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Establishing quantum entanglement between two distant parties is an essential step of many protocols

in quantum information processing. One possibility for providing long-distance entanglement is to create

an entangled composite state within a lab and then physically send one subsystem to a distant lab.

However, is this the ‘‘cheapest’’ way? Here, we investigate the minimal ‘‘cost’’ that is necessary for

establishing a certain amount of entanglement between two distant parties. We prove that this cost is

intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol

for entanglement distribution and show that quantum correlations are the essential resource for this task.
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Imagine that one wants to send a letter in the old-
fashioned way. The postage cost that the sender has to
invest depends on the amount of the transmitted substance,
quantified by the weight of the letter. If the receiver had
already provided some prepaid envelope, the sender may
have to add an appropriate stamp if he or she wants to send
a heavier letter. Naturally, the allowed weight of the letter
is smaller or equal to a limit which is linked to the total
postage.

Now, imagine that a sender wants to send quantum
entanglement to a receiver. How does the cost that the
sender has to invest depend on the amount of entanglement
sent, quantified by some entanglement measure? Is this
cost reduced when sender and receiver already shared
some preestablished entanglement? And what is the nature
of this cost—can one pay in classical quantities, or does
one have to invest a quantum cost?

One might be tempted to consider these questions and
their answers as obvious matters. However, quantum me-
chanics has often surprised us with puzzling features:
counterintuitively, as shown in [1], separable states (i.e.,
states without entanglement) can be used to distribute
entanglement. What is then the resource that makes this
process possible and enables entanglement distribution
without actually sending an entangled state?

In order to address this question in a well defined and
quantitative way wewill consider the following setting, see
Fig. 1: the sender is called Alice (A), and the distant
receiver Bob (B). Each of them has a quantum particle in
his or her possession. In addition, they have a third quan-
tum particle or ancilla (C) available, which is at the begin-
ning located in Alice’s lab, and then sent (via a noiseless
quantum channel) to Bob’s lab. This is a general model for
any interaction: one can consider the particle C as the
intermediate particle that realises the global interaction
between A and B. A similar scenario was also considered
in a different context in [2,3].

Initially, the total joint quantum state may or may not
carry entanglement. In the following, we will be only

interested in bipartite entanglement; i.e., two out of the
three particles A, B, and C are grouped together. We
quantify the initial entanglement between AC and B as

EACjB, and the final entanglement, after sending C to Bob,

as EAjBC. As a quantifier of entanglement we will first use
the relative entropy of entanglement, which is a well
established and widely studied measure of entanglement
for mixed states [4,5]. It is defined as the minimal relative
entropy Sð� k �Þ ¼ Tr½� log�� � Tr½� log�� between the
given state �XY for two parties X and Y and the set of
separable states S:

EXjYð�XYÞ ¼ min
�XY2S

Sð�XY k �XYÞ: (1)

Besides the fact that the relative entropy plays a crucial
role in quantum information theory [6], the significance of

FIG. 1 (color online). Entanglement distribution between
Alice and Bob. The upper figure shows the initial setup before
the transmission: Alice holds the particles A and C, while Bob is
in possession of the particle B. The middle figure shows the
transmission process: Alice uses a quantum channel to send C to
Bob. The final situation is shown in the lower figure. See also
main text.
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the relative entropy of entanglement is also provided by its
close relation to the distillable entanglement [7].

In a naive approach to our original question, namely
determining in a quantitative way the cost for sending a
certain amount of entanglement, a natural conjecture

would be the inequality QCjAB � EAjBC � EACjB, where
Q denotes a yet undefined kind of correlations. This in-
equality can be interpreted as follows: if initially Alice and
Bob share some preestablished entanglement, quantified

by EACjB, and wish to achieve final entanglement of EAjBC
between them, the ancilla C, sent from Alice to Bob, needs
to carry at least an amount of correlations given by the
difference of final and initial entanglement. This inequality
quantifies the intuition, that entanglement distribution does
not come for free, but always requires to invest some

correlations. In other words, QCjAB could be interpreted

as the ‘‘cost’’ for sending the entanglement EAjBC � EACjB.
Quite surprisingly, it is not the entanglement between C
and AB, which plays a crucial role here: as was demon-
strated in [1], all steps of the protocol can be successfully
implemented without any entanglement between C and the
rest of the system. In other words, if some inequality of the
conjectured form exists, the quantity Q cannot be a mea-
sure of entanglement. However, does the fact that entan-
glement distribution is possible via separable states mean
that the ‘‘cost’’ for this protocol is of classical nature? As
we will show in the following, this is not the case: the cost
for sending entanglement is of quantum nature.

Even separable states, which by definition can be pre-
pared locally with the help of classical communication, can
carry quantum properties; i.e., they can be quantum corre-
lated. A composite quantum state is called strictly classi-
cally correlated if its correlations can be described by a
joint probability distribution for classical variables of the
subsystems [8]. If this is not the case, quantum correlations
are manifest in the state. Recently, there has been much
interest in characterising quantum correlations [9–15], in
interpreting their occurrence in quantum information pro-
tocols [16–20], and in particular in determining their role
in quantum algorithms [21–25], see also the feature article
[26] and the comprehensive review [27]. In the following
we will quantify the amount of quantum correlations ac-
cording to the thermodynamical approach presented in
[12,28]. There the authors provided the notion of the
information deficit: it quantifies the amount of information
which cannot be localised by classical communication
between two parties. If only one-way classical communi-
cation from party X to party Y is allowed, this leads to the
one-way information deficit:

�XjYð�XYÞ ¼ min
f�X

i g
S

�
�XY k X

i

�X
i �

XY�X
i

�
; (2)

where the minimization is done over all local von
Neumann measurements f�X

i g on subsystem X.

We will show in the following that the measure defined
in Eq. (2) quantifies the cost discussed above, thus reveal-
ing the fundamental role of quantum correlations as a
resource for the distribution of entanglement:

�CjAB � EAjBC � EACjB; (3)

where the entanglement measure EXjY was defined in
Eq. (1). This inequality is our central result; wewill discuss
its meaning and implications below. We point out that this
inequality holds for any dimension of the three subsystems,
see Fig. 2 for illustration. The main idea of the proof of
Eq. (3) is sketched in Fig. 3. We name the state � to be the

closest separable state to �, i.e., EACjBð�Þ ¼ Sð� k �Þ. We
then consider the local measurement f�C

i g on particle C
that minimizes the relative entropy of the resulting state �0
with respect to the original �, i.e., �0 ¼ P

i�
C
i ��

C
i such

that�CjABð�Þ ¼ Sð� k �0Þ. In Fig. 3 we also show the state
�0 ¼ P

i�
C
i ��

C
i , which results from the application of the

same measurement on the state �. It is crucial to note that
the three states �, �0 and �0 lie on a straight line, as shown
in Fig. 3:

Sð�jj�0Þ ¼ Sð�jj�0Þ þ Sð�0jj�0Þ: (4)

For proving this equality it is enough to show the relations
Tr½� log�0� ¼ Tr½�0 log�0� and Tr½�log�0�¼Tr½�0 log�0�,
then Eq. (4) immediately follows. These two equalities can
be shown in a straight-forward way, by using the idempo-
tent property of the projectors, the cyclic invariance of
the trace, and the fact that the projectors �C

i sum up to
the identity.
The final ingredient in the proof of Eq. (3) is the fact that

the relative entropy does not increase under quantum op-
erations [4,29,30]: Sð�ð�Þ k �ð�ÞÞ � Sð� k �Þ, and thus
Sð�0 k �0Þ � Sð� k �Þ. Inserting this into Eq. (4) implies

the inequality Sð� k �0Þ � �CjABð�Þ þ EACjBð�Þ. To com-
plete the proof of Eq. (3), we notice that the state �0 is a
tripartite fully separable state, and thus gives an upper

bound on the entanglement EAjBCð�Þ � Sð� k �0Þ.

FIG. 2 (color online). Illustration of the main result: The size
of the left area represents the entanglement between AC and B,
while the size of the right area represents the quantum correla-
tions between C and AB. The total area, enclosed by the black
curve, represents the entanglement between A and BC. One can
read off the main result: EAjBC � EACjB þ�CjAB.
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The techniques presented above can also be applied to a
more general measure of entanglement, where the relative
entropy Sð�1 k �2Þ is replaced—both for the entanglement
measure and the quantum correlation measure—by a gen-
eral distance Dð�1; �2Þ. We only demand that D has the
following two properties: (1) D does not increase under any
quantum operation, (2) D satisfies the triangle inequality.
Then Eq. (4) becomes an inequality: Dð�;�0Þ �
Dð�; �0Þ þDð�0; �0Þ, and the proof of Eq. (3) follows
from the same arguments as above. Well-known and fre-
quently used examples for distances that fulfil these two
properties [31] are, e.g., the trace distance, defined as
Dtð�1; �2Þ ¼ 1

2 trj�1 � �2j and the Bures distance [32],

defined asDBð�1;�2Þ¼2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�1;�2Þ

p Þ, with Fð�1;�2Þ¼
ðtr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1
p

�2
ffiffiffiffiffiffi
�1

pp Þ2.
Let us point out that our main result in inequality (3) can

be alternatively seen as a restricting link between the
correlation properties of the three possible bipartite splits
of a tripartite quantum state in any dimension: the entan-
glement across one of the bipartite splits cannot be larger
than the sum of the entanglement across one of the other
splits plus the quantum correlations across the remaining
split. Thus, the inequality (3) may be interpreted as a type
of ‘‘monogamy’’ relation between three entangled parties.
This inequality also holds for all permutations of the
parties. By permuting the systems A and B in Eq. (3), we
obtain the generally valid inequality

EACjB � �CjAB � EAjBC � EACjB þ�CjAB: (5)

This inequality tells us, that the entanglement between A
and BC is not independent from the entanglement between
AC and B. In particular, in the case of vanishing quantum

correlations, i.e. �CjAB ¼ 0, we immediately see that these

two quantities are equal: EAjBC ¼ EACjB. We also note that

for those situations, where �CjAB ¼ ECjAB, this happens,
e.g., for the relative entropy when the state under consid-
eration is pure, one arrives, using all permutations of

inequality (3), at the triangle inequality jEBjAC � ECjABj �

EAjBC � EBjAC þ ECjAB. However, we stress again that
this symmetric inequality is a special case of the general
inequality (5), and is valid only for certain classes of
states.
We are now in position to answer the question posed in

the first paragraph of this paper: what is the cheapest way
for distributing entanglement? In order to answer this
question in full generality, we consider the most general
distribution protocol, which may contain n uses of the
quantum channel together with local operations and clas-
sical communication between Alice and Bob. The amount
of entanglement sent in this process of entanglement grow-
ing cannot be larger than the total cost in the protocol:

Efinal � Einitial �
Xn
i¼1

�i; (6)

where Einitial and Efinal is the amount of entanglement
between Alice and Bob before and after the protocol, and
�i is the amount of quantum correlations between the sent
particle and the remaining system in the ith application of
the quantum channel.
In order to prove Eq. (6), we first consider a protocol

where the quantum channel is used once from Alice to
Bob and once in the other direction, i.e., n ¼ 2. Suppose
that Alice and Bob start with a state �1, the initial entan-

glement is Einitial ¼ EACjBð�1Þ. After sending the particleC
to Bob the entanglement between the two parties is given

by EAjBCð�1Þ, and the cost for this process is given by

�CjABð�1Þ. Now Alice and Bob locally act on their sub-
systems, and may additionally communicate classically
with each other, thus arriving at the final state �2 with

the entanglement EAjBCð�2Þ. In the final step of this single-
round protocol Bob sends the particle C back to Alice, and

the final entanglement is Efinal ¼ EACjBð�2Þ. The corre-

sponding cost for this final step is given by �CjABð�2Þ.
We will now show that the amount of entanglement sent in
the total process cannot be larger than the total cost:

Efinal � Einitial � �CjABð�1Þ þ �CjABð�2Þ: (7)

This inequality can be seen by applying inequality (3) to
the two states �1 and �2 independently, and considering the

sum of the both inequalities: EACjBð�2Þ � EAjBCð�2Þ þ
EAjBCð�1Þ � EACjBð�1Þ � �CjABð�2Þ þ �CjABð�1Þ. Note

that the entanglement EAjBCð�2Þ is not larger than

EAjBCð�1Þ, since the state �2 results from the state �1 after
application of local operations and classical communica-
tion. This proves the desired inequality (7). To prove the
general expression in Eq. (6), we now suppose that the
quantum channel is used n times, where n can be even or
odd. We can define the states �1; . . . ; �n in an analogous
way as above. Using the same argumentation we arrive at
Eq. (6).
The result in Eq. (6) can now be used to find the most

‘‘economic’’ way to distribute entanglement. If Alice and

FIG. 3 (color online). Proof of the main result in Eq. (3): The
separable state � is the closest separable state to the given state
�. The measured state �0 ¼ P

i�
C
i ��

C
i is defined such that

�CjABð�Þ ¼ Sð�jj�0Þ. Application of the same measurement on
� gives the state �0 ¼ P

i�
C
i ��

C
i . The states �, �0, and �0 lie

on a straight line; for details see main text.
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Bob are told to send a fixed amount of entanglement
E ¼ Efinal � Einitial, they can achieve this in the most eco-
nomic way by choosing a protocol such that the inequality
(6) becomes an equality. One possibility to achieve this is
the well-known ‘‘trivial’’ one: Alice locally prepares a pure

state jc iAC with entanglement E ¼ EAjC, and sends the
particle C to Bob. However, this is not the only possibility:
the inequality (6) can also be satisfied without sending
entanglement, see the example below. If one considers
entanglement to be an expensive resource, one may thus
be able to distribute entanglement in a ‘‘cheaper’’ way by
sending quantum correlations without entanglement.

The results presented in this Letter provide new power-
ful tools to understand and quantify entanglement as
well as quantum correlations. In this paragraph we
1will demonstrate how Eq. (3) can be used to evaluate
the entanglement and the one-way information deficit
in the specific state �, which was used in [1] to show
that entanglement distribution with separable states is
possible:

� ¼ 1

3
j�GHZih�GHZj þ

X1
i;j;k¼0

�ijk�ijk (8)

with j�GHZi ¼ 1ffiffi
2

p ðj000i þ j111iÞ, �ijk ¼ jijkihijkj, and
all �’s are zero apart from �001¼�010¼�101¼�110¼1

6.

It was shown in [1] that the entanglement is zero between

two different cuts: EACjB ¼ EABjC ¼ 0. As an application
of Eq. (3) we will now prove that the remaining two

quantities are equal: EAjBCð�Þ ¼ �CjABð�Þ ¼ 1
3 . This

can be seen by considering the relative entropy between
� and the state �0 ¼ P

i�
C
i ��

C
i with orthogonal projec-

tors �C
i ¼ jiihijC in the computational basis. It can be

verified by inspection that Sð� k �0Þ ¼ 1
3 , and thus

�CjABð�Þ is not larger than 1
3 . On the other hand, the

entanglement EAjBCð�Þ is bounded from below by 1
3 .

This follows from the two facts that the state � can be
used to distil Bell states with probability 1

3 [1], and that

the relative entropy of entanglement is not smaller than
the distillable entanglement [7]. In this example, quan-
tum correlations provide the most economic and cheapest
resource for entanglement distribution.

In conclusion, we have identified quantum correlations
as the key resource for entanglement distribution. They
quantify the quantum cost that one has to invest for in-
creasing the entanglement between two distant parties.
Explicitly, we proved that the entanglement between two
parties cannot grow more than the amount of quantum
correlations which the particle carries that mediates the
interaction between the two parties. Our result is com-
pletely general and is valid regardless of the particular
realization of the protocol. Thus it provides a fundamental
connection between quantum entanglement on one side
and quantum correlations on the other side. Since the study
of quantum correlations is believed to be important for

understanding the power of quantum computers, our
results may find applications far beyond the scope of this
work.
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Note added.— During the completion of this work we

became aware of independent related work by T.K. Chuan
et al. in [33]. There, the authors derive similar results, and
also provide alternative examples for entanglement distri-
bution with separable states.
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