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Simple algorithm for computing the geometric measure of entanglement
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We present an easy implementable algorithm for approximating the geometric measure of entanglement
from above. The algorithm can be applied to any multipartite mixed state. It involves only the solution of an
eigenproblem and finding a singular value decomposition; no further numerical techniques are needed. To provide
examples, the algorithm was applied to the isotropic states of three qubits and the three-qubit XX model with
external magnetic field.
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I. INTRODUCTION

Quantum entanglement as a fascinating nonclassical feature
has attracted attention since the early days of quantum
theory [1,2]. In the last decades its importance for quantum
information theory has been recognized, since entanglement
plays a crucial role in almost every quantum computational
task [3].

A bipartite pure state is said to be entangled if it cannot be
written in the product form,∣∣ψAB

sep

〉 = |ψA〉 ⊗ |ψB〉. (1)

States which are not entangled are called separable. In general,
the number of parties is n � 2, and fully separable pure states
become

|ψsep〉 = ⊗n
i=1|ψ (i)〉. (2)

The theory of entanglement has also been extended to the
case where the quantum state is not pure [4,5]. Then a mixed
state ρsep is called separable, if it can be written as a convex
combination of separable pure states,

ρsep =
∑

i

pi ⊗n
j=1

∣∣ψ (j )
i

〉 〈
ψ

(j )
i

∣∣, (3)

with non-negative probabilities pi ,
∑

i pi = 1. Quantification
of entanglement is one of the main research areas in quantum
information theory [5]. For bipartite pure states, the entangle-
ment is usually quantified using the von Neumann entropy of
the reduced state,

E(|ψAB〉) = −Tr[ρA log2 ρA], (4)

where ρA = TrB[|ψAB〉〈ψAB |]. For multipartite systems and
mixed states many different measures of entanglement were
proposed [5,6]. In general, a measure of entanglement is any
continuous function E on the space of mixed states ρ which
satisfies at least the following properties [5]:

(i) E is non-negative and zero if and only if the state is
separable;

(ii) E does not increase under local operations and classical
communication:

E(�(ρ)) � E(ρ),
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where � is any local operations and classical communication
operation.

For bipartite mixed states, an important measure of entan-
glement is the entanglement of formation Ef . For pure states
it is defined as the von Neumann entropy of the reduced state
as given in (4). The extension to mixed states is done via the
convex roof construction [7,8],

Ef (ρ) = min
∑

i

piE(|ψi〉), (5)

where the minimum is taken over all pure state decompositions
of ρ.

In this paper we consider the geometric measure of
entanglement. For pure states it is defined as follows [9]:

EG(|ψ〉) = 1 − max
|φ〉∈S

|〈ψ |φ〉|2, (6)

where the maximization is done over the set of separable states
S. For mixed states ρ the geometric measure of entanglement
was originally defined via the convex roof construction, in the
same way as was done for the entanglement of formation [9]:

EG(ρ) = min
∑

i

piEG(|ψi〉) (7)

with minimization over all pure state decompositions of ρ.
Similar measures of entanglement were also considered earlier
in [10,11].

If ρ is a two-qubit state, general expressions for Ef and EG

are known [9,12,13]:

Ef (ρ) = h
(

1
2 + 1

2

√
1 − C(ρ)2

)
, (8)

EG(ρ) = 1
2 (1 −

√
1 − C(ρ)2). (9)

The concurrence C(ρ) is given by

C(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (10)

where λi are the square roots of the eigenvalues of ρ · ρ̃

in decreasing order, and ρ̃ is defined as ρ̃ = (σy ⊗ σy)
ρ�(σy ⊗ σy).

For most quantum states no exact expression for any
measure of entanglement is known, and thus numerical
algorithms must be used. One of the first algorithms com-
puting entanglement has been presented in [14]. There the
entanglement of formation was approximated using a random
walk algorithm on the space of the decompositions of the given
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mixed state. A much faster algorithm for the entanglement of
formation was presented in [15]. This algorithm made use of
the conjugate gradient method. In [16] the authors extended
and improved the algorithm. The authors also applied the
algorithm to the convex roof extension of the multipartite
Meyer-Wallach measure [17]. We also note that the geometric
measure of entanglement for some bound entangled states was
computed numerically in Ref. [18].

In this paper we present an algorithm for the geometric
measure of entanglement. The algorithm is easy to implement,
since every step is either the solution of an eigenproblem or
finding a singular value decomposition of a matrix, and no
further numerical techniques are needed.

This paper is organized as follows. In Sec. II we present
the algorithm for pure and mixed states. We also discuss its
properties and convergence. In Sec. III we test our algorithm on
bipartite and multipartite mixed states with the known value of
the geometric measure of entanglement. Further, we compute
an approximation of the geometric measure of entanglement
for the isotropic states of three qubits, and the three-qubit XX

model with a constant magnetic field. We conclude in Sec. IV.

II. ALGORITHM

Before we present our algorithm for general multipartite
states, we begin with bipartite and multipartite pure states.

A. Pure states

1. Bipartite states

For bipartite pure states |ψ〉 ∈ H1 ⊗ H2 the geometric
measure of entanglement is given by [10]

EG(|ψ〉) = 1 − λ2
max, (11)

where λmax is the largest Schmidt coefficient of |ψ〉. Note
that λ2

max is also the maximal eigenvalue of Tr1[|ψ〉〈ψ |]
and Tr2[|ψ〉〈ψ |]. Further, let |φ1〉 ∈ H1 and |φ2〉 ∈ H2 be
the eigenstate corresponding to the maximal eigenvalue of
Tr2[|ψ〉〈ψ |] and Tr1[|ψ〉〈ψ |] respectively. Then the state
|φ〉 = |φ1〉 ⊗ |φ2〉 is a closest separable state to |ψ〉.

2. Multipartite states

If we consider pure states |ψ〉 on an n-partite Hilbert
space H ∈ ⊗n

i=1Hi with n > 2, the geometric measure of
entanglement is only known for a few special cases [9,19]. In
Refs. [20,21] the authors presented an algorithm for an approx-
imation of EG for pure states. For simplicity we discuss the
algorithm from [20,21] for a pure state of three qubits, a gener-
alization to arbitrary systems is done at the end of this section.

Let |ψ〉 be the given state of three qubits. The algorithm
starts with a random product state |φ0〉 = |0(1)

0 〉|0(2)
0 〉|0(3)

0 〉
of three qubits, where the lower index will be used for
counting the steps of the algorithm and the upper index
denotes the “number” of the qubit. Now we consider |ψ̃〉 =
(〈0(2)

0 |〈0(3)
0 |)|ψ〉, which is a pure un-normalized state on the

space of the first qubit. If we want to maximize the overlap
|〈φ0|ψ〉| for fixed states |0(2)

0 〉 and |0(3)
0 〉, we have to replace

|0(1)
0 〉 with the state |0(1)

1 〉 = 1√
〈ψ̃ |ψ̃〉

|ψ̃〉. The procedure is

repeated for the second qubit, starting in the product state

|0(1)
1 〉|0(2)

0 〉|0(3)
0 〉 and resulting in the state |0(1)

1 〉|0(2)
1 〉|0(3)

0 〉.
Finally, the same maximization is done for the third qubit
with the final state |φ1〉 = |0(1)

1 〉|0(2)
1 〉|0(3)

1 〉. In the same way
we define the product state |φn〉 = |0(1)

n 〉|0(2)
n 〉|0(3)

n 〉 to be the
result of n iterations of the algorithm. In the following we
prove some properties of the algorithm.

Proposition 1. Let |000〉 = limn→∞ |φn〉 be the product
state after an infinite number of steps of the algorithm, giving

〈100|ψ〉 = 〈010|ψ〉 = 〈001|ψ〉 = 0. (12)

Proof. If 〈100|ψ〉 	= 0, then there exists a product state of
the form |φ〉 = |φ(1)〉|00〉 such that |〈φ|ψ〉| > |〈000|ψ〉|. This
means that |000〉 	= limn→∞ |φn〉, which is a contradiction to
the definition of |000〉. Using the same argument it can be seen
that 〈010|ψ〉 = 〈001|ψ〉 = 0 also holds. �

From Proposition 1 we see that the state |ψ〉 can be written
as follows:

|ψ〉 = λ1|000〉 + λ2|110〉 + λ3|101〉 + λ4|011〉 + λ5|111〉,
(13)

where four of the coefficients λi can be chosen real and

non-negative, and
∑

i |λi |2 = 1. The form (13) is also known
as generalized Schmidt decomposition [22,23]. For a general
multipartite pure state |ψ〉 it is defined [23] as an expansion in
the product basis {|ψ (1)

i1
〉 · · · |ψ (n)

in
〉},

|ψ〉 =
∑

i1,...,in

ci1,...,in

∣∣ψ (1)
i1

〉 · · · ∣∣ψ (n)
in

〉
, (14)

where the coefficients ci1,...,in have the property cjii,...,i =
ciji,...,i = · · · = cii,...,ij = 0 if 1 � i < j � d, where d is the
dimension of a subsystem.

Proposition 2. The algorithm computes a generalized
Schmidt decomposition of an arbitrary multipartite pure state
with an arbitrary given precision.

Proof. For simplicity we give the proof for a pure state of
three qubits. Generalization to an arbitrary system is given
below. In order to find a generalized Schmidt decomposition
with a given precision ε we need to find five parameters μi

with
∑5

i=1 |μi |2 = 1 and a product basis {|ijk〉} such that the
state

|ψapprox〉 = μ1|000〉 + μ2|110〉 + μ3|101〉
+μ4|011〉 + μ5|111〉 (15)

is closer to |ψ〉 than ε; that is, D(|ψ〉,|ψapprox〉) � ε with the
trace distance D(|ψ〉,|φ〉) =

√
1 − |〈ψ |φ〉|2. This is accom-

plished by the state

|ψn〉 = 1

N

∑
i,j,k

bijk|ijk〉n, (16)

where |ijk〉n = |i(1)
n 〉|j (2)

n 〉|k(3)
n 〉 are the basis states after n

iterations of the algorithm. The coefficients bijk are defined
as follows: b100 = b010 = b001 = 0, and bijk = (〈ψ |ijk〉n)�

otherwise. N assures normalization of |ψn〉. The trace
distance between |ψ〉 and |ψn〉 becomes D(|ψ〉,|ψn〉) =√

|〈ψ |100〉n|2 + |〈ψ |010〉n|2 + |〈ψ |001〉n|2. Using Proposi-
tion 1 we see that limn→∞ D(|ψ〉,|ψn〉) = 0. The wanted
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approximation |ψapprox〉 is obtained by a state |ψn〉 such that
D(|ψ〉,|ψn〉) � ε. �

Thus, we showed that the algorithm presented in the
beginning of this section computes a generalized Schmidt
decomposition of the given pure state. As the generalized
Schmidt decomposition is, in general, not unique [22,23],
the result of the computation may depend on the choice
of the initial product state |φ0〉. In particular, the final
overlap 1 − |〈000|ψ〉|2 does not have to be the geometric
measure of entanglement, even for an infinite number of
iterations.

Finally, we note that all results presented in this sec-
tion can be extended to an arbitrary number of qubits.
Then the equations have to be changed accordingly. For
four qubits, Eq. (12) becomes 〈1000|ψ〉 = 〈0100|ψ〉 =
〈0010|ψ〉 = 〈0001|ψ〉 = 0. Moreover, the results even hold if
the subsystems are not qubits, but have arbitrary dimensions.
For simplicity, we consider a pure state of three qutrits in the
following. Again, |000〉 = limn→∞ |φn〉 denotes the product
state which is achieved after infinite number of iterations.
Using the same arguments as in the proof of Proposition 1
we see

〈100|ψ〉 = 〈010|ψ〉 = 〈001|ψ〉 = 0, (17)

〈200|ψ〉 = 〈020|ψ〉 = 〈002|ψ〉 = 0, (18)

where |1〉 and |2〉 are arbitrary states orthogonal to |0〉 on the
corresponding subspace. In order to find a generalized Schmidt
decomposition we also have to find specific states |1〉 and
|2〉 for each subspace. Let |ψ〉 = ∑2

i=0

∑2
j=0

∑2
k=0 aijk|ijk〉

be the expansion of the state in a product basis contain-
ing |000〉. Then consider the un-normalized state |ψ̃〉 =∑2

i=1

∑2
j=1

∑2
k=1 aijk|ijk〉. Since in the present stage of

the algorithm we only have the knowledge about the state
|000〉 = |0(1)〉|0(2)〉|0(3)〉, the state |ψ̃〉 can be computed as
follows. Starting from the state |ψ〉 we compute the un-
normalized state |α〉 = |ψ〉 − |000〉〈000|ψ〉. In the second
step we compute |β〉 = |α〉 − ∑

i<j |0(i)0(j )〉〈0(i)0(j )|α〉. In
the final step we get |ψ̃〉 = |β〉 − ∑

i |0(i)〉〈0(i)|β〉. The state
|ψ̃〉 is an un-normalized pure state of three qubits, and
according to Proposition 1 applying the algorithm to it will
give us the desired product basis {|ijk〉} with the property
〈211|ψ〉 = 〈121|ψ〉 = 〈112|ψ〉 = 0. The expansion of the
state |ψ〉 in the final product basis {|ijk〉} is a generalized
Schmidt decomposition of |ψ〉 [23]. Let {|ijk〉n} be the
computed product basis after n iterations of the algorithm.
The approximated generalized Schmidt decomposition of |ψ〉
becomes

|ψn〉 = 1

N

∑
i,j,k

bijk|ijk〉n, (19)

with biij = biji = bjii = 0 for i < j and bijk = aijk oth-
erwise. N assures normalization of |ψn〉. The precision
of the approximation is then given by D(|ψ〉,|ψn〉) =√∑

i<j (|〈iij |ψ〉|2 + |〈ij i|ψ〉|2 + |〈jii|ψ〉|2). In the same

way we can find a generalized Schmidt decomposition for
any multipartite pure state with an arbitrary precision.

B. Mixed states

The main idea of the algorithm for mixed states is a
consequence of the fact, that the geometric measure of
entanglement may also be written as [24]

EG(ρ) = 1 − max
σ∈S

F (ρ,σ ), (20)

where S denotes the set of separable states and F (ρ,σ ) =
(Tr[

√√
ρσ

√
ρ])2 is the fidelity. Let |ψ〉 ∈ H ⊗ Ha be a

purification of ρ. It can be written as

|ψ〉 =
∑

i

√
pi |ψi〉 ⊗ |i〉, (21)

with probabilities pi and ρ = ∑
i pi |ψi〉〈ψi |. According to

Uhlmann’s theorem [3, p. 410] and using (20) we can also
write

EG(ρ) = 1 − max
Tra [|φ〉〈φ|]∈S

|〈ψ |φ〉|2, (22)

where the maximization is done over all states |φ〉 ∈ H ⊗ Ha

which are purifications of a separable state. Note that any |φ〉
can be written in the form

|φ〉 =
∑

j

√
qj |φj 〉 ⊗ U †|j 〉, (23)

with pure separable states |φj 〉 ∈ S, probabilities qj , a unitary
U acting on the Hilbert space Ha , and 〈i|j 〉 = δij .

From (22) we see, that we can get an approximation of EG

by maximizing the overlap |〈ψ |φ〉| over all states |φ〉 of the
form (23). Our approach for this maximization is the following.

(1) For fixed qi and |φi〉 we find a unitary U in (23) such
that the overlap |〈ψ |φ〉| is maximal.

(2) For fixed U and qi we find states |φi〉 in (23) such that
the overlap |〈ψ |φ〉| is maximal. Note that this is, in general,
only possible for bipartite states. For multipartite states we
compute |φi〉 such that the overlap |〈ψ |φ〉| does not decrease.

(3) For fixed U and |φi〉 we find probabilities qi in (23)
such that the overlap |〈ψ |φ〉| is maximal.

Steps (1)–(3) are iterated until the increase of the overlap
|〈ψ |φ〉| is smaller than a small parameter ε > 0. When the
algorithm stops, the approximation of the geometric measure
of entanglement is given by ẼG(ρ) = 1 − |〈ψ |φ̃〉|2, where |φ̃〉
is the final state of the form (23).

In the following section we discuss the properties of the
algorithm. Note that the order of the steps presented above can
also be changed without changing these properties.

C. Properties

In the following we discuss some properties of the algorithm
presented above. In the first step the probabilities qi and the
separable pure states |φi〉 are fixed. The product |〈ψ |φ〉| can be
maximized using Uhlmann’s theorem [3, p. 410]; it is maximal
if U is chosen such that the following holds:

A =
√

AA†U †, (24)

where A is a matrix defined as A = ∑
i,j

√
piqj 〈φj |ψi〉|i〉〈j |.

Note that Eq. (24) is the polar decomposition of A, which can
be computed efficiently for any matrix A [25].
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In the second step of the algorithm we fix U , which
was found in the step before. The probabilities qi are also
unchanged. In order to maximize the overlap |〈ψ |φ〉| the
separable states |φi〉 have to be changed to the states |φ′

i〉
for which holds

〈ψ ′
i |φ′

i〉 =
√

Fs(|ψ ′
i 〉), (25)

with the states |ψ ′
i 〉 = 1√

p′
i

∑
j uij

√
pj |ψj 〉, where uij =

〈i|U |j 〉 are elements of U in the computational basis, and
p′

i > 0 is chosen such that |ψ ′
i 〉 is normalized. For bipartite

states |ψ ′
i 〉 this step is evaluated according to the discussion

in Sec. II A 1. If |ψ ′
i 〉 is multipartite, the closest separable

state |φ′
i〉 cannot be found in general. However, there is a

way to circumvent this problem as follows. We apply the
algorithm described in Sec. II A 2 to the state |ψ ′

i 〉 with the
initial product state |φi〉, thus getting a final product state |φ′

i〉.
The state |φ′

i〉 is not necessarily the closest separable state to
|ψ ′

i 〉; however, it will be closer to |ψ ′
i 〉 than the initial product

state |φi〉. However, if we replace |φi〉 by |φ′
i〉, we get a better

approximation of the geometric measure of entanglement. This
can be seen by noting that for the overlaps of the purifications
holds: |〈ψ |φ′〉| � |〈ψ |φ〉|, where in |φ′〉 all product states |φi〉
were replaced with |φ′

i〉.
In the last step of the iteration we fix U which was found in

the first step, and the separable states |φ′
i〉 which were found

in the second step. Using the method of Lagrange multipliers
we find the optimal probabilities:

q ′
i = p′

i |〈ψ ′
i |φ′

i〉|2∑
k p′

k|〈ψ ′
k|φ′

k〉|2
. (26)

Let Ẽn(ρ) be the approximation of the geometric measure
of entanglement after n iterations of the algorithm. We now
prove the main property of the algorithm.

Proposition 3. The approximated value of the geometric
measure of entanglement never increases in a step of the
iteration:

Ẽn+1(ρ) � Ẽn(ρ). (27)

Proof. It is sufficient to show that the overlap of
the purifications |〈ψ |φ〉| does not decrease in any step of
the algorithm. This is seen directly from the definition of the
algorithm in Sec. II B. �

D. Implementation

First we set a small parameter ε > 0. The algorithm starts
with a random decomposition {pi,|ψi〉}d2

i=1 into d2 elements of

the state ρ = ∑d2

i=1 pi |ψi〉〈ψi | and a separable decomposition

{qi,|φi〉}d2

i=1 of a random separable state σ = ∑d2

i=1 qi |φi〉〈φi |,
where we demand that pi > 0 and qi > 0 for all 1 � i � d2.
The steps (1)–(3) from the Sec. II B can be implemented as
follows,

(1) Find the singular value decomposition of the matrix
A = ∑

i,j

√
piqj 〈φj |ψi〉|i〉〈j |, that is, A = V DW with uni-

tary matrices V , W and diagonal non-negative matrix D.
Define U = W †V †, noting that (24) is fulfilled.

(2) Define un-normalized states

|αi〉 =
d2∑

j=1

uij

√
pj |ψj 〉, (28)

with uij = 〈i|U |j 〉. Compute p′
i = 〈αi |αi〉 and |ψ ′

i 〉 =
1√
p′

i

|αi〉 for all i. For bipartite states compute separable pure

states |φ′
i〉 ∈ S such that 〈ψ ′

i |φ′
i〉 = √

Fs(|ψ ′
i 〉). For multipartite

states find product states |φ′
i〉 which are closer to |ψ ′

i 〉 than
the states |φi〉 computed in the step before. This can be done
applying the algorithm presented in Sec. II A 2 to the state |ψ ′

i 〉
with the initial product state |φi〉.

(3) Compute q ′
i = p′

i |〈ψ ′
i |φ′

i 〉|2∑
k p′

k |〈ψ ′
k |φ′

k〉|2 .
After performing steps (1)–(3) define a new separable

state σ ′ = ∑
i q

′
i |φ′

i〉〈φ′
i |, which is an approximation of the

closest separable state to ρ. If F (ρ,σ ′) − F (ρ,σ ) > ε, set
|ψi〉 = |ψ ′

i 〉, |φi〉 = |φ′
i〉, pi = p′

i and qi = q ′
i for all i and go

back to step (1); otherwise stop. The computed approximation
is ẼG(ρ) = 1 − F (ρ,σ ′).

E. Convergence

One of the most important questions regarding algorithms
computing entanglement is whether the algorithm converges
to the exact value of the entanglement measure, at least for
infinite number of steps. For a general multipartite state with
more than two parties the algorithm will converge to the wrong
value with some nonzero probability, depending on the initial
separable state. This is due to the fact that the algorithm for pure
multipartite states presented in Sec. II A 2 does not necessarily
compute the correct value, since it can converge to a local
minimum [21,26].

For bipartite mixed states there is no full answer to this
question, and testing the algorithm on bipartite states with
known geometric measure of entanglement we did not observe
convergence to a wrong value. However, it can be shown that
for some states and some special choice of the purifications |ψ〉
and |φ〉 the algorithm does not compute the correct value even
after an infinite number of iterations. To see this we consider
a separable state ρ ∈ S with rank r such that any separable
decomposition of ρ has more elements than r . The existence
of such states is assured [5]. Let now {pi,|ψi〉}ri=1 be a decom-
position of ρ which is optimal among all decompositions with
r elements; that is, the average entanglement

∑r
i=1 piEG(|ψi〉)

is minimal among all decompositions into r elements. Further,
let |φi〉 be the closest separable state to |ψi〉 and we also
choose qi = pi |〈ψi |φi 〉|2∑

k pk |〈ψk |φk〉|2 . Now we start the algorithm with
the decompositions {pi,|ψi〉}ri=1 and {qi,|φi〉}ri=1, as described
in the previous section. Then the unitary U which maximizes
the overlap of the purifications |ψ〉 = ∑

i

√
pi |ψi〉 ⊗ |i〉 and

|φ〉 = ∑
j

√
qj |φj 〉 ⊗ U †|j 〉 is given by U = 1. In the second

step the algorithm will maximize the overlaps 〈φi |ψi〉, which
are already optimal. The same is true for the last step of the
algorithm, where the probabilities qj are optimized. Thus, the
algorithm preserves the initial separable state and does not
compute the correct value even for infinite number of steps.

To avoid the problem mentioned above the algorithm should
always start with a separable state chosen at random, that
is, with random initial probabilities qi and random separable

022323-4



SIMPLE ALGORITHM FOR COMPUTING THE GEOMETRIC . . . PHYSICAL REVIEW A 84, 022323 (2011)

pure states |φi〉. Moreover, the number of initial nonzero
probabilities qi should be at least (dimH)2.

In the following section we test the algorithm and present
some applications for states with unknown geometric measure
of entanglement.

III. APPLICATIONS

A. Testing the algorithm

1. Two qubits

If ρ is a two-qubit state, the geometric measure of
entanglement is given by (9). We applied our algorithm with
ε = 10−15 to 103 random states of two qubits and tested the
computed value ẼG against the exact value given in (9).
The maximal deviation ẼG − EG from the exact value was
6 × 10−11. The average number of steps made by the algorithm
was 291.

2. Isotropic states

We also tested our algorithm on the isotropic states in
dimension d × d; these are states of the form

ρ = p|+〉〈+| + 1 − p

d2
1, (29)

with the maximally entangled state |+〉 = 1√
d

∑d
i=1 |ii〉. For

these states an exact expression for the geometric measure of
entanglement was given in [9]; the states are entangled if and
only if p > 1

1+d
. We applied our algorithm to the state (29) for

2 � d � 3 with the parameter ε = 10−15 for p = 0.01n and
0 � n � 99. The difference between the approximated value
ẼG and the exact value EG was always less than 10−10.

In order to do the test for d = 4 within a reasonable time
some modifications had to be applied. First, we minimized only
over decompositions into d2 = 16 instead of d4 = 256 pure
states. Further, for d = 4 the test was done on entangled states
only, that is, for p = 0.01n with 20 < n � 99. The difference
between the approximation ẼG and the exact value EG never
exceeded 10−13. The results are summarized in Table I.
There N̄ denotes the average number of steps made by the
algorithm.

For the cases tested above the algorithm always converged
into the correct value of EG within the precision given in
Table I with a single run of the algorithm. Note that in general
more than one run with different initial parameters should be
done to avoid convergence into a wrong value. Further, we see
from Table I that the parameter ε should not be used directly
to quantify the precision of the approximation, although the
deviation from the exact value is very small.

TABLE I. Precision of the approximation ẼG − EG and the
average number of steps N̄ for the isotropic states (29) with parameter
ε = 10−15.

d 2 3 4

ẼG − EG <10−13 <10−10 <10−13

N̄ 80 516 2259

3. Four qubits

In Ref. [27] the authors computed the geometric measure
of entanglement for a class of mixed states of four qubits.
We tested our algorithm on the state ρ(t), which for t = 0 is
defined as the four-qubit cluster state

|CL4〉 = 1
2 (|0000〉 + |0011〉 + |1100〉 − |1111〉). (30)

For t > 0 the diagonal terms of ρ are left invariant, and the
off-diagonal components decay exponentially with t ; that is,

ρkl(t) =
{

ρkl(0) for k = l,

e−t ρkl(0) for k 	= l
. (31)

We applied our algorithm with parameter ε = 10−15 on
the states ρ(t) with t = 0.01n for all 1 � n � 100. The
discrepancy between the approximated value and the exact
value given in [27] was always smaller than 10−14.

The same test was done for the state ρ̃(t), which for t = 0
is defined as the four-qubit W state

|W4〉 = 1
2 (|0001〉 + |0010〉 + |0100〉 + |1000〉), (32)

and for t > 0 the off-diagonal components decay exponen-
tially as given in (31). There the discrepancy between the
approximation and the exact value was always smaller than
10−11.

Finally, we tested our algorithm on the four-qubit state ρ̄(t),
which for t = 0 is defined as the symmetrized Dicke state,

|D4〉 = 1√
6

(|0011〉 + |0101〉 + |1001〉 + |1100〉 + |0110〉
+ |1010〉). (33)

Again, for t > 0 the off-diagonal components decay as in
(31). The test was done with t = 0.01n for all 1 � n � 100,
the difference ẼG − EG was always smaller than 10−12. The
results are summarized in Table II. There N̄ denotes the
average number of iterations made by the algorithm.

Note that the optimizations above were done over pure state
decompositions into 24 elements instead of 28. This reduction
was needed in order to do the computation within a reasonable
time. Moreover, we note that for very small parameter t = 0.01
we sometimes observed convergence into a wrong value. This
is due to the fact that for small t the state ρ(t) is almost pure.
As was mentioned in Sec. II E the algorithm can converge to
wrong values for pure multipartite states. In these cases the
algorithm was started again with random initial parameters.
To get an impression we mention that for the last example
ρ̄(0.01) the algorithm sometimes converged to ẼG − EG ≈
8 × 10−4.

We also mention that the examples given here were
computed on a standard computer. The computation time

TABLE II. Precision of the approximation ẼG − EG and the
average number of steps N̄ for the four-qubit states presented in
the text with parameter ε = 10−15.

ρ(0) |CL4〉 |W4〉 |D4〉
ẼG − EG <10−14 <10−11 <10−12

N̄ 12 173 126
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for a single state of three and four qubits was on the order
of 1 min. If in the four-qubit case the optimization is done
over decompositions into 28 instead of 24 pure states, the
computation time increases at least by the factor 24. In general,
for an n-partite system of qudits with dimensions d, the
computation time scales at least with the number of pure states
in the decomposition, given by d2n.

4. Comparison with other algorithms

A significant difference between our algorithm and the
algorithms presented in [15,16] is the fact that our algorithm
implies only the solution of the eigenproblem and finding
a singular value decomposition. For both problems efficient
numerical algorithms exist [25], implying that each step of
our algorithm can be done efficiently. The algorithms based
on conjugate gradients usually imply a line search [15]. It is
not known to us whether a line search can in general be done
efficiently for the problem considered here.

As noted in Sec. III A 1, the average number of iterations
made by our algorithm for random two-qubit states with
parameter ε = 10−15 was 291. This is comparable to the per-
formance of the conjugate gradient algorithm; for comparison,
see Fig. 1 in [16].

B. On additivity of entanglement

A measure of entanglement E is called additive, if for any
two states ρAB and σAB holds [6]:

E(ρAB ⊗ σAB) = E(ρAB) + E(σAB), (34)

where the entanglement between the parties A and B is
considered.

For pure states |ψAB〉 and |φAB〉 we see that

Fs(|ψAB〉 ⊗ |φAB〉) = Fs(|ψAB〉)Fs(|φAB〉), (35)

with Fs(ρ) = max
σ∈s

F (ρ,σ ) and the fidelity F (ρ,σ ) =
(Tr[

√√
ρσ

√
ρ])2. From (35) we see that the geometric

measure of entanglement is not additive. Note that for the
entanglement of formation nonadditivity has also been proved
[28].

We consider the logarithmic entanglement

Elog(ρ) = − log2 Fs(ρ), (36)

which is additive for pure bipartite states, as is seen from
(35). In general, Fs(ρAB ⊗ σAB) � Fs(ρAB)Fs(σAB) holds,
and thus the logarithmic entanglement is subadditive:

Elog(ρAB ⊗ σAB) � Elog(ρAB) + Elog(σAB). (37)

We use our algorithm to test the inequality (37). Note that
for two-qubit states ρ we get Fs(ρ) = 1

2 (1 +
√

1 − C(ρ)2).
We take ρAB and σAB to be random states of two qubits
and apply the algorithm to ρAB ⊗ σAB with parameter
ε = 10−7. This procedure is repeated 100 times; each time the
computed approximation F̃s(ρAB ⊗ σAB) was slightly below
Fs(ρAB)Fs(σAB), which means that we could not disprove
additivity of logarithmic entanglement in this way. The differ-
ence Fs(ρAB)Fs(σAB) − F̃s(ρAB ⊗ σAB) was always smaller
than 10−5.

C. Applications to three qubits

In this section we apply our algorithm to three-qubit states
with unknown value of EG. If d is the dimension of the total
Hilbert space, then for any ρ there always exists an optimal
decomposition with at most d2 elements [24]. A decomposition
{pi,|ψi〉} of a state ρ = ∑

i pi |ψi〉〈ψi | is called optimal if its
average entanglement is equal to the geometric measure of
entanglement:

∑
i piEG(|ψi〉) = EG(ρ). In order to make sure

that the algorithm always has the chance to find the optimal
decomposition, all minimizations in this section were done
over decompositions into d2 = 26 = 64 pure states. In order
to do the computation within a reasonable time we used the
parameter ε = 10−7.

1. Isotropic states

Isotropic states of three qubits have the form

ρ = p|GHZ〉〈GHZ| + 1 − p

8
1, (38)

with |GHZ〉 = 1√
2
(|000〉 + |111〉). They are known to be fully

separable if and only if p � 1
5 [29]. We apply our algorithm to

these states with parameter ε = 10−7 for p > 1
5 . The result is

shown in Fig. 1 (solid line). The plot can be compared to the
geometric measure of entanglement of the isotropic states of
two qubits; see the dashed line in Fig. 1. In the limit p → 1 the
state becomes the pure GHZ state with EG(|GHZ〉) = 1

2 [9].

2. XX model

As a final example we apply our algorithm to the isotropic
XX model of three qubits in a constant magnetic field. The
corresponding Hamiltonian is given by [30,31]

H = B

2

3∑
i=1

σ z
i + J

3∑
i=1

(σx
i σ x

i+1 + σ
y

i σ
y

i+1), (39)

with periodic boundary conditions σx
4 = σx

1 and σ
y

4 = σ
y

1 . In
thermal equilibrium the system is found in the mixed state

ρ = e
− H

kT

Z
with Z = Tr[e− H

kT ]. In the following we set k = 1.

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Ẽ G

p

3 qubits

2 qubits

FIG. 1. (Color online) Approximation of the geometric measure
of entanglement ẼG for isotropic states of three qubits given in
(38) as a function of p (solid line) compared to the two-qubit case
(dashed line).
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B = 0.5

B = 0

B = 1

B = 1.2

FIG. 2. (Color online) Approximation of the geometric measure
of entanglement ẼG plotted as function of the temperature T for

ρ = e
− H

kT

Z
with H given in (39). The parameter J is set to 1

2 and
k = 1.

The results of the approximation with parameter ε = 10−7

are shown in Fig. 2. They can be compared to the results
for two qubits in ( [32], Fig. 4). For different values of the
magnetic field B we observe a different behavior of the system
in the low temperature limit. This behavior is explained in the
following.

Note that the Hamiltonian (39) has four nondegenerate
eigenvalues ± 3

2B, and 4J ± 1
2B. Further, the following two

eigenvalues are degenerated twice: −2J ± 1
2B. For vanishing

magnetic field the ground state of the system is a mixture of
the four eigenstates corresponding to the eigenvalue −2J with
equal probabilities. In this case we get ẼG ≈ 1

4 for T →0;see
the solid curve in Fig. 2. For small nonzero magnetic field
0 < B < 2J the ground state of the system is the mixture of
the eigenstates corresponding to the eigenvalue −2J − 1

2B.
As can be seen from the dashed curve in Fig. 2, for T →0
the approximation becomes ẼG ≈ 1

3 in this case. In the case
B = 2J , there are three eigenstates corresponding to the
smallest eigenvalue −3J . The approximated value for T →0
in this case becomes ẼG ≈ 0.116; see the dotted curve in
Fig. 2. Finally, for B > 2J the ground state is the product
state |111〉, and the entanglement vanishes for T →0, as is
seen from the dot-dashed curve in Fig. 2.

In Fig. 3 we show the plot of ẼG as a function of the
magnetic field B for three different temperatures T . For T →0
we observe that ẼG becomes a nonanalytic function of B for
two different values of the magnetic field, namely for B = 0

0.5 1.0 1.5 2.0

0.05

0.10

0.15

0.20

0.25

0.30

Ẽ G

B

T = 0.01
T = 0.1

T = 0.5

FIG. 3. (Color online) Approximation of the geometric measure
of entanglement ẼG for fixed values of T plotted as a function of the
magnetic field B. The parameter J is set to 1

2 and k = 1.

and B = 2J . This is a significant difference to the two-qubit
case, where such behavior occurred only for a single value of
B ([32], Fig. 5).

IV. CONCLUDING REMARKS

In this paper we presented an algorithm for approximating
the geometric measure of entanglement for arbitrary multi-
partite mixed states. The algorithm is based on a connection
between the geometric measure of entanglement and the
fidelity [24]. It is easily implementable, since it implies
only the solution of an eigenproblem and finding a singular
value decomposition. We tested our algorithm on bipartite
and multipartite mixed states, where an exact formula for
the geometric measure of entanglement is known. In all
cases we found convergence to the exact value. For two
qubits, the performance of our algorithm is comparable to the
performance of the algorithms based on conjugate gradients.
We also applied our algorithm to the isotropic state of three
qubits, and the three-qubit XX model with external magnetic
field.

In our tests on bipartite mixed states with known value of
the geometric measure of entanglement our algorithm always
converged to the correct value within a given precision. It
remains an open question whether this is always the case.
For quantum states with more than two parties the algorithm
can converge to wrong values with nonzero probability. In
general, more than one run of the algorithm with different
initial parameters should be performed.
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