state ρAB , as measured by the geometric measure
of discord: Pmin = 2D

(2)
A . See main text for details.

where mmin is the smallest eigenvalue of the matrix M

with elements Mij = Tr[ρABσA
i ρABσA

j ], where σA
i (with i =

x, y, z) are the Pauli operators of subsystem A. Moreover,
given the largest eigenvalue mmax of the matrix M , the impact
power gap Pmin reads

Pmin(ρAB) = Tr[(ρAB)2] − mmax. (14)

Proof. Since the impact power is identically vanishing
if the single-qubit Hamiltonian HA is degenerate, we need
consider only the nondegenerate case. The unitary operator
UA = eiHAt

(0)
max is then traceless with the spectrum composed of

the two complex roots of the unity. Let us recall Eq. (7) for
the impact power P (ρAB,HA) and the fact that we can always
rewrite a local unitary operator in the form UA = �A

0 − �A
1 .

We can then express the impact power as follows:

P (ρAB,HA) = Tr[(ρAB)2] − Tr[ρABUAρABU
†
A]. (15)

Using the Bloch representation to write the projectors as �A
0 =

1
2 (1A + ∑

i riσ
A
i ) and �A

1 = 1
2 (1A − ∑

i riσ
A
i ), the unitary

operator UA in Eq. (15) takes the form UA = �A
0 − �A

1 =∑
i riσ

A
i . The final expression for the impact power becomes

P (ρAB,HA) = Tr[(ρAB)2] −
∑
i,j

riMij rj , (16)

where we defined the matrix M with the elements Mij =
Tr[ρABσA

i ρABσA
j ]. It is easy to see that M is symmetric,

since Mij = Mji . Moreover, all entries of M are real. This
implies that in order to compute Pmax, we have to minimize
rT M r over all unit vectors r for a real symmetric matrix M .
This problem is solved by finding the smallest eigenvalue of
M [31]. The impact power gap Pmin can be computed similarly
by considering the largest eigenvalue of M .

By continuity in the Bloch vector r , the impact power
P (ρAB,HA) may assume any real value in the range
[Pmin,Pmax].

III. MAXIMALLY QUANTUM-CORRELATED TWO-QUBIT
STATES

Equipped with these results, we can look for the class of
states that, at fixed global purity, maximizes the impact power
gap and thus the quantum correlations. When both subsystems
are qubits (dA = dB = 2), the following theorem holds:

Theorem 3. For any state ρAB of two qubits,

Pmin(ρAB) � 4
3 Tr[(ρAB)2] − 1

3 , (17)

with equality achieved by the Werner states ρw.
Proof. In the Bloch sphere representation, any arbitrary

two-qubit state can be written as

ρAB = 1

4

(
1 ⊗ 1 +

∑
i

xiσi ⊗ 1 +
∑

i

yi1 ⊗ σi

+
∑
ij

Tij σi ⊗ σj

⎞
⎠ , (18)

and the state purity Tr[(ρAB)2] can be expressed as
Tr[(ρAB)2] = 1

4 (1 + x2 + y2 + ‖T ‖2). By tracing out the first
or second qubit, the purities of the reduced states are,
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respectively, Tr[(ρB)2] = 1
2 (1 + y2) and Tr[(ρA)2] = 1

2 (1 +
x2). Using representation (18), it is possible to evaluate the
geometric measure of discord for any two-qubit state [9], and
hence the expression for Pmin:

Pmin(ρAB) = 1
2 (x2 + ‖T ‖2 − kmax), (19)

where kmax is the largest eigenvalue of the matrix K =
xxT + T T T , and ‖T ‖2 = Tr[T T T ]. Since kmax is the largest
eigenvalue of the 3 × 3 matrix K , we have that 3kmax �
x2 + ‖T ‖2. Using this inequality in Eq. (19) and taking into
account the expressions of the global and reduced purities, we
have

Pmin(ρAB) � 1
3 (x2 + ‖T ‖2)

= 4
3

(
Tr[(ρAB)2] − 1

2 Tr[(ρB)2]
)
. (20)

Finally, noticing that for a single-qubit state the purity
cannot be smaller than 1

2 , we arrive at inequality (17). On
the other hand, a generic two-qubit Werner state can be
written as ρw = 2−x

6 1 + 2x−1
6 F , where x ∈ [−1,1] and F =∑

k,l |k〉 〈l| ⊗ |l〉 〈k| is the permutation operator. For such a
state, the purity is given by Tr[ρ2

w] = 1
3 (x2 − x + 1), while the

geometric measure of discord reads [32] D
(2)
A (ρw) = (2x−1)2

18 .
Recalling the relation between the impact power gap and the
geometric discord, one has that inequality (17) is saturated
by the Werner states. Werner states are thus maximally
quantum-correlated two-qubit states at fixed global purity.

We could not yet clarify whether the Werner states are
the only ones maximizing the two-qubit quantum correlations.
Some preliminary analysis suggests that other classes of highly
symmetric states, such as the isotropic states, might also
saturate the bound given by Eq. (17).

IV. CONCLUSIONS AND OUTLOOK: DIFFERENT
NORMS, HIGHER DIMENSIONS

In order to investigate systems with larger local dimen-
sion dA > 2, we generalize our approach considering the
fully nondegenerate local Hamiltonians of the form HA =∑dA−1

i=0 Ei�
A
i , with spectrum Ei �= Ej ∀ i �= j . Following the

same route of reasoning as in the qubit case, we find that the
impact power of HA over an arbitrary initial state ρAB can be
expressed as

P (ρAB,HA) = max
t

{
a −

∑
l>k

blk cos(�Elkt)

}
, (21)

where �Elk = El − Ek , and the coefficients a and blk are

a = Tr[(ρAB)2] − Tr

[
ρAB

dA−1∑
i=0

�A
i ρAB�A

i

]
, (22)

blk = 2Tr
[
ρAB�A

l ρAB�A
k

]
. (23)

Taking into account that a = ∑
l>k blk , we arrive at

P (ρAB,HA) = max
t

{∑
l>k

blk [1 − cos(�Elkt)]

}
. (24)

Since P (ρAB,HA) �
∑

l>k blk[1 − cos(�Elkt)] for all times
t �= tmax, it follows that P (ρAB,HA) � 2 maxl>k blk . Using
the fact that a = ∑

l>k blk � N maxl>k blk , we obtain that
maxl>k blk � 1

N

∑
l>k blk = a

N
, where N = (dA − 1)dA/2 is

the number of different blk terms. Collecting these results
and recalling the definition of the geometric measure of
discord D

(2)
A (ρAB), we find that the impact power of any

nondegenerate, finite-dimensional local Hamiltonian HA is
bounded from below by a simple linear function of the
geometric measure of discord,

P (ρAB,HA) � 4D
(2)
A (ρAB)

dA(dA − 1)
. (25)

From Eq. (25), in complete analogy with the qubit case,
it follows that if the initial state has vanishing quantum
correlations, then there always exists at least one nontrivial
local Hamiltonian HA with vanishing impact power. There-
fore, a nonvanishing impact power implies and quantifies a
nonvanishing degree of quantumness, regardless of the local
Hilbert-space dimension of party A.

It is worth noticing that while throughout this paper we have
made use of the Hilbert-Schmidt norm, we are by no means
limited to this choice. Similar conclusions hold as well for the
trace distance, which is directly related to the distinguishability
of quantum states [33]. Indeed, given two density matrices
ρ and ω, their squared trace distance is (Tr[

√
(ρ − ω)2])2 =

(
∑

i |λi |)2, where the {λi} are the eigenvalues of (ρ − ω).
This quantity is obviously always larger than or equal to
the squared Hilbert-Schmidt distance Tr[(ρ − ω)2] = ∑

i λ
2
i .

Therefore, an impact power gap for quantum correlated states
exists also in the case in which we replace the Hilbert-Schmidt
distance with the trace distance, and hence similar results
can be obtained also in this case. As the latter is monotonic
under general stochastic maps, this result is relevant in light
of a recent observation [34] that due to the fact that the
Hilbert-Schmidt distance is not monotonic under stochastic
maps, some reversible operations on unmeasured subsystem
B can change the value of the quantum correlations.

In conclusion, we have established that all of the quantum
correlated states of bipartite quantum systems exhibit a
nonvanishing impact power gap, i.e., a nonvanishing minimal
change under the action of any nontrivial local Hamiltonian.
On the contrary, for every classically correlated state, there
exists at least one particular nontrivial local unitary operation
that leaves the state unchanged. Starting from this observation,
we have quantified this global change via the Hilbert-Schmidt
distance and showed that the minimal distance achieved along
the local time evolution is proportional to the amount of
quantum correlations quantified via the geometric measure
of discord. Moreover, for two-qubit systems at fixed global
purity, we have verified explicitly that Werner states maximize
the impact power gap and thus the amount of quantum correla-
tions. We have mainly used as the measure of the effect of the
local unitary operations the Hilbert-Schmidt metrics; however,
we have shown that similar results can be obtained also using
the trace distance. On the other hand, it is expected that
the detailed structure of the quantification of nonclassicality
and the characterization of maximally quantum-correlated
states using the formalism of least-perturbing local unitary
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operations will depend to some extent on the choice of
the metric inducing the distance between quantum states.
In this respect, the choice of the Bures metric, which is
at the same time monotonic and Riemannian, seems to be
the most appropriate one, also in light of the fundamental
operational meaning that stems from its intimate relation with
the Uhlmann fidelity. The general structure of distance-based
measures of quantumness associated to least-perturbing local
unitary operations defined via different norms (Bures, trace,
and Hilbert-Schmidt) and their detailed comparison are the

subject of ongoing investigations and we hope to report on
them in the near future [35].
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P. Walther, Nature Phys. 8, 666 (2012).

[13] A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and
A. Acin, Phys. Rev. A 81, 052318 (2010).

[14] V. Madhok and A. Datta, Phys. Rev. A 83, 032323 (2011).
[15] D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and

A. Winter, Phys. Rev. A 83, 032324 (2011).
[16] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

106, 160401 (2011).
[17] M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki,

and A. Winter, Phys. Rev. Lett. 106, 220403 (2011).

[18] D. Girolami and G. Adesso, Phys. Rev. Lett. 108, 150403 (2012).
[19] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

108, 250501 (2012).
[20] T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro,

and M. Piani, Phys. Rev. Lett. 109, 070501 (2012).
[21] S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301

(2007).
[22] A. Monras, G. Adesso, S. M. Giampaolo, G. Gualdi, G. B.

Davies, and F. Illuminati, Phys. Rev. A 84, 012301 (2011).
[23] S. Gharibian, H. Kampermann, and D. Bruß, Quantum Inf.

Comput. 9, 1013 (2009).
[24] L. B. Fu, Europhys. Lett. 75, 1 (2006).
[25] S. Luo and S. Fu, Phys. Rev. Lett. 106, 120401 (2011).
[26] S. M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. Lett.

100, 197201 (2008).
[27] S. M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. B 79,

224434 (2009).
[28] S. M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. Lett.

104, 207202 (2010).
[29] S. Gharibian, Phys. Rev. A 86, 042106 (2012).
[30] S. Vinjanampathy and A. R. P. Rau, J. Phys. A: Math. Theor. 45,

095303 (2012).
[31] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge

University Press, Cambridge, UK, 1990).
[32] S. Luo and S. Fu, Phys. Rev. A 82, 034302 (2010).
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