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We show that a von Neumann measurement on a part of a composite quantum system unavoidably

creates distillable entanglement between the measurement apparatus and the system if the state has

nonzero quantum discord. The minimal distillable entanglement is equal to the one-way information

deficit. The quantum discord is shown to be equal to the minimal partial distillable entanglement that is the

part of entanglement which is lost, when we ignore the subsystem which is not measured. We then show

that any entanglement measure corresponds to some measure of quantum correlations. This powerful

correspondence also yields necessary properties for quantum correlations. We generalize the results to

multipartite measurements on a part of the system and on the total system.
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Quantum entanglement is by far the most famous and
best studied kind of quantum correlation [1]. One reason
for this situation is the fact that entanglement plays an
important role in quantum computation [2]. It was even
believed that entanglement is the reason why a quantum
computer can perform efficiently on some problems which
cannot be solved efficiently on a classical computer. The
situation started to change after a computational model was
presented which is referred to as ‘‘the power of one qubit’’
with the acronym DQC1 [3,4]. Here, using a mixed sepa-
rable state allows for efficient computation of the trace of
any n-qubit unitary matrix. This problem is believed to be
not solvable efficiently on a classical computer [4,5]. The
fact that no entanglement is present in this model was one
of the main reasons why new types of quantum correlations
were studied during the past few years [6–9]. One of the
measures of quantum correlations, the quantum discord
[6], was considered to be the figure of merit for this model
of quantum computation [10].

In this Letter, we introduce an alternative approach
to quantum correlations via an interpretation of a mea-
surement. In order to perform a von Neumann measure-
ment on a system S in the quantum state �S, correlations
between the system and the measurement apparatus M
must be created. As a simple example we consider a
von Neumann measurement in the eigenbasis fjiSig of the
mixed state �S ¼ P

ipijiSihiSj with the eigenvalues pi.
Correlations between the measurement apparatus M and
the system are found in the final state of the total system
�final ¼

P
ipijiMihiMj � jiSihiSj, where jiMi are orthogonal

states of the measurement apparatus M. In this state �final

the correlations between M and the system S are purely
classical, and no entanglement is created. The situation
changes completely if we consider partial von Neumann
measurements; that is, they are restricted to a part of the
system. In our main result in Theorem 1 we will show that
in this case creation of entanglement is usually unavoid-
able. We use this result to show the close connection of our

approach to the one-way information deficit [8] before we
extend our ideas to the quantum discord [6] in Theorem 2
and following.
If we consider bipartite quantum states �AB, and

von Neumann measurements on A with a complete set
of orthogonal rank one projectors �A

i ¼ jiAihiAj,P
i�

A
i ¼ 1A, then the quantum discord is defined as [6]

�!ð�ABÞ ¼ Sð�AÞ � Sð�ABÞ þmin
f�A

i g

X

i

piSð�iÞ; (1)

with pi ¼ Tr½�A
i �

AB�A
i � being the probability of the out-

come i, and �i ¼ �A
i �

AB�A
i =pi being the corresponding

state after the measurement. The quantum discord is non-
negative and zero if and only if the state �AB has the form
�AB ¼ P

ipijiAihiAj � �B
i with orthogonal states jiAi.

Recently an interpretation of the quantum discord was
found using a connection to extended state merging
[11,12]. Another interpretation was given earlier in [13].
A closely related quantity is the one-way information

deficit [8,14]. For a bipartite state �AB it is defined as the
minimal increase of entropy after a von Neumann mea-
surement on A:

�!ð�ABÞ ¼ min
f�A

i g
S

�X

i

�A
i �

AB�A
i

�
� Sð�ABÞ; (2)

where the minimum is taken over f�A
i g as defined above

Eq. (1). The one-way information deficit is non-negative
and zero only on states with zero quantum discord. It can
be interpreted as the amount of information in the state
�AB, which cannot be localized via a classical communi-
cation channel from A to B [14].
Given a bipartite quantum state �AB, we recall that a

partial von Neumann measurement on A can be descri-
bed by coupling the system in the state �AB to the mea-
surement apparatus M in a pure initial state j0Mi, �1 ¼
j0Mih0Mj � �AB, and applying a unitary on the total state
[15], �2 ¼ U�1U

y. This situation is illustrated in Fig. 1.
As we will consider only measurements on the subsystem
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A, the corresponding unitary U has the form U ¼ UMA �
1B. In the following, we will say that a unitary U reali-
zes a von Neumann measurement f�A

i g on A, if for any
quantum state �AB holds: TrM½Uðj0Mih0Mj � �ABÞUy� ¼P

i�
A
i �

AB�A
i . The measurement outcome is then obtained

by measuring the apparatus M in its eigenbasis.
The entanglement between the apparatus M and the

system AB in the state �2 will be called entanglement
created in the von Neumann measurement f�A

i g on A.
Given a state �AB, we want to quantify the minimal entan-
glement created in a von Neumann measurement on A,
minimized over all complete sets of rank one projectors
f�A

i g. The minimal amount will be called Emeas, and it will
depend on the entanglement measure used. In the follow-
ing, the entanglement measure of interest will be the
distillable entanglement ED, which is defined in

[16,17]. Thus, we define Emeas as follows: Emeasð�ABÞ ¼
minUE

MjAB
D ðU�1U

yÞ, where the minimization is done over
all unitaries which realize some von Neumann measure-
ment on A. Recalling the definition of the one-way infor-
mation deficit in (2), we present one of our main results.

Theorem 1. If a bipartite state �AB has nonzero quan-
tum discord �!ð�ABÞ> 0, any von Neumannmeasurement
on A creates distillable entanglement between the mea-
surement apparatus and the total system AB. The minimal
distillable entanglement created in a von Neumann mea-
surement on A is equal to the one-way information deficit:
Emeasð�ABÞ ¼ �!ð�ABÞ.

Proof.—As pointed out in [18], the unitaryUmust act on
states of the form j0Mi � jiAi as follows: Uðj0Mi � jiAiÞ ¼
jiMi � jiAi, where fjiAig is the measurement basis, and jiMi
are orthogonal states of the measurement apparatus.

In general we can always write �AB ¼ P
i;jjiAihjAj �OB

ij

with OB
ij being operators on the Hilbert space H B. After

the action of the unitary the state becomes �2 ¼
P

i;jjiMi�
hjMj � jiAihjAj �OB

ij. From [19] we know that the

distillable entanglement is bounded from below as

EMjAB
D ð�2Þ � Sð�AB

2 Þ � Sð�2Þ with �AB
2 ¼ TrM½�2�, and

the von Neumann entropy Sð�Þ ¼ �Tr½�log2��. We
mention that the same inequality holds for the relative
entropy of entanglement defined in [20] as ER ¼
min�2SSð�jj�Þ with the quantum relative entropy
Sð�k�Þ ¼ �Tr½�log2�� þ Tr½�log2��; see [21] for de-
tails. Noting that �AB

2 ¼ P
i�

A
i �

AB�A
i and Sð�2Þ ¼

Sð�1Þ ¼ Sð�ABÞ we see EMjAB
D ð�2Þ � SðPi�

A
i �

AB�A
i Þ �

Sð�ABÞ. On the other hand, we know that ER is an
upper bound on the distillable entanglement [22].
Consider the state � ¼ P

i�
M
i �2�

M
i , which is sepa-

rable with respect to the bipartition MjAB. From the defi-
nition of the relative entropy of entanglement follows:

EMjAB
R ð�2Þ � Sð�2k�Þ. It can be seen by inspection that

Sð�2k�Þ ¼ SðPi�
A
i �

AB�A
i Þ � Sð�ABÞ. Thus we proved

that EMjAB
D ð�2Þ ¼ SðPi�

A
i �

AB�A
i Þ � Sð�ABÞ holds for

any measurement basis fjiAig. If we minimize this equation
over all von Neumann measurements on A, we get the
desired result. j
Note that from the above proof we conclude that

minUE
MjAB
D ðU�1U

yÞ ¼ minUE
MjAB
R ðU�1U

yÞ, and thus
there does not exist bound entanglement in a partial
measurement.
The approach presented so far can also be applied to any

other measure of entanglement E, which satisfies the basic
axiom to be nonincreasing under local operations and
classical communication (LOCC) [20]. In this way we
introduce the generalized one-way information deficit as
follows:

�!
E ð�ABÞ ¼ min

U
EMjABðU�1U

yÞ; (3)

where U realizes a von Neumann measurement on A and
�1 ¼ j0Mih0Mj � �AB. Using Theorem 1 it is easy to see
that the generalized one-way information deficit is zero if
and only if the state �AB has zero quantum discord. This
holds if E is zero on separable states only.
In the same way as different measures of entanglement

capture different aspects of entanglement, the corre-
spondence (3) can be used to capture different aspects of
quantum correlations. Let us demonstrate this by using
the geometric measure of entanglement EG [23] on the
right-hand side of (3). As the corresponding measure
of quantum correlations, we obtain �!

EG
ð�ABÞ ¼

min�!ð�ABÞ¼0f1� Fð�AB; �ABÞgwith the fidelity Fð�;�Þ ¼
ðTr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
p

�
ffiffiffiffi
�

pp �Þ2 [24]. The minimization is done over all

states �AB with zero quantum discord. Thus, this measure
captures the geometric aspect of quantum correlations,
similarly to the geometric measure of discord presented
in [9].

FIG. 1 (color online). A measurement apparatus M is used for
a von Neumann measurement on A (green colored area), which
is part of the total quantum system AB. The measurement
implies a unitary evolution on the system MA, which can create
entanglement EMjAB between the apparatus and the system. The
partial entanglement PE ¼ EMjAB � EMjA quantifies the part of
entanglement which is lost when ignoring B.
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The correspondence (3) also implies that certain prop-
erties of entanglement measures are transferred to
corresponding properties of quantum correlation measures.
This will be demonstrated in the following by finding a
class of quantum operations which do not increase
�!

E . This class cannot be equal to the class of LOCC, since
�!

E can increase under local operations on A. This can
be seen by considering the classically correlated state
�cc ¼ 1

2 j0Aih0Aj � j0Bih0Bj þ 1
2 j1Aih1Aj � j1Bih1Bj with

�!
E ð�ccÞ ¼ 0. Using only local operations on A it is

possible to create states with nonzero deficit �!
E .

Demanding that the subsystem A is unchanged, we are
left with quantum operations on B only. In the following
we will show that �!

E does not increase under arbitrary
quantum operations on B, denoted by �B:

�!
E ð�Bð�ABÞÞ � �!

E ð�ABÞ: (4)

Inequality (4) is seen to be true by noting that the entan-

glement EMjAB does not increase under �B, as it does not
increase under LOCC.

We can go one step further by noting that the distillable
entanglement is also nonincreasing on average under sto-
chastic LOCC. This captures the idea that two parties
cannot share more entanglement on average, if they per-
form local generalized measurements on their subsystems
and communicate the outcomes classically; see [17] for
more details. Defining the global Kraus operators describ-

ing some LOCC protocol by fVig with
P

iV
y
i Vi ¼ 1, the

probability of the outcome i is given by qi ¼ Tr½Vi�V
y
i �,

and the state after the measurement with the outcome i is

given by �i ¼ Vi�V
y
i =qi. Then for the distillable entan-

glement [25] and the relative entropy of entanglement
holds [26]

X

i

qiEð�iÞ � Eð�Þ: (5)

Inequality (5) implies that the corresponding quantity �!
E

satisfies the related property
X

i

qi�
!
E ð�AB

i Þ � �!
E ð�ABÞ; (6)

where qi; �
AB
i are defined as above Eq. (5), and now fVig

are Kraus operators describing a local quantum operation
on B. Inequality (6) is seen to be true by using (5) in the
definition (3).

In the following wewill include the quantum discord �!
into our approach. We call the non-negative quantity

PEð�Þ ¼ EMjABð�Þ � EMjAð�MAÞ (7)

the partial entanglement. It quantifies the part of entangle-
ment which is lost when the subsystem B is ignored; see
also Fig. 1. The following theorem establishes a connection
between the partial entanglement and the quantum discord.

Theorem 2. The quantum discord of a bipartite
state �AB is equal to the minimal partial distillable
entanglement in a von Neumann measurement on A:

�!ð�ABÞ ¼ minUPED
ðU�1U

yÞ. The minimization is done

over all unitaries U which realize a von Neumann mea-
surement on A, and �1 ¼ j0Mih0Mj � �AB.
Proof.—We note that for any state �AB the quantum

discord can be written as �!ð�ABÞ ¼ Sð�AÞ � Sð�ABÞ þ
minf�A

i gfSð
P

i�
A
i �

AB�A
i Þ � SðPi�

A
i �

A�A
i Þg with the mi-

nimization over all von Neumann measurements on A.
To see this we start with the definition of the di-
scord in (1). Then it is sufficient to show that for
pi ¼ Tr½�A

i �
AB�A

i � and �i ¼ �A
i �

AB�A
i =pi holdsP

ipiSð�iÞ ¼ SðPi�
A
i �

AB�A
i Þ � SðPi�

A
i �

A�A
i Þ, which

can be seen by inspection using the fact that fpig
are eigenvalues of

P
i�

A
i �

A�A
i . Using the same argu-

ments as in the proof of Theorem 1 the desired result
follows. j
Using Theorem 2 we will show that the properties (4)

and (6) are also satisfied by the quantum discord.
Inequality (4) can be seen to be true by noting that ED

does not increase under LOCC and that �B does not
change the state TrB½U�1U

y�. To see that (6) also holds
for the quantum discord note that, using the same argu-
ments as in the proof of Theorem 1, we can replace the
distillable entanglement ED by the relative entropy of
entanglement ER in Theorem 2 without changing the state-
ment. Because of convexity of ER [26], the entanglement

EMjA
R is nondecreasing on average under quantum opera-

tions on B:
P

iqiE
MjA
R ð�MA

i Þ � EMjA
R ð�MAÞ. This implies

that the partial entanglement PER
ð�Þ ¼ EMjAB

R ð�Þ �
EMjA
R ð�MAÞ is nonincreasing on average under quantum

operations on B. Using this result we see that (6) also holds
for the quantum discord.
Theorem 2 allows us to generalize the quantum discord

to arbitrary measures of entanglement E in the sameway as
it was done for the one-way information deficit in (3):

�!
E ð�ABÞ ¼ min

U
PEðU�1U

yÞ: (8)

Using the same arguments as above Eq. (8) we see that the
generalized quantum discord �!

E satisfies the properties (4)
and (6) for all measures of entanglement E which are
convex and obey (5).
So far we have only considered von Neumann measure-

ments. In the following we will show that our approach is
also valid with an alternative definition of the quantum
discord [11,12,27]: �!

POVMð�ABÞ ¼ Sð�AÞ � Sð�ABÞ þ
minfMA

i g
P

i piSð�B
i Þ, with fMA

i g being a positive operator-

valued measure (POVM) on A, pi ¼ Tr½MA
i �

AB� and �B
i ¼

TrA½MA
i �

AB�=pi. The minimization over POVMs can be
replaced by a minimization over orthogonal projectors of

rank one f�A0
i g on an extended Hilbert space H A0 with

dimH A0 � dimH A [28]. With this observation we see
that all results presented for the quantum discord also
hold for the alternative definition of the quantum discord.
In the following we will generalize our approach

to multipartite von Neumann measurements on A.
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We split the system A into n subsystems: A ¼ [n
i¼1Ai.

A von Neumann measurement � will be called n-partite,
if it can be expressed as a sequence of von Neumann
measurements �i on each subsystem Ai: �ð�Þ ¼
�1ð . . . �nð�ÞÞ. Now we can introduce the n-partite one-
way information deficit �!

n and the n-partite quantum
discord �!

n as follows:

�!
n ð�ABÞ ¼ min

�
Sð�ð�ABÞÞ� Sð�ABÞ; (9)

�!
n ð�ABÞ¼min

�
fSð�ð�ABÞÞ�Sð�ð�AÞÞg�Sð�ABÞþSð�AÞ:

(10)

Using the same arguments as in the proof of Theorems 1
and 2, we see that �!

n quantifies the minimal distillable
entanglement between M and AB created in an n-partite
von Neumann measurement on A. �!

n can be interpreted as
the corresponding minimal partial distillable entanglement
PED

. We also note that this generalization includes

n-partite von Neumann measurements on the total system.
This can be achieved by defining A to be the total system.
Since �!

n ¼ 0 in this case, the only nontrivial quantity is
the generalized information deficit �!

n . A different ap-
proach to extend the quantum discord to multipartite set-
tings was introduced in [29].

In this work we showed that the one-way information
deficit is equal to the minimal distillable entanglement
between the measurement apparatus M and the system
AB which has to be created in a von Neumann measure-
ment on A. The quantum discord is equal to the corre-
sponding minimal partial distillable entanglement. Our
approach can also be applied to any other measure of
entanglement, thus defining a class of quantum correlation
measures. This correspondence allows us to translate cer-
tain properties of entanglement measures to corresponding
properties of quantum correlation measures. It may lead to
a better understanding of the quantum discord and related
measures of quantum correlations, since it allows us to use
the great variety of powerful tools developed for quantum
entanglement. We found a class of quantum operations
which do not increase the generalized versions of the
one-way information deficit and the quantum discord. We
also generalized our results to multipartite settings.

We thank Sevag Gharibian for interesting discussions
and an anonymous referee for constructive suggestions. We
acknowledge partial financial support by Deutsche
Forschungsgemeinschaft.

Note added.—Recently an alternative approach to con-
nect the entanglement to quantum correlation measures
was presented in [30]. There the authors show that non-
classical correlations in a multipartite state can be used to
create entanglement in an activation protocol.
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