
Behavior of Quantum Correlations under Local Noise

Alexander Streltsov,* Hermann Kampermann, and Dagmar Bruß

Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik III, D-40225 Düsseldorf, Germany
(Received 10 June 2011; published 17 October 2011)

We characterize the behavior of quantum correlations under the influence of local noisy channels.

Intuition suggests that such noise should be detrimental for quantumness. When considering qubit

systems, we show for which channels this is indeed the case: The amount of quantum correlations can

only decrease under the action of unital channels. However, nonunital channels (e.g., such as dissipation)

can create quantum correlations for some initially classical states. Furthermore, for higher-dimensional

systems even unital channels may increase the amount of quantum correlations. Thus, counterintuitively,

local decoherence can generate quantum correlations.
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Composite quantum states often reveal puzzling features
of nature. Recently, much interest [1] has been devoted to
the study of quantum correlations that may arise without
entanglement: Here, the quantumness of a composite sys-
tem manifests itself even in a separable state. The fact that
such quantum correlations are present [2] in an algorithm
for mixed state quantum computing [3] has stimulated
intensive investigations into measures for quantum corre-
lations [4–13] and their properties and interpretations
[14–28]. Experimental detection of quantum correlations
beyond entanglement is also receiving more and more
attention [29]. Some studies of the dynamics of quantum
correlations have been presented in Refs. [30–34]. The
importance of quantum correlations beyond entanglement
is also highlighted by the task of efficiently locking clas-
sical correlations in quantum states [35]. There, two parties
can arbitrarily increase their classical correlations by send-
ing only one classical bit. The fact that no entanglement is
needed in this process leads to the conclusion that other
types of correlations are responsible for this phenomenon.
Understanding fundamental properties of such correlations
is the aim of this Letter.

An appeal of mixed state quantum computation lies in
the possibility to be run in a noisy environment: Pure
entangled states are typically fragile, and the resource of
entanglement is easily destroyed by noise. For an open
system the transition from entangled to separable states is
only a matter of time—as the volume of the set of separable
states is nonzero [36], typically it takes a finite time for
entanglement to disappear under noise such as dissipation
or decoherence [37].

Mixed state quantum computation as suggested in
Ref. [3] already uses separable states, so it is natural to
assume that it can be run also in a noisy environment.
However, in order to verify or falsify this conjecture,
one has to study the behavior of quantum correlations
under noisy channels (described by trace-preserving com-
pletely positive maps). Here we consider only local noisy
channels—as correlated channels may also preserve

entanglement (with or even without some degradation,
depending on the amount of correlation); see, e.g., [38].
The goal of this Letter is to answer such questions as the
following: Which types of noisy channels decrease the
amount of quantum correlations? Are there any noisy
channels that might even increase the amount of quantum
correlations? How does dissipation influence quantum cor-
relations, and how are they affected by decoherence? We
point out that our answers to these questions also apply to
the situation where one actively performs local operations
on a composite quantum system, e.g., with the aim of
creating or preserving quantum correlations.
In general, a bipartite quantum state is called fully clas-

sically correlated [39] if it can be written in the form [6,7]

�cc ¼
X

i;j

pijjiAihiAj � jjBihjBj; (1)

where fjiAig and fjjBig are sets of orthogonal states of party
A and B, respectively, with non-negative probabilities pij

that add up to 1. If a state cannot bewritten as in Eq. (1), it is
called quantum correlated. These definitions can be ex-
tended to any number of parties [13].
As a simple example, consider the classically correlated

state of two qubits �cc ¼ 1
2 j0Aih0Aj � j0Bih0Bj þ 1

2 j1Ai�h1Aj � j1Bih1Bj. By using a local channel on qubit A only, it
is possible to create the quantum correlated state

� ¼ 1
2j0Aih0Aj � j0Bih0Bj þ 1

2jþAihþAj � j1Bih1Bj (2)

with jþAi ¼ ð1= ffiffiffi
2

p Þðj0i þ j1iÞ. The quantum channel that
achieves this transformation can be formally written as the
completely positive trace-preserving map

� ¼ �Að�ccÞ ¼ E1�E
y
1 þ E2�E

y
2 (3)

with local Kraus operators E1 ¼ j0Aih0Aj and E2 ¼
jþAih1Aj acting only on qubit A. The state in Eq. (2) is
not of the form (1); i.e., it is quantum correlated.
As will become clear below in this Letter, one reason

why the local quantum channel in Eq. (3) is able to create
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quantum correlations lies in its action on the maximally
mixed state 1

21A. Observe that �Að121AÞ ¼ 1
2 j0Ai�

h0Aj þ 1
2 jþAihþAj � 1

21A. This property is also known as

nonunitality. A single-qubit quantum channel � is called
unital if and only if it maps the maximally mixed state
onto itself: �ð121Þ ¼ 1

21; see also Fig. 1. We will turn this

observation into Theorem 1 by showing that nonunitality
is one property which enables a local channel to create
quantum correlations in a multiqubit system. In
Theorem 2, we will show that, on the other hand, local
unital quantum channels cannot increase quantum correla-
tions in a multiqubit system. However, this statement does
not hold for higher dimensions.

Before presenting the main result of this Letter, we
introduce the semiclassical channel �sc. It maps all input
states � onto states �scð�Þ which are diagonal in the same
basis: �scð�Þ ¼

P
kpkð�Þjkihkj. The non-negative proba-

bilities pkð�Þ can, in general, depend on the input state �,
while the orthogonal states jki are independent of �. Such a
channel is, e.g., realized by complete decoherence, after
which only the diagonal elements of a density matrix may
be nonzero. Channels of this form were also considered in
Ref. [40], where they were called measurement maps. We
are now in the position to prove the following theorem.

Theorem 1.—A local quantum channel acting on a single
qubit can create quantum correlations in a multiqubit
system if and only if it is neither semiclassical nor unital.

Proof.—For simplicity, we restrict ourselves to two
qubits only. A generalization to an arbitrary number of
qubits is straightforward. The action of a local semiclassi-
cal channel �A

sc on the classically correlated state (1) is,
due to linearity,�A

scð�ccÞ ¼ P
i;jpij�

A
scðjiAihiAjÞ � jjBihjBj.

The definition of a semiclassical channel directly implies
that �A

scð�ccÞ is classically correlated.
Now we will show that a local unital channel never

creates quantum correlations in a multiqubit system. A
local unital channel �A

u on the qubit A takes a classically
correlated state to the state �A

u ð�ccÞ ¼
P

i;jpij�
A
u ðjiAi�

hiAjÞ � jjBihjBj. The action of the unital channel on the
pure state jiAihiAj can be studied by using the Bloch
representation: j0Aih0Aj ¼ 1

2 ð1A þP
iri�

A
i Þ, where �A

i are

the Pauli operators with i 2 fx; y; zg and j1Aih1Aj ¼
1
2 ð1A �P

iri�
A
i Þ. Using linearity and unitality of �A

u ,

we see that the state j0Aih0Aj is mapped onto the state
�A
0 ¼ �A

u ðj0Aih0AjÞ ¼ 1
2 ½1A þP

iri�
A
u ð�A

i Þ�. The same

procedure for j1Aih1Aj results in �A
1 ¼ �A

u ðj1Aih1AjÞ ¼
1
2 ½1A �P

iri�
A
u ð�A

i Þ�. Note that the Bloch vectors of

the states �A
0 and �A

1 point into opposite directions; see

Fig. 1 for illustration. States with this property can be
diagonalized in the same basis. This implies that it is
possible to write the state �A

u ð�ccÞ in the form (1). Thus
we proved that local unital quantum channels cannot create
quantum correlations in a classically correlated multiqubit
state.
In the following, we will complete the proof of

Theorem 1 by showing that any local quantum channel
�A

nu that is neither unital nor semiclassical can create
quantum correlations. By definition, �A

nu maps the maxi-
mally mixed state 1

21A onto some state that is not maxi-

mally mixed: �A
nuð121AÞ¼ 1

2ð1AþP
isi�

A
i Þ, with

P
is

2
i � 0.

Since we demand that the quantum channel is not semi-
classical, there exists a state �A such that �A

nuð�AÞ is not
diagonal in the eigenbasis of �A

nuð121AÞ. Again we consider
the Bloch representation �A

nuð�AÞ ¼ 1
2 ð1A þP

jrj�
A
j Þ and

note that the two Bloch vectors r and s are linearly inde-
pendent. Otherwise, the states �A

nuð�AÞ and �A
nuð121AÞ

could be diagonalized in the same basis, which is in contra-
diction to the definition of �A. We can write the state as
�A ¼ 1

2 ð1A þP
ivi�

A
i Þ. Consider now the classically cor-

related state �cc ¼ 1
2�

A � j0Bih0Bj þ 1
2 �

A � j1Bih1Bj with
�A ¼ 1

2 ð1A �P
ivi�

A
i Þ. We define the vector w such that

the equality �nuð
P

ivi�
A
i Þ ¼

P
iwi�

A
i with

P
iw

2
i � 0 is

satisfied. This is always possible, since �A
nu is trace-

preserving. The action of the channel onto the two states
�A and �A is as follows: �A

nuð�AÞ ¼ 1
2 ½1A þP

iðsi þ
wiÞ�A

i � and �A
nuð�AÞ ¼ 1

2 ½1A þP
iðsi � wiÞ�A

i �. As noted
above, the two Bloch vectors s and r ¼ sþ w are linearly
independent. The same must hold for the vectors sþ w and
s� w. This implies that the two states �A

nuð�AÞ and
�A

nuð�AÞ are not diagonal in the same basis. This completes
the proof. j

FIG. 1 (color online). Quantum channels on a single qubit: The
upper figure shows a unital quantum channel �u (green arrow)
which maps the maximally mixed state 1

21 onto itself: �uð121Þ ¼
1
21. Two orthogonal states jc 1i and jc 2i with collinear Bloch

vectors are mapped onto the states �1 ¼ �uðjc 1ihc 1jÞ and
�2 ¼ �uðjc 2ihc 2jÞ with collinear Bloch vectors. The lower
figure shows a nonunital quantum channel �nu (yellow arrow)
which maps the maximally mixed state onto the state
� ¼ �nuð121Þ � 1

21. The Bloch vectors of �1 ¼ �nuðjc 1i�
hc 1jÞ and �2 ¼ �nuðjc 2ihc 2jÞ add up to twice the nonzero
Bloch vector of �; see the main text.
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So far, we have seen that local unital and local semi-
classical channels acting on a single qubit cannot create
quantum correlations from a classically correlated multi-
qubit state. These results hold independently of the chosen
measure for quantum correlations. In the following, we
will go one step further by showing that these local chan-
nels never increase a very general class of measures for
quantum correlations in multiqubit systems. We consider
distance-based measures of quantum correlations QD,
which are defined via the minimal distance D to the set
of the classically correlated states CC [8,9]: QD ¼
min�2CCDð�;�Þ, where D does not necessarily have to
be a distance in the mathematical sense. The statement
mentioned above will be shown to hold for all distance
measuresDwith the property of being nonincreasing under
any quantum channel �, i.e., Dð�ð�Þ;�ð�ÞÞ � Dð�;�Þ.
This property is also frequently used for defining entangle-
ment measures [41,42].

Theorem 2.—Quantum correlations in multiqubit sys-
tems, quantified by a distance-based measure QD, do not
increase under local unital channels �lu and local semi-
classical channels �lsc:

QDð�luð�ÞÞ � QDð�Þ; (4)

QDð�lscð�ÞÞ � QDð�Þ: (5)

Proof.—Let � be the classically correlated state which
minimizes the distance, i.e., QDð�Þ ¼ Dð�; �Þ. Using the
property of the distance to be nonincreasing under
quantum channels, we obtain QDð�Þ ¼ Dð�; �Þ �
Dð�luð�Þ;�luð�ÞÞ and QDð�Þ ¼ Dð�; �Þ � Dð�lscð�Þ;
�lscð�ÞÞ. Now we use Theorem 1 noting that local unital
channels�lu and local semiclassical channels�lsc map the
classically correlated multiqubit state � onto another clas-
sically correlated state �ð�Þ which is not necessarily the
one that minimizes the distance to �ð�Þ. This observation
finishes the proof. j

One example for a measure that satisfies the properties
(4) and (5)—and thus Theorem 2 holds—is the geometric
measure of quantumness, which we define as

QGð�Þ ¼ min
�2CC

½1� Fð�;�Þ� (6)

with the fidelity Fð�;�Þ ¼ ðTr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
�

ffiffiffiffi
�

pp �Þ2. Using the

fact that the fidelity is nondecreasing on quantum channels
together with Theorem 2, we see that the geometric mea-
sure of quantumness does not increase under local unital
channels and local semiclassical channels in multiqubit
systems. Alternatively, we can use the quantum relative
entropy Sð�jj�Þ ¼ �Tr½�log2�� þ Tr½�log2��, which is
also nonincreasing on quantum channels [41,42]. From
Theorem 2 follows that the resulting measure of quantum
correlations QS ¼ min�2CCSð�jj�Þ does not increase
under local unital and local semiclassical channels in
multiqubit systems. QS was also studied in Ref. [13],
where it was called relative entropy of quantumness.

So far, we have considered states consisting of an arbi-
trary number of qubits. We have shown that local unital and
local semiclassical channels acting on a single qubit never
increase quantum correlations as defined by a distance-
based measureQD, where the minimization is done over all
classically correlated multiqubit states. On the other hand,
any local channel which is nonunital and not semiclassical
can, in principle, create quantum correlations, indepen-
dently of the considered measure, out of a classically
correlated state. An example for such a channel is the
amplitude damping channel as a model for dissipation.
Thus, dissipation can increase quantum correlations.
At the present stage, it is natural to ask the question, for

what kind of input states this behavior can or cannot be
observed in general. The following theorem shows that
pure states are special.
Theorem 3.—The geometric measure of quantumness

of multipartite systems with arbitrary dimension cannot
increase under any local quantum channel, if the initial
state is pure:

QGð�lðjc ihc jÞÞ � QGðjc ihc jÞ; (7)

where �l is an arbitrary local quantum channel.
Proof.—Let � 2 CC be defined such that QGðjc i�

hc jÞ ¼ 1� Fðjc ihc j; �Þ. Using the properties of the fi-
delity F, we see that � can be chosen to be a pure product
state � ¼ j�ih�j. Moreover, 1� F does not increase
under the action of any quantum channel, i.e., 1� Fðjc i�
hc j; j�ih�jÞ � 1� Fð�lðjc ihc jÞ;�lðj�ih�jÞÞ. Since j�i
is a product state, �lðj�ih�jÞ is also a product state. This
observation completes the proof. j
So far, we have shown that quantum correlations in

multiqubit systems cannot increase under local unital
quantum channels. A prominent example for a unital chan-
nel is the phase-damping channel, which is a model for
decoherence in a quantum system. Under decoherence the
quantum state � ¼ P

i;j�ijjiihjj is transformed to the state

�ð�Þ ¼ X

i

�iijiihij þ ð1� pÞX
i�j

�ijjiihjj (8)

with the damping parameter 0 � p � 1. Since� is unital, it
is not possible to create quantum correlations with local
phase damping in a multiqubit system. Surprisingly, this is
not true if the local systems are not qubits: Qubits are
special. This can be demonstrated via the classically
correlated state as input: �cc ¼ 1

2 jc Aihc Aj � j0Bi�
h0Bj þ 1

2 j�Aih�Aj � j1Bih1Bj with the orthogonal single-

qutrit states jc Ai ¼ ð1= ffiffiffi
3

p Þð�j0Ai þ j1Ai þ j2AiÞ and
j�Ai ¼ 1ffiffi

2
p ðj0Ai þ j1AiÞ. We will show that a local phase-

damping channel �A acting on subsystem A generates
quantum correlations. We consider the action of the
channel (8) with the damping parameter p ¼ 1

2 on

the state �cc: �Að�ccÞ ¼ 1
2

P3
i¼1 �ijc A

i ihc A
i j � j0Bih0Bjþ

1
2

P
3
j¼1 �jj�A

j ih�A
j j � j1Bih1Bj, where the states fjc A

i ig are
the eigenstates of �Aðjc Aihc AjÞ with the corresponding
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eigenvalues �i. Similarly, the states fj�A
j ig are eigenstates

of �Aðj�Aih�AjÞ with the eigenvalues �j. One can see as

follows that the state �Að�ccÞ is quantum correlated: The
eigenvalues of�Aðjc Aihc AjÞ are given by�1 ¼ 2

3 and�2 ¼
�3 ¼ 1

6 . The eigenstate to the largest eigenvalue �1 is given

by jc A
1 i ¼ jc Ai. It is easy to check that jc A

1 i is
not an eigenstate of �Aðj�Aih�AjÞ, and therefore the state
�Að�ccÞ is not classically correlated. Thus we proved that
it is possible to create quantum correlations with a local
phase-damping channel, i.e., via local decoherence.

In conclusion, we have investigated the effect of local
noisy channels (i.e., trace-preserving completely positive
maps) on quantum correlations. While entanglement can
never increase under such local channels, quantum corre-
lations without entanglement may or may not increase,
depending on the type of channel and the type of input
state. For multiqubit systems, we fully answer the question
which local channels can increase quantum correlations:
Unital and semiclassical local channels cannot enhance
quantum correlations, while nonunital and nonsemiclass-
ical local channels (e.g., dissipation, corresponding to
amplitude damping) can increase quantum correlations.
Surprisingly, for higher-dimensional systems, even unital
channels such as decoherence, corresponding to phase
damping, can generate quantum correlations from an ini-
tially classically correlated state. However, quantum cor-
relations as quantified by the geometric measure of
quantumness can become larger under local channels
only when the initial state is mixed. Thus, we have shed
some light on the behavior of quantum correlated states in
a noisy environment.

We also mention the connection of our approach to the
quantum discord; see [4] for a definition. A quantum state
has zero quantum discord if it can be written in the
classical-quantum form �cq ¼ P

ipijiAihiAj � �B
i . Note

that Theorem 1 also holds in this case, if the subsystem
A is a qubit. Moreover, Theorems 2 and 3 also hold if the
corresponding measure is defined via the minimal distance
to the set of classical-quantum states. The proofs follow the
same lines as above.

We acknowledge partial financial support by Deutsche
Forschungsgemeinschaft (DFG) and by the ELES
foundation.

Note added.—While finishing this Letter, we became
aware of two related works. In Ref. [43], the authors show
that the quantum discord can increase under a local ampli-
tude damping channel. The dynamics of quantum correla-
tions in a spin chain under the action of local noise is
studied in Ref. [44].
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