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Quantum entanglement and quantum nonlocality are known to exhibit monogamy; that is, they obey

strong constraints on how they can be distributed among multipartite systems. Quantum correlations that

comprise and go beyond entanglement are quantified by, e.g., quantum discord. It was observed recently

that for some states quantum discord is not monogamous. We prove, in general, that any measure of

correlations that is monogamous for all states and satisfies reasonable basic properties must vanish for all

separable states: only entanglement measures can be strictly monogamous. Monogamy of other than

entanglement measures can still be satisfied for special, restricted cases: we prove that the geometric

measure of discord satisfies the monogamy inequality on all pure states of three qubits.
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Entanglement, nonclassical correlations, and nonlocal
correlations are all forms of correlations between two or
more subsystems of a composite quantum system that are
different from strictly classical correlations and, in general,
different from each other. One of the characteristic traits of
classical correlations is that they can be freely shared. A
party A can have maximal classical correlations with
two parties B and C simultaneously. This is no longer the
case if quantum entanglement or nonlocal correlations are
concerned [1]. The limits on the shareability of those
types of nonclassical correlations are known as monogamy
constraints, see Fig. 1 for illustration. Strict monogamy
inequalities have been proven that constrain the distribu-
tion of particular measures of entanglement and nonlocal
correlations (the latter expressed in terms of violation of
some Bell-type inequality [2]) among the subsystems of
a multipartite system [3–11]. These relations can be seen
as a particular case of trade-off relations that, in general,
may relate and constrain different quantifiers of correla-
tions [10,12]. Monogamy is the crucial property of corre-
lations that makes quantum key distribution secure [1,13],
even in no-signalling theories more general than quantum
mechanics.

Nonclassical correlations that go beyond entanglement,
often quantified, e.g., via the quantum discord [14,15],
have recently attracted considerable attention [16,17].
While entanglement captures the nonseparability of two
subsystems [18,19], quantum discord detects nonclassical
properties even in separable states. Different attempts were
presented to connect the new concept of quantum discord
to quantum entanglement [20–26] and to broadcasting
[27–29]. Several experimental results have been reported
in [30–33]. Quantum discord, as well as related quantifiers
of quantum correlations [17,22,23,34–44], have also been
linked to better-than-classical performance in quantum

computation and communication tasks, even in the
presence of limited or strictly vanishing entanglement
[30,45–53]. An important question to understand the role
of quantum correlations as signatures of genuine nonclass-
ical behavior is whether they distribute in a monogamous
way among multipartite systems.
A bipartitemeasure of correlationsQ satisfiesmonogamy

if [3,19]

Q AjBCð�ABCÞ � QAjBð�ABÞ þQAjCð�ACÞ (1)

holds for all states �ABC. Here, �AB ¼ TrCð�ABCÞ denotes
the reduced state of partiesA andB, and analogously for�AC.
The vertical bar is the familiar notation for the bipartite split.
The concept of monogamy is visualized in Fig. 1.

FIG. 1 (color online). Entanglement is monogamous: for a
fixed amount of entanglement between A and BC, the more
entanglement exists between A and B, the less can exist between
A and C. Quantitatively, this is expressed using the monogamy
relation, see Eq. (1) in the main text. In particular, the latter
implies—for a monogamous measure of entanglement E—that
EAjC ¼ 0 if EAjBC ¼ EAjB. In this Letter we show that the
monogamy relation does not hold, in general, for any quantum
correlation measure beyond entanglement, i.e., for any measure
that does not vanish on separable states.
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If Q denotes, in particular, an entanglement measure
[18,19], then there are a number of choices that satisfy
monogamy for pure states of qubits, including the squared
concurrence [3] and the squared negativity [54], as well as
their continuous variable counterparts for multimode
Gaussian states [5,6]. The only known measure that is
monogamous in all dimensions is the squashed entangle-
ment [10,55]. Other entanglement measures, such as the
entanglement of formation, do not satisfy the monogamy
relation [3]. There is no known a priori rule about whether
a given entanglement measure is monogamous or not.
It is natural to ask whether a given measure for general
quantum correlations is monogamous. Certain measures of
general quantum correlations, such as quantum discord,
were shown to violate monogamy by finding explicit ex-
amples of states for which the inequality (1) does not hold
[56–61]. Those examples, however, do not exclude the
possibility that other measures of quantum correlations,
akin to the quantum discord, could exist that do satisfy a
monogamy inequality.

In this Letter we address the issue of whether monog-
amy, in general, can extend to general quantum correla-
tions beyond entanglement. Quantitatively, this question
can be formulated as follows: Does there exist a measure of
correlationsQ that obeys the monogamy relation (1) and is
nonzero on a separable state? We will put this question to
rest by proving that all measures for quantum correlations
beyond entanglement (i.e., that are nonvanishing on at least
some separable state) and that respect some basic proper-
ties are not monogamous in general. These basic properties
of the correlation measure Q are the following:

(1) positivity, i.e.,

Q AjBð�ABÞ � 0; (2)

(2) invariance under local unitaries UA � VB, i.e.,

Q AjBð�ABÞ ¼ QAjBðUA � VB�ABU
y
A � Vy

BÞ; (3)

(3) no increase upon attaching a local pure ancilla, i.e.,

Q AjBð�ABÞ � QAjBCð�AB � j0ih0jCÞ: (4)

These properties are valid for several measures of correla-
tions known in the literature, including all entanglement
measures [18,19]. In particular, positivity and invariance
under local unitaries are standard requirements [62]. For
the quantum discord defined in Refs. [14,15], which is an
asymmetric quantity, Eq. (4) can be verified by inspection
and is valid independently of whether the ancilla is at-
tached on the side where the measurement entering the
definition of discord is to be performed or on the unmeas-
ured side. In a more general scenario, quantum correlations
can be defined as the minimal distance to the set of
classically correlated states [23,38,39,41]. In this case,
Eq. (4) follows from the fact that any ‘‘reasonable’’ dis-
tance does not change upon attaching an ancilla:Dð�;�Þ¼
Dð��j0ih0j;��j0ih0jÞ. The same arguments can be

applied to measures that are defined via measurements on
local subsystems [36]. Alternatively, quantum correlations
may be investigated and quantified in terms of the minimal
amount of entanglement necessarily created between the
system and a measurement apparatus realizing a complete
projective measurement [22,23,26,63]. Equation (4) also
holds in this case, which can be seen solely using the
properties of entanglement measures.
We are now in position to prove the following theorem.
Theorem 1. A measure of correlations Q that respects

Eqs. (2)–(4), and is also monogamous according to (1)
must vanish for all separable states.
Proof.— Consider a measure Q respecting the hypothe-

sis and a generic separable state �AC ¼ P
ipijc iihc ijA �

j�iih�ijC. In the following, we will concentrate on a
special extension of �AC, defined as

�ABC ¼ X

i

pijc iihc ijA � jiihijB � j�iih�ijC; (5)

with orthogonal states fjiiBg. Observe that �ABC has the

same amount of correlations QAjBC as the state

�ABC ¼ X

i

pijc iihc ijA � jiihijB � j0ih0jC; (6)

since both states are related by a local unitary on BC. On
the other hand, Eq. (4) implies that �ABC does not have
more correlations than the reduced state �AB. Taking

these two observations together, we obtain QAjBð�ABÞ �
QAjBCð�ABCÞ. Now, we invoke the monogamy relation for
the state �ABC, which leads us to the inequality

Q AjBð�ABÞ � QAjBð�ABÞ þQAjCð�ACÞ: (7)

The final ingredient in the proof is the fact that the two
states �AB and �AB are equal. From the positivity of the

measure, it follows immediately that QAjC must vanish on
the state �AC. Since the latter is a generic separable state,
Q must vanish on all separable states. j
The power of Theorem 1 lies in its generality. Under

very weak assumptions, it rules out the existence of mo-
nogamous correlations beyond entanglement. Note that the
arguments used in the proof of Theorem 1 are strong
enough to show that the violation of monogamy appears
even in three-qubit systems. This can be seen starting from
Eq. (5), with each subsystem being a qubit. The measureQ
violates monogamy if it is nonzero on some separable two-
qubit state of rank two. This is the case for quantum discord
and any related measures of quantum correlations.
As we have argued below Eq. (4), the properties (2)–(4)

are satisfied by all reasonable measures of quantum
correlations known to the authors. However, in general, it
cannot be excluded that the measure under study violates
one of the properties given in Eqs. (2) and (3), or (4).
Alternatively, we assume that some of these properties
cannot be proven. In this situation, Theorem 1 does not
tell us whether Q is monogamous or not. Then, it is still
possible to show that a monogamous measure Q must be
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zero on all separable states if it remains finite for a fixed
dimension of one subsystem, i.e., if

Q AjB � fðdAÞ<1 (8)

for fixed dA, and some function f. To see this, we use
the fact that any separable state �AB has a symmetric
extension �AB1���Bn

such that �AB ¼ �ABi
holds for all 1 �

i � n, where n is an arbitrary positive integer [64–67].

Equation (8) implies that the measureQAjB1���Bnð�AB1���Bn
Þ

is finite for all n, including the limit n ! 1. On the other
hand, if Q is monogamous, it has to fulfill the following
inequality:

Q AjB1���Bnð�AB1���Bn
Þ � nQAjBð�ABÞ: (9)

However, if the measure Q is nonzero on the separable
state �AB, one can always choose some n which is large
enough such that Eq. (9) is violated, and thusQ cannot be
monogamous.

So far we have presented two different ways to show that a
given measure of quantum correlations Q violates monog-
amy, namely, Theorem 1 and Eq. (8). At this stage, it is
natural to askwhether these two results have the same power,
i.e., whether they allow us to draw the same conclusions
about the structure of a given measure Q. As already noted
above, the proof of Theorem 1 allows us to rule out monog-
amy even for the simplest case of three qubits, as long as the
measure Q does not vanish on some separable state of two
qubits having rank not larger than two.On the other hand, this
argument does not apply to Eqs. (8) and (9). Indeed, if Q
is nonzero on some separable two-qubit state �AB, Eqs. (8)
and (9) only allow the statement that the measureQ violates
monogamy for some extension �AB1...Bn

. In particular, if

n > 2, this result does not provide any insight about the
monogamy of the measure for three-qubit states.

We move on to observe that monogamy [Eq. (1)], to-
gether with positivity [Eq. (2)], invariance under local
unitary [Eq. (3)], and no increase under attaching a local
ancilla [Eq. (4)] imply no increase under local operations.
This is due to the fact that any quantum operation� admits

a Stinespring dilation:�½�B�¼TrCðUBC�B�j0ih0jCUy
BCÞ;

i.e., any quantum operation can be seen as resulting from a
unitary operation on a larger-dimensional Hilbert space.
Thus, for Q respecting Eqs. (1)–(4), one finds

QAjBð�ABÞ � QAjBCð�AB � j0ih0jCÞ
¼ QAjBCðUBC�AB � j0ih0jCUy

BCÞ
� QAjBðTrCðUBC�AB � j0ih0jCUy

BCÞÞ
þQAjCðTrBðUBC�AB � j0ih0jCUy

BCÞÞ
� QAjBð�B½�AB�Þ: (10)

No-increase under local operations [68], and thus, a fortiori,
monogamy [the latter together with the almost trivial prop-
erties (2)–(4)] imply the following.

Theorem 2. A measure of correlations Q that is non-
increasing under operations on at least one side must be
maximal on pure states; that is, for any �AB on Cd � Cd

there exists a pure state jc ihc jAB 2 Cd � Cd such that

QAjBðjc ihc jABÞ � QAjBð�ABÞ.
Proof.—Immediate when one uses the fact that any state

�AB can be seen as the result of the application of a channel
�B (�A) on any purification jc iAB of �A (�B) (see, for
example, [55]). Suppose that the measureQ is nonincreas-
ing under quantum operations on A. Then:

Q AjBðjc ihc jABÞ � QAjBð�A½jc ihc jAB�Þ ¼ QAjBð�ABÞ:
(11)

j
This simple theorem is relevant, in particular, for

the case of symmetric measures of quantum correlations.
Several such measures were proposed in Refs. [23,38,41].
Some of these measures have counterintuitive properties.
In particular, in [23] it was shown that for the relative
entropy of quantumness, there exist mixed states �AB that
have more quantum correlations than any pure state jc iAB.
The theorem just proven can be interpreted as a signature
of the fact that general quantum correlations can increase
under local operations (and a fortiori as a signature of the
lack of monogamy) [41].
Theorem 1 and the reasoning in its proof amount essen-

tially to the following insight about the violation of
monogamy: if there is a separable state �AB with nonzero
correlations Q, then there exists a mixed state �ABC

which proves that the measure under scrutiny is not

monogamous: QAjBCð�ABCÞ<QAjBð�ABÞ þQAjCð�ACÞ.
On the other hand, crucially, a measure of correlations
can still respect monogamy when evaluated on pure states
�ABC ¼ jc ihc jABC. As will be demonstrated in the follow-
ing, the geometric measure of discord has exactly this
property for three qubits. Before we present this result,
we recall the definition of this measure.
The geometric measure of discord DG was defined in

Ref. [39] as the minimal square Hilbert-Schmidt distance
to the set of classical-quantum states (CQ):

DAjB
G ð�ABÞ ¼ min

�AB2CQ
k�AB � �ABk22: (12)

Here, we used the 2-norm, also known as Hilbert-Schmidt

norm, k�� �k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trð�� �Þ2p

, and the minimum is
taken over all classical-quantum states �AB. These are
states which can be written as �AB ¼ P

ipijiihijA � �i
B

with some local orthogonal basis fjiiAg. The geometric
discord has an operational interpretation in terms of the
average fidelity of the remote state preparation protocol for
two-qubit systems [69]. As noted above, the geometric
measure of discord cannot be monogamous in general,
since it is nonzero on some separable states. However,
the following holds.
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Theorem 3. The geometric measure of discord is
monogamous for all pure states jc iABC of three qubits:

DAjBC
G ðjc ihc jABCÞ � DAjB

G ð�ABÞ þDAjC
G ð�ACÞ; (13)

where �AB ¼ TrCðjc ihc jABCÞ and analogously for �AC.
Proof.—We notice that for proving the inequality in

Eq. (13), it is enough to show that for any pure state
jc iABC there exists a classical-quantum state�ABC such that

DAjBC
G ðjc ihc jABCÞ � k�AB � �ABk22 þ k�AC � �ACk22:

(14)

This inequality then automatically implies inequality (13),
as, due to the minimization in the geometric measure of
discord, the right-hand side of (13) can only be smaller than
or equal to the right-hand side of (14). In order to show the
existence of the mentioned classical-quantum state �ABC

we choose a specific parametrization for a pure state of
three qubits [70]:

jc ABCi ¼ ffiffiffiffi
p

p j0iAðaj00iBC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
j11iBCÞ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p j1iA½�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
j00iBC � aj11iBCÞ

þ fj01iBC þ gj10iBC�: (15)

The real numbers p, a, and f range between 0 and 1, g is

complexwith 0 � f2 þ jgj2 � 1, and�¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�f2�jgj2p

is
also real.

We proceed by evaluating the left-hand side of Eq. (14),
using the explicit formula for pure states [71,72]:

DAjBC
G ðjc ihc jABCÞ ¼ 2ð1� pÞp: (16)

In the next step, we define the classical-quantum state
�ABC ¼ P

1
i¼0 �

i
A�ABC�

i
A with local projectors in the

computational basis: �i
A ¼ jiihijA. The evaluation of the

right-hand side of Eq. (14) is straightforward:

k�AB � �ABk22 þ k�AC � �ACk22 ¼ 2cð1� pÞp (17)

with c ¼ 1þ ½4a2ð1� a2Þ � 1��2. The proof is complete,
if we can show that c cannot be larger than 1. This can
be seen by noting that the term 4a2ð1� a2Þ is maximal
for a2 ¼ 1

2 , which leads to the maximal possible value

c ¼ 1. j
Even though quantum correlations beyond entanglement

cannot be monogamous in general, Theorem 3 demon-
strates that for pure states of three qubits, monogamy of
the geometric measure of discord is still preserved. To the
best of our knowledge, this is the first instance of a measure
of quantum correlations beyond entanglement that satisfies
a restricted monogamy inequality. Certainly, this is not a
property that all measures of quantum correlations have in
common: As shown, e.g., in Ref. [56], the original quantum
discord violates monogamy even on some pure states of
three qubits.

In conclusion, we have addressed the question of mo-
nogamy for quantum correlations beyond entanglement.
Using very general arguments, we have proven that any
measure of correlations which is nonzero on some sepa-
rable state unavoidably violates monogamy. Furthermore,
we have shown that any monogamous measure of quantum
correlations must be maximal on pure states. These results
imply severe constraints on any monogamous measure of
quantum correlations, and can also be used to witness the
violation of monogamy. Finally, we have shown that even
though all measures of nonclassical correlations akin to
quantum discord cannot be monogamous for all states, they
still may obey monogamy in certain restricted situations. In
particular, we proved that the geometric measure of discord
is monogamous for all pure states of three qubits. It is an
open question whether there exists a measure of general
quantum correlations which is monogamous for tripartite
pure states of arbitrary dimensions. Another open question,
which points to a possible future research direction, arises
from the generalization of quantum discord to theories
which are more general than quantum [73]. We hope that
the results presented in this Letter are also useful for this
more general scenario. Thus, the answer to the question
posed in the title is: General quantum correlations are, in
general, not monogamous.
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