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Abstract

The impact of Artificial Intelligence (AI) is rapidly expanding, revolutionizing both sci-

ence and society. It is applied to practically all areas of life, science, and technology,

including materials science, which continuously requires novel tools for effective

materials characterization. One of the widely used techniques is scanning probe

microscopy (SPM). SPM has fundamentally changed materials engineering, biology,

and chemistry by providing tools for atomic-precision surface mapping. Despite its

many advantages, it also has some drawbacks, such as long scanning times or the

possibility of damaging soft-surface materials. In this paper, we focus on the potential

for supporting SPM-based measurements, with an emphasis on the application of AI-

based algorithms, especially Machine Learning-based algorithms, as well as quantum

computing (QC). It has been found that AI can be helpful in automating experimental

processes in routine operations, algorithmically searching for optimal sample regions,

and elucidating structure–property relationships. Thus, it contributes to increasing

the efficiency and accuracy of optical nanoscopy scanning probes. Moreover, the

combination of AI-based algorithms and QC may have enormous potential to

enhance the practical application of SPM. The limitations of the AI-QC-based

approach were also discussed. Finally, we outline a research path for improving AI-

QC-powered SPM.

Research Highlights

• Artificial intelligence and quantum computing as support for scanning probe

microscopy.

• The analysis indicates a research gap in the field of scanning probe microscopy.

• The research aims to shed light into ai-qc-powered scanning probe microscopy.

K E YWORD S

artificial intelligence, automated experiments, machine learning, quantum computation, scanning
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1 | INTRODUCTION

Scanning probe microscopy (SPM), including scanning tunneling

microscopy (STM), atomic force microscopy (AFM), and scanning near

field optical microscopy (SNOM) are universal tools for materials' sur-

face characterization. Such scanning techniques enable the

examination of the sample surface with even atomic resolution based

on the measurements of the interaction between the probe tip and

the sample surface (Bian et al., 2021). SPM enables to obtain a high-

resolution 3D surface profile in a nondestructive measurement. It can

examine samples of various types: metal, dielectric, semiconducting,

biological, transparent, etc. without any special preparation (Lyu
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et al., 2023), usually in air or even liquid conditions, without vacuum

requirement. Moreover, it is possible to combine SPM with different

techniques to visualize several parameters simultaneously including

electrostatic force (Sahare et al., 2023), electronic states (Ale Crivillero

et al., 2023), ferroelectric domains (Huxter et al., 2023), electric poten-

tial (Iwaya et al., 2023), magnetic induction (Johnsen et al., 2003),

adhesion (Hassani et al., 2021), hardness (Chen, Hu, et al., 2022a),

stiffness (Petit et al., 2022), friction (Weymouth et al., 2022), topogra-

phy (Cojocaru et al., 2022), chemical structure (Commodo

et al., 2019), electronic structure (Yuan et al., 2020), electrochemical

reactions (Asserghine et al., 2021), local stress (Haonan et al., 2022),

impedance (Shkirskiy et al., 2020), resistance (Waldrip et al., 2020),

electric current flow (Giridharagopal et al., 2019), thermal response

(Vaziri et al., 2019), optical response (Lu et al., 2022), polarization

(Baba et al., 2018), refraction index (Tranca et al., 2023), spin angular

momentum of electromagnetic fields (Yin et al., 2020), fluorescence

(Dey, 2022), photoluminescence (Soltanmohammadi et al., 2023),

Raman (Mrđenovi�c et al., 2023) and infrared spectra (Dopilka

et al., 2023). Besides its measuring capabilities, SPM can be used to

create and modify the structure. It can be done in several ways. First,

the simplest techniques rely on mechanically carving patterns in soft

material with the use of the AFM probe (Pellegrino et al., 2022). The

second possibility is to precisely illuminate a photoresist layer through

the SNOM probe to create a mask for photolithography (Aghaei

et al., 2015; Roszkiewicz et al., 2019). Another technique, called dip-

pen nanolithography, uses the probe to absorb the “ink” molecules

and release them on the surface during contact mode (Liu

et al., 2019). Thermal scanning probe lithography is used to directly

melt or ablate the substrate (Howell et al., 2020). Another technique,

field-emission scanning probe lithography, utilizes an electron field

emission from the probe material, when a high voltage is applied to

the probe (Behzadirad et al., 2020). Besides nanolithography, SPM is

also a nanomanipulation tool that allows precise building of desired

structures by fine manipulation of small objects (nanoparticles, nano-

tubes) with the probe tip (Park et al., 2017).

SPM faces also some serious challenges (described in more detail

in Section 4) connected, among others, with contamination or

destruction of the probe or sample during scanning, inaccurate surface

mapping due to local defects, tip-sample convolution, slope tilt or

overhangs, suboptimal feedback setup, far-field noise, thermal drift,

piezoelectric hysteresis, scanner creep, calibration errors. Optical

techniques combined with AFM are additionally the source of trouble-

some optical and chemical artifacts.

Efficient and fast analysis of samples obtained by application of

scanning probe microscopy remains a challenge, especially for samples

with high attenuation or non-trivial geometries. To understand the

spectrum of a sample obtained using SNOM, it is also necessary to

specify a wide range of experimental variables such as illumination

angle and frequency, the geometry of the tip, and its tapping ampli-

tude. The Artificial Intelligence (AI)-based approach, which already has

a wide field of applications, including wastewater treatment

(Malviya & Jaspal, 2021; Zhao et al., 2020), circular economy

(Pregowska et al., 2022), agriculture (Zhang et al., 2021), adsorption

studies (Mahmoodi et al., 2018; Tanzifi et al., 2017), graphene and

graphene-based materials characterization (Huang et al., 2022),

mechanical studies of carbon nanotube-based nanocomposite (Ho

et al., 2022), magnetic hyperthermia (Osial & Pregowska, 2022), opti-

mization of materials properties in cancer diagnosis and treatment

(Govindan et al., 2023), early diagnosis of polycystic ovaries syndrome

(PCOS) (Nsugbe, 2023), cancer research (Elemento et al., 2021),

opened new possibilities in the scanning probe microscopy field

(Chen, Xu, et al., 2022b). Since AI provides fast extraction of informa-

tion contained in image data, thus, the application of statistical tools

and AI-based algorithms can significantly increase the efficiency and

productivity of microscopy, for example, image processing and pattern

recognition in scanning transmission electron microscopy (STEM)

(Konečná et al., 2022; Ziatdinov et al., 2020), or enhanced data acqui-

sition and analysis in scanning probe microscopy (Fan et al., 2022). AI

can be applied to recognition and assigning identities on images, while

it enables the detection of specific molecules in complex biological

processes enhancing or even replacing hand-engineered features. It is

helpful in image segmentation, where the task is to identify whether

each pixel belongs to a structure category.

Over the past 70 years, digital computers have made significant

progress, from mastering the game of chess to solving complex alge-

bra problems at the school level. The initial enthusiasm for AI peaked

with optimistic discussions about household robots that make

housework easier and even serve as babysitters. But as media cover-

age intensified, so did the shadow of skepticism. During these chal-

lenges, a promising path has emerged–the convergence of AI and

quantum computing (QC) (Krenn et al., 2023). AI, with its ability to

learn complicated tasks, combined with the computing power of

quantum computers, offers a unique opportunity for groundbreaking

research. This synergy has opened new doors, especially in the pro-

cessing of huge amounts of data generated during the characteriza-

tion of nanomaterials using SPM microscopes (Chen et al., 2023).

The integration of AI and quantum computers allows us to construct

learning machines that can distinguish certain properties, such as

crystal and electronic structures, from existing electronic data

related to nanomaterials. This advancement allows AI to provide

valuable insights into potential plasmonic and metamaterial proper-

ties, as well as the conditions under which they are generated. As we

embark on this exciting journey at the intersection of AI and quan-

tum computing, the possibilities to advance research and overcome

previous limitations seem limitless. We are very optimistic about fur-

ther progress and the transformative impact that this collaboration

can bring. The potential possibilities mentioned above are discussed

in the following part of this article, using the example of sophisti-

cated SPM microscopes and the digital data generated with their

help. The paper is organized as follows: Section 2 describes materials

and methods, Section 3 presents the principle of scanning probe

microscopy, Section 4 lists the challenges faced by SPM, Section 5

presents the theoretical and numerical modeling applied in SPM,

Section 6 presents next-generation scanning probe microscopy pow-

ered by AI, Section 7 contains the challenges encountered in SPM

supported by AI and QC, Section 8 lists the limitations of using AI in
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SPM, while Section 9 contains the discussion and conclusions, and

Section 10 presents some future remarks.

2 | RESEARCH METHODS

We employed a systematic review approach adhering to the PRISMA

Statement (Liberati et al., 2009) and its extension, PRISMA-S

(Rethlefsen et al., 2021) to systematically evaluate recent publications,

reports, protocols, and review papers retrieved from Scopus and Web

of Science databases. The data retrieval process involved both elec-

tronic and manual searches. The research commenced with a search

for relevant research articles to include in the study. The used key-

words were: scanning probe microscopy, scanning near-field optical

microscopy, scanning tunneling microscopy, atomic force microscope,

quantum computing, Artificial Intelligence, Machine Learning, Artificial

Neural Networks, and their variations. Based on the research

questions:

RQ1. How Artificial Intelligence and data-driven

approaches can improve scanning probe microscopy?

RQ2. If convergence of AI and QC has the potential to

increase the efficiency of SNOM?

The scope of the study was established, specifying the search period,

publication quality, and publication types. Additionally, the chosen

sources were scrutinized for alignment with the research topic, and

their contribution to nano-spectroscopy was evaluated. Selected texts

have been given a certain level of confidence in quality (Gough

et al., 2017). The search focused on English-language full-text articles,

including electronic publications prior to print. Exclusion criteria

included doctoral dissertations and materials not related to SPM and

AI/ML. After retrieving and analyzing the relevant articles, a total of

263 documents were included in the analysis. The main limitation

of the presented study was the fact that in the case of experimental

data, only selected data are demonstrated in the literature, and limited

access to the data is gained, which can affect the output data. What is

more, many different materials are investigated with different tech-

niques, where not only experimental factors should be included as the

input but also the type of tools including technical issues. Another

issue is the reproducibility of the obtained results, inaccuracy and

unreliable selection of input data, incomplete data, and/or complexity

in the data.

3 | SCANNING PROBE MICROSCOPY—
WORKING PRINCIPLE

Scanning probe microscopy is a measurement technique, which allows

materials characterization at the atomic level, in particular exploring

the local properties of a sample surface with high resolution. It was

established in 1982 when Swiss scientists presented the scanning

tunneling microscope to investigate a surface with a spatial resolution

at the atomic level (Binnig et al., 1982). This approach is based on the

quantum tunneling phenomenon, where a bias voltage is introduced

between the surface and a tip, separated by a 0.4–0.7 nm distance in

a vacuum. As a result, electrons tunnel through the gap between the

tip and the sample, and this tunneling current is a function of

the applied voltage and the local electronic density of the states of

the sample. The next big step in the history of microscopic measure-

ments was the discovery of the optical near-field scanning microscope

(Lewis et al., 1984; Pohl et al., 1984). Its operating principle is based

on the treatment of the light scattered from a very small gold nano-

particle as a new light source, that is, utilizing a propagating far field

(Synge, 2009). The excitation and detection of diffraction in the near

field are used as microscopic imaging tools, during which the scanning

process takes place. According to the Rayleigh criterion, two light lines

can be distinguished if the maximum of one diffraction pattern coin-

cides with the minimum of the second one. The resolution of standard

light microscopy is limited by the wavelength of light. Subsequent cor-

rections led to achieving a resolution of about 180–200 nm (with the

use of immersion oils). SNOM, on the other hand, uses an evanescent

near field that carries high-resolution spatial information, but its inten-

sity decreases exponentially with increasing distance from the source.

As a consequence, SNOM resolution is limited by the aperture dimen-

sions and probe-sample distance and can be lowered to about 50 nm.

Table 1 and Figure 1 summarize the most important milestones in the

evolution of scanning probe microscopy.

SPM is applied to examine surfaces with atomic-scale resolution.

During measurements, a sharp probe is scanned over a sample surface

to collect local information concerning the properties of examined

materials. The typical separation between the tip and the sample is

about 0.1–10 nm. The forces arising between the tip and surface are

utilized as a feedback mechanism to regulate the probe-sample dis-

tance and bending of the cantilever. The distance and motion of the

probe can be controlled through tunneling current assessment, optical

deflection control process, fiber interferometry, or piezoresistive tech-

niques (Seo & Jhe, 2007) The forces that appear between the probe

apex and the surface can be classified as attractive, including van der

Waals interactions, electrostatic interactions, chemical (covalent bond)

interactions and capillary forces (in the presence of a liquid film); or

repulsive, including Coulomb interactions between electrons, hard-

sphere repulsion (Hertzian contact), and Pauli exclusion repulsion

(Ishida & Craig, 2019). Each of those interactions is characterized by a

different range and strength and their relative influence depends on

the tip-sample interval. It is worth noting that the repulsive forces, in

general, have a very slight range with inverse power law or exponen-

tial decaying dependence of the distance. The resultant complexity of

force interaction can make the interpretation of obtained images diffi-

cult and ambiguous (Bowen & Hilal, 2009).

The operating modes of the SPM depend on the type of micro-

scope and application. There are four basic modes: contact mode

(Zhang et al., 2020) (the tip is constantly in contact with the surface

during scanning), tapping mode (Dos Santos et al., 2022) (the tip

vibrates at its resonant frequency or slightly below, gently tapping the

PREGOWSKA ET AL. 3

 10970029, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jem

t.24629 by A
gata R

oszkiew
icz - Instytut Podstaw

ow
ych Problem

ow
 T

echniki PA
N

 , W
iley O

nline L
ibrary on [12/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 1 The crucial milestones in scanning probe microscopy.

Year Milestone The quintessence of discovery References

1982 Scanning tunneling

microscope

The bias voltage introduced between the tip and sample surface facilitates electron

tunneling across the vacuum gap. Resolution: 0.1 nm (horizontal), 0.01 nm (vertical).

(Binnig et al., 1982)

1984 Optical near-field

scanning microscope

Exploits an evanescent near-field extending beyond the aperture of diameter < λ.

Optical resolution is limited by the aperture diameter.

(Lewis et al., 1984;

Pohl et al., 1984)

1985 Scanning capacitance

microscope

A capacitor is formed between a sharp conducting probe and a semiconductor sample.

A bias introduced between the tip and surface of the sample generates capacitance

variations.

(Matey & Blanc, 1985)

1986 Atomic force microscope Measures of forces between the mechanical probe and sample. Piezoelectric elements

precisely control the movements of the tip. The resolution is even below 1 nm.

(Binnig et al., 1986)

1986 Scanning thermal

microscope

Maps the local temperature and thermal conductivity of an interface with thermal

probes (thermocouple, resistive, or bolometer probes).

(Williams &

Wickramasinghe, 1986)

1987 Magnetic force

microscope

Utilizes a sharp magnetized tip to probe the magnetic landscape of a sample, enabling

the visualization of distinct magnetic domains, including Bloch and Néel walls, closure

domains, recorded magnetic bits, and the dynamic behavior of domain walls under the

influence of an external magnetic field.

(Martin &

Wickramasinghe, 1987)

1987 Inelastic electron

tunneling spectroscopy

Possibility to obtain well-defined vibrational spectra from different parts of the same

molecule with the STM probe operating in liquid helium.

(Smith et al., 1987)

1988 Electric force microscope EFM consists of a tip vibrating near a surface and an optical heterodyne detection

system to precisely measure its vibrations. Possibility to evaluate tip displacements

spanning significant distances and a broad spectrum of frequencies.

(Martin et al., 1988)

1988 Inverse photoemission

microscope

Detection of light emitted as a result of the inverse photoelectric effect of electrons

introduced at a surface through tunneling from a probe. Provides detailed

spectroscopic data on the density of unoccupied states and local resonances with an

almost atomic resolution across a spectrum of photon energies. Possibility of spatial

mapping of optical transitions.

(Coombs et al., 1988)

1989 Scanning electrochemical

microscope

A miniaturized electrode scans over a submerged sample to capture current

fluctuations, which are determined by the surface morphology and electrochemical

activity of the sample. Possibility to quantify material transfer from a surface with

exceptional spatial and temporal precision.

(Hüsser et al., 1989)

1989 Scanning ion-

conductance microscope

The tip is an electrode. The non-conducting samples are immersed in aqueous media

conducting electrolytes. Measurement of the increase of access resistance in a

micropipette when it approaches the surface.

(Hansma et al., 1989)

1989 Scanning spin-precession

microscope

The electron spin precession in a magnetic field generates a fluctuation in the

tunneling current, resonating at the Larmor frequency. This radio-frequency signal is

confined to regions less than 1 nm in size. Possibility to detect and distinguish

individual paramagnetic atoms, spins, and surface defects.

(Manassen et al., 1989)

1990 Photovoltage scanning

tunneling microscope

Photoexcited carriers are drawn towards and accumulate at local potential minima on

the surface, leading to enhanced photovoltage. Possibility to investigate both surface

and bulk properties, including bandgap variations, doping density changes, and strain

field variations.

(Hamers &

Markert, 1990)

1990 Photon scanning

tunneling microscope

The topography of the sample perturbs the surface wave. Photons tunnel between the

surface and the probe allowing to measure changes in the evanescent field. No

necessity for an electrically conductive surface.

(Reddick et al., 1990)

1991 Scanning chemical

potential microscope

By monitoring the electrical current and thermoelectric voltage generated at the tip-

sample junction, this technique offers a direct and sensitive method for assessing

atomic-level variations in the surface chemical potential gradient of the heated sample.

(Williams &

Wickramasinghe, 1991)

1991 Kelvin probe force

microscope

Measurements of the surface work function contain information about the local

composition and electronic state of the surface. The work function is connected to

atomic composition, surface defects, catalytic activity, corrosion, trapping of charge in

dielectrics, doping and bending of semiconductor bands, phase state, and force

distribution on surface reconstruction.

(Nonnenmacher

et al., 1991)

1994 Apertureless near-field

optical microscope

Detecting the modulation in the electric field of the wave scattered from the sharp tip

scanned in immediate contact with the sample surface. Increased resolution of SNOM

to the nanometer regime.

(Zenhausern

et al., 1994)

4 PREGOWSKA ET AL.
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sample), non-contact mode (Freund et al., 2018) (the tip vibrates

slightly above its resonant frequency above the surface without

touching it) and shear force mode (the cantilever oscillates parallel to

the surface) (Quacquarelli et al., 2015). In addition, the constant mode

can be performed under the mechanism of preserving constant force

or constant height between the tip and the surface. The real-time

feedback system allows controlling the tip-sample distance with high

accuracy that could reach even �0.01 Å. In fact, the extensions of the

original SPM allowing the gathering of various information about the

sample initialized a rapid growth in the field. In combination with the

possibility to examine different sample types (metal, semiconductor or

dielectric, transparent or opaque) SPM can find its applications in

many branches of nanotechnology (Barron et al., 2022) (nanopho-

tonics, nano-optics, nanolithography), physics (Lindner et al., 2020),

chemistry (Gusenbauer et al., 2019), two-dimensional (2D) materials

research (Firestein et al., 2020), epitaxial thin-film (Lavini et al., 2020)

and electronic circuit components (Moreno-Moreno et al., 2019), biol-

ogy (Pandey et al., 2021), climate (Madawala et al., 2021), food (Liu &

Yang, 2019), pharmacy (Piergies et al., 2018), criminalistics

(Cavalcanti & Silva, 2019), to name a few.

4 | SCANNING PROBE
MICROSCOPY—CHALLENGES

Despite its various advantages, SPM also has some disadvantages. A

serious limitation is the fact that the information is obtained only from

a surface, which automatically excludes a deeper, volume analysis

(Summerfield et al., 2019). Another downside is the very small operat-

ing tip-sample distance, while the high-resolution images require a

long scanning time (Elemans, 2016). Thus, the limited vertical range of

a probe restricts the allowed roughness of the examined surface

(Zubar et al., 2020). Another drawback is that the probe is scanned

slowly over the surface, resulting in extended scanning time, which

may introduce thermal drift in the image. Consequently, this might

pose challenges when measuring precise distances between topo-

graphical features in the image (Kim et al., 2022). As a consequence, a

relatively small single scan image size (i.e., maximal about

150 � 150 μm) is achieved. Another issue is connected with the mea-

surements of the soft materials. Such surfaces examined in a contact

or shear force mode might be dragged by the tip or stuck to it, falsify-

ing the outcome (Pinto et al., 2020). On the other hand, hard materials

may damage the probe and thus significantly lower the image quality

and lifetime of the probes (Shi et al., 2020).

Interpretation of the images acquired from SPM requires a

detailed analysis of the tip-sample interactions. Optimization of the

SPM operation can be very laborious and subject to operator error in

terms of sample specifications as well as personal experience (Bian

et al., 2021). The multiple types of artifacts can blur the final data and

raise doubts about the correctness of the results. The sources of the

artifacts in AFM can be various, for example: contamination or dam-

age of the sample, damaged, blunt, or contaminated probe tip which

may distort the resulting image (Voigtländer, 2019), local defects, tip-

sample convolution, slope tilt or overhangs, suboptimal feedback

setup, far-field noise, thermal drift, piezoelectric hysteresis, scanner

creep, calibration errors. In the case of AFM-based imaging of the bio-

logical samples, the generation of lateral forces may contribute to the

movement of the sample, or even to its destruction (Muzyka

et al., 2023). Moreover, cantilever amplitude during biological sample

measurement is sensitive to the sample's structural, mechanical, and

chemical properties, leading to potential interference with the accu-

racy of the measurement (Sumbul & Rico, 2019). AFM is also inaccu-

rate in the case of measurements of several-layer graphene (Wang,

Jia, et al., 2023a). The number of possible artifacts increases when

AFM is combined with other microscopy techniques like SNOM. The

artifacts arising from SNOM are connected with far-field disturbances,

shifts between the optical signal and topography, optical contrast (for

example interference pattern, artificial stripes, contrast inversion,

F IGURE 1 The most important milestones in the development of SPM (Binnig et al., 1982; Pohl et al., 1984; Lewis et al., 1984; Matey &
Blanc, 1985; Binnig et al., 1986; Williams & Wickramasinghe, 1986; Martin & Wickramasinghe, 1987; Smith et al., 1987; Martin et al., 1988;
Coombs et al., 1988; Hüsser et al., 1989; Hansma et al., 1989; Manassen et al., 1989; Hamers & Markert, 1990; Reddick et al., 1990; Williams &
Wickramasinghe, 1991; Nonnenmacher et al., 1991; Zenhausern et al., 1994).
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phase change), or chemical contrast (absorbance, fluorescence, Ray-

leigh scattering, Raman scattering, polarization, unknown specific

shear-force responses), etc. An additional concern arises from the

drawbacks of fluorescent probes and slide preparations that involve

fluorescent cells. Only in extremely thin samples, these methods do

not introduce blurring into the measurements because the fluorescent

signals originating beyond the depth of field of the lens are eliminated

(Sanderson, 2023). All those artifacts may lead to images that signifi-

cantly differ from an actual surface (Hecht et al., 1997; Nörenberg

et al., 2021; Sheremet et al., 2019).

5 | THE THEORETICAL AND NUMERICAL
MODELING IN THE SCANNING PROBE
MICROSCOPY

To conduct experiments more effectively, it is crucial to model the

process, including the application of Finite-Element Methods (FEM)

(Kindt et al., 2004; Liu et al., 2004). For example, the tip geometry in

SNOM can be modeled using FEM (Sychugov et al., 2008). It turned

out that by modeling the interaction of tip geometry and protective

metal coating it is possible to refine the experiment before selecting

the desired tip configuration. Thus, the tip can be assumed in simple

models as a perfect sphere (Becerril et al., 2023). The more compli-

cated FEM model of SNOM-tip was proposed in Reference Hafner

et al. (2017). It accounted for the presence of a scatterer in the fre-

quency domain in the form of data-sparse non-local surface-

impedance boundary conditions. To reduce computation time the

conversion of a sparse finite element (FE) matrix to ϰ-matrix and

approximation by adaptive cross approximation algorithm (ACA) to

construct the ϰ-matrix have been applied. Numerical methods are also

useful when designing apertureless SNOM probes modified with

metal or dielectric indentations in order to achieve local near-field

enhancement at the apex of the probe (Qian et al., 2015). The occur-

ring local geometric resonance, the standing wave resonance of sur-

face plasmon polariton, and the Fano resonance are modeled with the

FDTD method. FEM-based methods can be also applied to the model-

ing of mechanisms for creating nanopatterns on noble metal nano-

layers (Wang, Cui, et al., 2023b). It was suggested that the main factor

to consider when modeling is the melting and transformation of the

nanofilm under the tip. FEM can be also applied to the calculation of

the real-space electromagnetic field (Guo, Li, et al., 2023b; Guo, Wu,

et al., 2023a; Hu et al., 2023; Lu et al., 2023). In Reference Granchi

et al. (2023), artificially created FEM maps were compared to the

experimentally inferred spectral shift maps to evaluate the distribution

of electric field strength. The optical quality factors as a function of

the structural parameters (wall thickness and central hole radius) were

calculated from the non-Hermitian perturbation theory (Lalanne

et al., 2018) These maps can also be obtained by evaluating the total

radiating dipole moment of the tip (Fei et al., 2012; Luan et al., 2023).

On the other hand, in the case of AFM measurement FEM-based

computation can be used to determine the material loss and surface

finish (Jain et al., 1999) or reproduce the microscopic deformation

process (Liang et al., 1999). The development of FEM-based methods

was proposed in Reference Xue et al. (2023), namely the application

of the coupled mechanical–electrical finite element approach to the

prediction of the reaction of piezoelectric materials to external stimuli.

Another approach is the modeling of the material structure and vibra-

tional spectra with the Density Functional Theory (DFT) to evaluate

the interaction at the molecular level (Primera-Pedrozo et al., 2023).

DFT can be treated as a complement of experimentally obtained spec-

tra (Grudinin et al., 2023; Schirmer et al., 2023). Thus, the combination

of FEM and DFT has the potential to expand the understanding of

nanomaterials' structures and their optimization, including surface

(Xiong et al., 2023). For example, in Reference Xing et al. (2023) these

techniques were combined in the field of scanning Kelvin probe force

microscopy analyses of the influence of crystal structure on hydrogen

diffusion in α-Fe and γ-Fe.

The modeling of the tip interaction also makes it possible to

improve the microscope calibration process, which can be quite long.

It can be done in two ways. The first one is computationally expensive

and complex, while it requires an approximation of the system of the

probe and the sample to an invertible model (Govyadinov

et al., 2014). The second one is black box calibration models. This

approach enables the extraction of the permittivity without detailed

electromagnetic interaction modeling. However, the black box

method is designed for stationary systems, and the distance between

the probe and the surface is slowly modulated, for example in the case

of s-SNOM (Guo, He, et al., 2023c; Hillenbrand et al., 2001). In Refer-

ence Siebenkotten et al. (2023), calibration method that takes probe

tapping into account in extracting the time-invariant sample permittiv-

ity was shown. It is based on fitting the Drude model for free elec-

trons to the measured permittivity in the infrared spectral range. In

Reference Grudinin et al. (2023), the quantitative s-SNOM model

approximates the tip as an elongated conducting spheroid and com-

putes signals from the total radiating dipole moment of the tip. On

this basis, parameters such as the Drude weight and electron scatter-

ing rate of graphene-supporting propagative plasmons can be

obtained.

The numerical methods are also implemented to model physical

phenomena that occur during scanning, giving a contribution to the

understanding of the experimental data. In Reference Azib et al.

(2018), the AC–DC module of COMSOL Multiphysics® was used for

modeling an electrostatic force-distance curve (EFDC) between an

AFM tip and an electrically charged electrode embedded within a thin

insulating layer. The study found that the tip and cantilever contribu-

tions to the lateral and vertical potential distribution are significant

and must be considered during the interpretation of EFDC measure-

ments. Numerical calculations were also used to explain the underly-

ing mechanisms that contribute to the degradation of asphalt

concrete due to moisture at the asphalt-aggregate nanostructured

interfaces (Dong et al., 2017). The PeakForce Quantitative Nanome-

chanics AFM was assisted with the Molecular Dynamic simulation

(Materials Studio 6.0, Accelrys) based on Lennard-Jone's potential.

The calculations revealed the complex structure of the

asphalt-aggregate interface and its weak points in the form of

6 PREGOWSKA ET AL.
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water-dissolving asphaltenes and polar aromatics that lead to inter-

face failure. Analytical (Argatov et al., 2023) and numerical (Valero

et al., 2016) models are also used to determine the mechanical proper-

ties of soft biological samples that can be characterized only through

nanoindentation tests with the use of an AFM tip. The numerical sim-

ulations also allow us to determine the reasons for the increased con-

tamination of fluids sterilized by microfiltration when bacteria are

treated with sub-lethal concentrations of antibiotics (Gaveau

et al., 2017). The AFM nanoindentation measurements revealed that

antibiotics reduce the elasticity of bacterial cell membranes and make

the walls of bacteria more susceptible to deformation, which leads to

increased migration of cells through porous membranes.

6 | NEXT-GENERATION SCANNING PROBE
MICROSCOPY POWERED BY ARTIFICIAL
INTELLIGENCE AND QUANTUM COMPUTING

Since AI, including Machine Learning (ML) enables efficient analysis of

a huge amount of data, it can be considered a powerful computational

tool to solve complex problems related to pattern recognition, func-

tion estimation, and classification problems (Liu, Kelley, Vasudevan,

Funakubo, Ziatdinov, & Kalinin, 2022a). AI techniques also enable

inferences about structures that would be difficult to model (Liu, Mor-

ozovska, Eliseev, Kelley, et al., 2023a). Recently, in image processing

the deep learning-based approach, that is, neural networks with a

number of hidden layers, has become the dominant methodology in

the field of medical image recognition, segmentation (Dietler

et al., 2020), and classification (Gao et al., 2019). This type of network,

based on the input data being a photo or a photo-like image, performs

classification and regression tasks. The advantage of deep learning is

that it can search the parameter space for the best match of the target

and get a solution after the learning phase, in contrast to

optimization-based approaches. In the case of scanning probe micros-

copy, AI-based algorithms can be applied to minimize the need for

human action during measurements, and even partially eliminate it

(Vasudevan et al., 2021). Thus, the automatization of the measure-

ment processes should not be used to eliminate human participation,

that is, autonomous experiment (AE), but since the microscopy experi-

ments are well-defined when we take into account prior physical

knowledge, rather than automate routine operations (Kalinin

et al., 2021). The schematic idea of the AI/ML-based application in

SPM is shown in Figure 2.

In a deep neural network (DNN) that consists of three layers: an

input, an output layer, and at least one hidden layer, artificial neurons

are connected with the weight, whose values are selected in the

learning process (LeCun et al., 2015). Hidden layers provide the non-

linear mapping between input and output layers. The effectiveness of

these approaches leads to the choice of input data (number and qual-

ity), the number of hidden layers, the choice of lost function, the

learning rate, and initial weights (Goodfellow et al., 2016). DNN can

be applied in retrieving subwavelength dimensions based on exclu-

sively far-field data to predict the geometries of the nanostructure,

mainly the system of bidirectional network, in which the first one is a

geometry-predicting-network (GPN), while the second

Spectrum-predicting-network (SPN) (Malkiel et al., 2018). In fact, this

is an application of DNNs to solve the inverse problem (Yao

et al., 2019). A similar approach can be found in the designing of

metasurfaces (Liu et al., 2018), where the inverse problem was formu-

lated as deriving the dielectric function of materials exhibiting subtle

or pronounced resonances from experimentally acquired near-field

spectra using feed-forward neural networks (FFNNs) proposed. Also,

F IGURE 2 Schematic illustration of AI use in SPM analysis.
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DNN was proposed to retrieve the parameters of a physical object

from its scattering pattern with the resolution wavelength/10 (Pu

et al., 2020). The proposed network architecture consists of four fully

connected layers activated with ReLU function and three neurons.

The learning algorithm was Adam's stochastic optimization method

and the mean absolute error loss function. AI-based solutions can also

be applied to the reduction or complete elimination of the time-

consuming routine procedures in scanning probe microscopy (Huang

et al., 2018), like, for example, the autonomous SPM operation plat-

form (DeepSPM), which is based on CNNs (Krull et al., 2000). It

enables assessment of the quality of the acquired images and the con-

dition of the probe.

Thus, the most popular deep learning algorithm used for image

processing is the convolutional neural network (CNN) (Alldritt

et al., 2020). They contain fewer connections than standard networks

with a similar number of hidden values, which makes them easier to

train without significantly losing accuracy. This is possible thanks

to the operation that allows the flow of information in many planes,

that is, a filter or kernel consisting of a small array of weights

(Krizhevsky et al., 2012). This is beneficial for image analysis. Using

the CNNs advantage, which allows the ignoring of irrelevant features

in the analysis, such as signal and noise in the ground area, SNOM

images can be effectively analyzed (Azuri et al., 2021). On a millisec-

ond timescale, convolutional neural networks (CNNs) can effectively

extract the wavelengths and quality factors of polariton waves from

images (Duan et al., 2021). In addition, CNNs outperform traditional

Fourier transforms in extracting multiple wavelengths for hyperbolic

waveguide modes (Xu et al., 2021). A 1D supervised CNN can work as

a fully automatic technique generating chemical concentration maps

from hyperspectral images obtained with Stimulated Raman Scatter-

ing (Mozaffari et al., 2022). This approach can also be used for the dis-

persion of quasiparticles (Cao et al., 2018), evaluation of twist angles,

Fermi level lattice parameters, or electron localization degree with

Moiré super-lattice imaging (Peng et al., 2023). Thus, achieving high

CNN accuracy heavily relies on the optimal selection of hire parame-

ters, which is related to the need to provide a large amount of high-

quality data (Chen et al., 2021). In Reference Rashidi and Wolkow

(2018), a CNN was employed to assess the SPM tip quality by analyz-

ing images of known atomic defects on a hydrogen-terminated

Si(100) substrate. The proposed network architecture comprises two

convolutional layers, one pooling layer, one densely connected layer,

and one output layer. It enables automatic identification and isolation

subsection of an image obtained using STM. The inputs to the net-

work are fragments containing dangling bonds. On their basis, the

network evaluates the quality of the tip. Also, the algorithms based on

K nearest neighbor (KNN), Random Forest (RF), Support Vector

Machine (SVM), and fully connected neural network (FCNN) with

18 hidden layers with rectified-linear-unit (ReLU) activation function

and Adam optimizer was applied for this purpose (Kingma &

Ba, 2014). The results obtained can be used to develop autonomous

atomic-scale production tools. The CNN has been also proposed to be

an unattended SPM data acquisition system, namely system

DeepSPM (Krull et al., 2000). The network is based on

12 convolutional layers and 2 fully connected layers. It was trained

with the Adam optimizer (Kingma & Ba, 2014) with a cross-entropy

loss. The system operates as a control loop, scans the sample, and

accepts only samples classified as good for analysis. If the sample is

classified as bad, it looks for causes such as loss of sample-probe con-

tact, probe failure, error sample region, and invalid probe. In turn,

Auto-CO-AFM is an open-source package based on CNNs, which

enables the evaluation of the tip functionalization procedures (Alldritt

et al., 2022).

Another application of neural networks as a classification tool

was shown in Reference Burzawa et al. (2019). The feed-forward

neural network was applied to surface classification based on spin

configurations in the case of strongly correlated electronics sys-

tems. When the images are near criticality, the spin configuration

was obtained with the application of a theoretical mode (Carlson

et al., 2015). The various algorithms can also be combined to pro-

vide higher accuracy, like in Reference Menaka and Vaidyanathan

(2023), where the CNN was combined with SVM to differentiate

chromosomes into 24 classes. In the first step, to increase the reso-

lution of the input data, the input data was converted using super-

resolution models, in particular, the Laplacian pyramid super-

resolution network (LapSRN) (Lai et al., 2019). Next, the SVM was

used to label the input data, and CNN, which consists of six convo-

lution layers, and three pooling layers was applied as a classifier. To

increase the accuracy of the network, the Swish activation function

was used instead of the ReLU activation function. The intensity pro-

files perpendicular to the edges, as well as the corresponding edge

positions, were the input data to CNN to enhance the microscopic

image resolution (Tsai & Yeh, 2021). Another interesting solution,

namely the open-source classification tool for crystalline 2D phases

in AFM images (Automated identification of Surface images—AiSurf)

was proposed in Reference Corrias et al. (2023). It enables the

detection of automatically performed analyses such as detecting the

distribution of interatomic vectors and deviations from ideal lattices.

Also, the use of unsupervised independent component analysis

based on non-Gaussianity and statistical independence of data to

the Raman spectra of mixtures allows one to extract individual com-

ponent signals and differentiate organelles in cells by their biochem-

ical compositions without any external labels (Mozaffari &

Tay, 2022).

On the other hand, in Reference Ziatdinov et al. (2022), an

attempt to reproduce the decision-making process of the person

experimenting, namely piezoresponse force microscopy analysis of

phase transitions induced by the varied concentrations of Sm dopant

in BiFeO3, is shown. This approach combines Gaussian process-based

active learning (GP-AL) and Bayesian optimization (GP-BO) proce-

dures. In Reference Chi et al. (2022), an indirect adaptive iterative

learning control (iAILC) scheme based on iterative dynamic lineariza-

tion is shown to improve the P-type controller correction response.

Learning from setpoint gain is controlled by an adaptive mechanism in

real-time. As a result, a linear data model for algorithm design and per-

formance analysis can be obtained for the strongly nonlinear and non-

affine structure of the systems.

8 PREGOWSKA ET AL.
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AI is also a powerful tool in various types of disease diagnosis.

Thus combining AI-based algorithms with SNOM can be useful in the

accurate determination of even biological samples, including cancer

cells. In Reference Ellis et al. (2021), multivariate metrics analysis

(MA) technique was applied to the precise determination of the sys-

tem of oral squamous cell carcinoma (OSCC) nodal metastases

embedded in the lymphoid tissue with the IR-SNOM (Fourier trans-

form infrared spectroscopy combined with SNOM). The MA-based

algorithm can discriminate between two different tissues based on

the highest-ranking metric, and as a consequence, provides the possi-

bility of analysis of the chemistry of tissues. In Reference Ciasca et al.

(2019), FFNNs were applied to the medical diagnostics of Glioblas-

toma multiforme (GBM). The summary of different AI-based models

and their applications in SPM are presented in Figure 3.

An important problem in data analysis is the analysis of noisy

data. Here, AI-based approaches are very helpful. This operation can

be carried out in many ways, one of them is presented in Reference

Borodinov et al. (2019) the application of the deep neural network,

which was combined with the least-square approach to extract spe-

cific parameters from multidimensional data obtained with the use of

spectral-imaging techniques combined with scanning probe (also elec-

tron and optical) microscopy. This allows for examination of a wide

range of materials for which the excitation is low, and also possibly

reduces the need to average signal in time. This approach improves

the signal-to-noise ratio of noisy data and enhances pattern recogni-

tion, which allows for extracting various material properties from

weaker signals.

AI, besides many unquestionable advantages, has some inherent

drawbacks. A significant limitation in the development of accurate

algorithms is too little data to train them and/or data of poor quality

(Barnard et al., 2019). Thus, data management procedures, in particu-

lar, the standards of data annotations with a special emphasis on the

Findable, Accessible, Interoperable, Reusable (FAIR) guiding principle

are fundamental and are of high importance (Rodani et al., 2023;

Wilkinson et al., 2016). In the area of AI, there are two approaches,

the first is to work on theoretical (simulated) data like MoleculeNet

(Wu et al., 2018) and the second is the use of experimental measure-

ments like, for example the place to store, share, and search in the

form of public database SPMImages (SPM Portal, n.d.). An interesting

public database was created with the application of Artificial Intelli-

gence, in particular CNN, namely density functional theory (DFT) STM

for two-dimensional (2D) materials (JARVIS, n.d.; Choudhary

et al., 2021). It contains data for 716 exfoliated 2D materials, calcu-

lated using the Tersoff-Hamann method. Also, by supporting FEM

methods, the training and test data sets can be extended with artifi-

cially generated data, and as a consequence more efficient algorithms

can be developed.

On the other hand, the AI-based algorithm and quantum compu-

tation have a huge potential to complement each other and stimulate

mutual development (Zhu & Yu, 2023). For example, quality control

technology stimulates the development of Artificial Intelligence

through the control of the parameters optimization. In turn, in solving

complex quantum problems an important issue is connected with

large-scale quantum devices, namely the effective optimization of

F IGURE 3 The AI-based models applied in SPM (Krull et al., 2000; Azuri et al., 2021; Duan et al., 2021; Xu et al., 2021; Mozaffari et al., 2022;
Peng et al., 2023; Rashidi & Wolkow, 2018; Kingma & Ba, 2014; Alldritt et al., 2022; Carlson et al., 2015; Zhu & Yu, 2023; Zhang et al., 2018; Guo
et al., 2021; Flöther, 2023; Larocca et al., 2023).
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parameters of a large number of components, while the complexity of

quantum states and dynamics increases potentially with their system

size (Moret-Bonillo, 2015). It is especially important in the context of

the SNOM extension to the light frequencies, that is, the THz spectral

region (Zhang et al., 2018). As a consequence, the analysis of the local

electro-optical changes in real space in time and emerging quantitative

phases in the THz range is obtained (Guo et al., 2021). This solution

enables a non-invasive and even almost contactless measurement

technique that is dedicated to materials of low-frequency conductivity

(in the nanoscale) with high temporal resolution. This leads to the effi-

cient evaluation of material properties like for example, low-energy

resonances, or non-dissipative conductivity peaks towards zero fre-

quency (Luo et al., 2023). However, Artificial Intelligence uses huge

amounts of data for calculations, the processing of which requires sig-

nificant hardware resources. Thus, quantum Machine Learning (QML)

combines AI with quantum computation to develop algorithms for

pattern recognition based on the advances of quantum computers like

parallel computations and the application of quantum entanglement

to perform computations. The first attempt in this field has been made

by introducing quantum neural networks (QNNs) (Flöther, 2023). This

type of neural network used in computation processes the quantum

circuits (Junyu et al., 2023). In Reference Larocca et al. (2023), the

concept of soft quantum perceptrons (the parameterized quantum cir-

cuit with the adjustable parameters of the quantum gate) was intro-

duced. The quantum bits are calculated among others based on the

superposition of the state, entanglement, and interference (Sim

et al., 2019). It turned out that this approach has a nonlinear classifica-

tion ability compared to the classical perceptrons. The comparison of

the performance of AI-based algorithms in SPM is summarized in

Table 2 and different AI-based models or tools and flowcharts are pre-

sented in Figure 4.

The AI enables a continuous operation of SPM without human

supervision. The algorithm is able to make decisions regarding further

steps and oversee the whole data acquisition process. An interesting

example of ML-based autonomous SPM operation relies on a search

of surface regions of interest, CNN assessment of the image quality

and deep reinforcement learning agent assessment of the probe qual-

ity (Krull et al., 2000). DeepSPM can perform autonomously continu-

ous data acquisition following the routine: first, the algorithm

approaches the oscillating metallic tip to the surface, searches for

promising regions and performs scans, determining the measurement

parameters. Then, DeepSPM algorithmically evaluates the image qual-

ity and verifies if the contact between probe and sample is lost—if the

state is deemed as good, a supervised learning trained CNN classifier

evaluates the state of the probe by analyzing the obtained scan and

predicting the probability of it being measured with a crashed probe.

If everything is good, it stores the image and moves the probe to the

new site to perform the next measurement. In case of a bad probe, a

deep reinforcement learning agent, controlled by a second CNN, con-

ditions it on the basis of list of predefined actions (e.g., applies a volt-

age pulse between probe and sample, dips the probe into the sample).

Each conditioning step is followed by a measurement assessing the

outcome. The optimal conditioning procedure is forced by cumulativeT
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positive and negative rewards based on Q-learning. In case of a defec-

tive acquisition (lost contact, bad sample region) DeepSPM moves the

probe macroscopically over a long distance to the new site, reestab-

lishes contact and performs new measurement. Similarly, a ML-driven

automated SPM scheme can be applied in ferroelectric materials

research in Piezoresponse Force Microscopy (PFM) (Liu, Kelley, Vasu-

devan, Funakubo, Fields, et al., 2022b). A Deep Kernel Learning (DKL)

framework assesses the relationship between the domain structure

and polarization switching or nonlinearity in real time. Then, a

hypothesis-learning scheme (Liu, Morozovska, Eliseev, Kelley,

et al., 2023a) allows for autonomous identification of local bias-

induced domain switching and test model hypotheses within the smal-

lest number of steps. Then, the system maps large areas and identifies

the interesting objects, followed by automated detailed scans of those

objects. AI can be also used as a tool for automatic particle recogni-

tion and characterization for STM. U-Net network with EfficientNet-

b3 network allows to avoid tedious manual counting and measuring

particles' size (Liz et al., 2020). Another interesting application of AI is

automatic functionalization of AFM probe with CO molecules (Alldritt

et al., 2022). The algorithm based on CNN is able to recognize CO

molecules in a single image and guide the tip to collect the molecule

from the Cu(111) substrate. Subsequently it connects with micro-

scope software to adjust the tip properly under the objective and per-

forms the STM scan of other CO molecules on the substrate and uses

those scans as an input to assess the centeredness of the CO

molecule with respect to the tip. The characteristic sombrero-shaped

features allow for a clear distinction of CO from other molecules and

assess the symmetry of the tip-CO molecule system. Then, based on a

tip quality, the decision is made whether the functionalization proce-

dure needs to be repeated or the tip is ready to perform the proper

measurement. Also, the simulations of working AI controller based on

Double Deep Q-learning technique (DDQL) in AFM were presented

(Degenhardt et al., 2024). The DDQL controller is trained on simulated

AFM scans and adapts dynamically the control behavior. In normal sit-

uation it minimizes the root-mean-square (RMS) control deviations by

a factor of 4 in comparison with PID controller. However, in situations

when the cantilever tip is at risk, the AI-based controller sacrifices the

mathematical goal of lowest possible control deviations and prioritizes

the tip and sample safety. In detail, the AI controller uses the value of

oscillation amplitude of an AFM-AC tip to calculate subsequent

motion commands in z direction for the closed-loop piezo scanner. In

the initial training, 5 neurons from the input layer receive the last five

measured values of difference between setpoint and measured oscilla-

tion amplitudes. The other five neurons receive the last five piezo

stage motion commands. Six fully connected hidden layers calculate

which one of the available motion actions in z direction is the best

choice. During the actual training, the AI controller performs actions

by itself and learns from their consequences, while the PID controller

works as a backup, performing actions when the cantilever tip is about

to lose contact or approach too close to the surface.

F IGURE 4 Different AI-based models/tools and flowcharts for SPM.
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Usually, the sample surface sites that are of interest to

researchers (like defects, vacancies, interfaces, impurities, etc.) are

sparse. The possibility to direct the SPM tip to one of the desirable

locations could significantly reduce the time and volume of data. To

avoid time-consuming human assistance, autonomous search and

acquisition techniques are developed. To obtain a fully autonomous

data acquisition, the AI algorithm needs to control SPM apparatus and

adjust scanning parameters in real time. A DNN framework can be

used to realize fast automatic sample area selection based on a locali-

zation and shape detection of living cells (Rade et al., 2022) without

the necessity to manually navigate to a spot before performing a scan

and later retract the probe to manually move the tip to another spot

for subsequent scanning. A transfer learning approach is applied to

train the real-time object detection framework YOLOv3 algorithm to

adapt the shape detection model to recognize particular shapes in

low-quality AFM phase-contrast images. It is based on identifying and

subsequent classification of the object (based on multiscale predic-

tions) as well as predicting its position in a virtual grid. The algorithm

assesses the probability of the object to belong to one of the prede-

fined groups. Later, the optimal AFM piezo stage trajectory is gener-

ated and a closed-loop trajectory tracking control is utilized for high

speed automatic navigation in x and y directions, with additional pie-

zoelectric actuators for fine-tuning minute distances. Another method

of autonomous experiment uses Gaussian process (GP) regression and

a 1D CNN (Thomas et al., 2022) in scanning tunneling microscopy

(STM) experiment for an identification of point defects in a variety of

different surfaces. The method allows autonomous sample measure-

ment at a low spatial density, which saves the operator time. The algo-

rithm collects hyperspectral data, based on the spatial parameters and

tip offsets in horizontal directions defined by an input image. GP

defines the points where the tip is held at constant height and the bias

is to be set over a defined voltage. Subsequently, the collected spectra

are used in cross-correlation feature tracking with a trained model,

that is, they are identified without any cognitive bias by 1D CNN,

which calculates class probabilities and, subsequently, the sum of

dI/dV signal is used in GP computations. In result, sufficient informa-

tion can be obtained with around 1% of the data necessary in stan-

dard experiment. A framework based on GP and Bayesian

optimization (BO) can be utilized in automated investigation of polari-

zation dynamics in ferroelectric materials in piezoresponse force

microscopy (PFM) or spectroscopy (PFS) (Vasudevan et al., 2021). A

problem-specific tuned BO is used in real-time acquisition and path-

finding tasks during operation of SPM, which is possible due to edge

computing on a GPU server. A single step of the GP-based BO pro-

cess of the workflow encompasses: using Bayes rule to receive the

distribution on the basis of a set of function evaluation; obtaining an

acquisition function that allows to define the next move; defining

most promising spots; performing scanning in the chosen spot, evalu-

ate the obtained data and refine the function. This cycle of learning,

choosing, evaluating, and refining helps the BO procedure efficiently

find the optimal value of the main function. An incorporation of preac-

quired data or prior knowledge about the promising spots significantly

improves the efficiency of the algorithm. Moreover, it is expected that

quantum algorithms will especially change the modeling of nanostruc-

tural physical systems, where quantum laws play an important role.

Although quantum machine learning is still in its infancy and can be

treated only as an auxiliary tool nowadays, it would allow us to over-

come physical constraints in ML algorithms and learn the complex

behaviors, unobtainable for classical ML (Botifoll et al., 2022). The

development of quantum algorithms promises a breakthrough in simu-

lating physical systems where quantum mechanics plays a fundamen-

tal role. Since nanostructures inherently operate according to

quantum principles, utilizing these algorithms would significantly

improve the accuracy of their simulations. Working quantum system

ProteusQ was shown by Qnami (QNAMI, n.d.). Diamond quantum

technologies allow to measure nanoscale magnetic properties and AI

deals with the problems of extracting important features from a large

amount of noisy data sets and generalizes the information to use it for

another data sets. This innovative ML algorithm revolutionizes quanti-

tative magnetization reconstruction by delivering superior reliability

and accuracy compared to existing methods (Dubois et al., 2022). The

potential of the system can be extended with standard SPM modules,

as AFM.

7 | SCANNING PROBE MICROSCOPY
SUPPORTED BY ARTIFICIAL INTELLIGENCE
AND QUANTUM COMPUTING—CHALLENGES

Since image acquisition and image analysis are not performed at the

same time, a lot of unused data is produced (Caicedo et al., 2017).

Additionally, the training data which are used by AI to train is usually

prepared manually. This is a time-consuming and laborious task that is

not free of human errors (Gordon et al., 2019). The resulting accuracy

and reproducibility can limit confidence in the results' correctness

(Schoppe et al., 2020). To reduce human error it is recommended that

more than one expert labels training and validation data. Another

known problem that occurs during training a machine learning algo-

rithm is overfitting (Li et al., 2018; Sotres et al., 2021). It happens

when the model does not generalize the obtained information and its

interpretations are accurate only for the training data. It is a conse-

quence of too small training data size (Liz et al., 2020), too noisy data

(Corrias et al., 2023), underrepresented data (Li et al., 2020), too long

training on the same dataset (Enke & Mehdiyev, 2012), or too com-

plex a model that can take noise into account (Hu et al., 2021). Strate-

gies to overcome this drawback include increasing the data sets

(Lüder, 2021), transfer learning, that is, the knowledge gathered in the

previous task is used in the next one (Rodani et al., 2023), cross-

validation of the model performance on new data (Ito et al., 2018),

regularization (data augmentation, which consists in modifying the

copies of training data to artificially increase the training dataset

(Caicedo et al., 2017), test-time augmentation, which increases and

diverse the test dataset (Wang et al., 2019), random dropout of

selected neurons during training (Liz et al., 2020; Xu et al., 2021), early

stopping that ends training when the validation set is no longer

improved with updated parameters (Pattison et al., n.d.; Ghosh,
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Sumpter, et al., 2021a; Wrzesiński & Markiewicz, 2020) or L1 and L2

regularizations that add a penalty term to the loss function to create

unconstrained problems (Meldgaard et al., 2020; Miyama &

Hukushima, 2018)), model selection (Li et al., 2018; Liu, Vasudevan,

Kelley, Funakubo, et al., 2023b), prior probability distribution, that is,

assessment of the result done before the experiment (Packwood &

Hitosugi, 2017) or pruning the non-critical sections of the decision

tree (Käming et al., 2021).

Besides, the AI technology complexity limits the possibility to

understand and modify algorithms to adapt them to particular require-

ments (Carvalho et al., 2019). Currently, AI cannot surpass humans in

the analysis of incomplete, multi-domain data, which are significantly

different from the training data (Grudinin et al., 2023). Hence, due to

a trade-off between accuracy and generalization, higher reliability in

the case of different tasks is achieved with several specialized algo-

rithms than with one versatile network (Ziatdinov et al., n.d.). The

choice of the machine learning algorithm should align with the specific

requirements and goals of the project to ensure effective and success-

ful implementation. Selection of an AI-based algorithm for a particular

application depends on the quality of data, training dataset size, num-

ber of features that need to be recognized, the necessity of human

annotation, type of learning algorithm, type of network and their

parameters, network topology, model complexity, speed and training

time, memory requirements and balance between accuracy and inter-

pretability of the results.

The AI-based method also entails the possibility of making mis-

takes due to training on historical data, which may be subject to oper-

ator error. Moreover, the experimental techniques are not efficient in

terms of data set production. In fact, numerical calculations and exper-

imentation increase the amount of data needed to develop accurate

algorithms. This leads to another issue in application AI/ML-based

methods and is connected with replacing static datasets with pro-

cesses of active generation of data and employing autonomous sys-

tems (Ragone et al., 2023). However, they are not as risky in the case

of SPM as, for example, in the case of autonomous cars.

Another important issue in the application of the AI-based system

in the field of SPM in practice is cost and computational time. Thus,

the combination of AI and QC has a huge potential to shorten the

time needed to train and validate the neural network as well as

the optimization processes (Valdez & Melin, 2023). Still, this union is

challenging (Zhu & Yu, 2023), for example, for hardware and software

incompatibilities. A majority of AI-based algorithms function on spe-

cialized graphical processors, while quantum computers are based on

qubits that operate at low temperatures. All a joint common program-

ming language is a challenge (the AI-based algorithms are written

mostly in Python, while QC is in QASM). Other issues are connected

with the low-performance levels of quantum computers and correc-

tions of errors. Moreover, the problem of data security remains. For

example, some quantum algorithms, although they are faster than

classical cryptography methods, are not immune to “harvest now,

decrypt later” attacks (Harishankar et al., 2023).

However, it is worth stressing that also the experimental evalua-

tion of the AI, QC, and SPM integration is of high importance. Thus,

the traditional SPM systems, that is, without AI and/or QC integration

can be treated as a baseline. Evaluation of the system can be made in

terms of a comparison of a number of factors, including resolution,

measurement accuracy, speed, reliability, and the ability to detect

defects or anomalies in samples.

8 | LIMITATIONS

The limitations of AI in SPM are that the complexity and noise of SPM

data limit the inference of AI models. The first limitation may be very

complex and noisy, containing various artifacts, surface irregularities,

and environmental disturbances, which may lead to errors in analysis

and interpretation by AI. The second limitation is connected with AI

models trained on specific datasets that may not generalize to other

cases. This may also contribute to the reduction of the AI-based algo-

rithm's reliability in real-world SPM applications. Taking into account

limitations of QC in SPM are connected with hardware constraints,

namely qubit coherence times, gate fidelity, and scalability. In turn,

quantum computing is susceptible to errors caused by noise, decoher-

ence, and imperfect gate operations. These can be mitigated by imple-

menting various types of data preprocessing techniques, including

noise reduction, data denoising, and feature extraction. They can help

improve the quality of SPM data that will serve as input data to the

AI. Additionally, the development of error correction codes and error-

tolerant techniques may increase QC potential. Given the current

state of QC development, combining classical and quantum computing

resources using hybrid algorithms and architectures may prove to be a

good alternative. Mutual synergy can help overcome some of the dis-

advantages of both approaches and lead to improvement of the reli-

ability and precision of SPM measurements.

9 | DISCUSSION AND CONCLUSIONS

The demand for three-dimensional insights through Scanning

Near-field Optical Microscopy (SNOM) can be effectively met

through AI-QC, particularly for nano-scale objects. By leveraging

data from nano-scale structures or organic entities like viruses and

bacteria, simulated environments can be constructed. This facilitates

the conversion of two-dimensional SNOM images into correspond-

ing 3D representations. To achieve this, established methodologies

like multivariate static analysis (X) will be employed (Jin et al., 2017).

These techniques not only capture structural attributes but also

highlight plasmonic characteristics, a hallmark of SNOM methodolo-

gies, within the 3D models. Additionally, global datasets need to be

systematically organized and integrated with experimental findings

via AI algorithms to generate comprehensive three-dimensional

models. However, the computational power required for these pro-

cesses surpasses current capabilities, necessitating advancements in

quantum computing (Yang, 2024). The pursuit of such computational

prowess is vital for the continuous refinement and advancement of

these methodologies.
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Thus, scanning probe microscopy is a versatile instrument that

dramatically improves the resolution of surface examination up to

atomic scale (Hui & Lanza, 2019; Wang, Lee, & Wei, 2023c). However,

it is not a technique without flaws, the biggest ones include various

types of artifacts that are important when interpreting the results

obtained. In turn, the recognition of natural images using Artificial

Intelligence is very advanced, however, the recognition of microscopic

images causes problems because they contain a lot of noise and dis-

tortion (Gordon & Moriarty, 2020). A further concern is associated

with the fact that microscopic images are in shades of gray. The data

is also high resolution, that is, the data is more complex (larger) than

natural image data. Thus, the application of Artificial Intelligence, in

particular, deep neural networks in the field of scanning probe micros-

copy may contribute to a significant increase in the efficiency and

accuracy of measurements (Caicedo et al., 2017). It can provide an

understanding of the material's structures on a level not yet available

to humans (Patton et al., 2018; Zhang et al., 2019). While the interac-

tion between the tip and the surface is approximate with the simpli-

fied geometry, the AI has a huge potential to predict the essence of

the correlation between the signal and the properties of the sample.

In turn, the AI-based algorithms can actively select subsequent scan

regions based on the output data and predefined acquisition function

and thus contribute to improving the selection of scanned areas (Liu,

Vasudevan, Kelley, Fudnakubo, et al., 2023b). Algorithms should take

into account all kinds of factors that can lead to bias in measurements,

including differences in tip geometry (length, tip radius, shape, and

wear) (AlQuraishi & Sorger, 2021; Ghosh, Nachman, &

Whiteson, 2021b). Another important issue, when developing the

computation tools is proposing a high-accuracy method where there

is no need to threshold grayscale images.

The comparison of the AI-based algorithmic performance in the

field of SPM taking into account algorithms type, their application

field, accuracy, the proportions of training sets to test sets, as well as

inputs and outputs parameters, has been done in Table 2. It turned

out that AI methods in the areas of the SPM are mostly concentrated

after the extraction of structural information. The convolutional neural

networks provide high accuracy, that is, above 90.00 percent in the

various types of tasks, including tasks relying on the recognition of

the anomalies in the distribution of surface dangling bonds in

hydrogen-terminated silicon surface (Rashidi & Wolkow, 2018), seg-

mentation of movable nanowires (Bai & Wu, 2021b), classification of

super-resolution enhanced chromosome images (Menaka &

Vaidyanathan, 2023), evaluation of the condition of the probe (Krull

et al., 2000), tip conditioning (Wang et al., 2021) and even generation

of STM images of exfoliate 2D materials (Basak et al., 2023). While

techniques like K nearest neighbor, Random Forest, and Support Vec-

tor Machine enable achieving lower accuracy given the same set of

inputs. On the other hand, generative models are also applied to eval-

uate the correlation between the input data and the output data (Ge

et al., 2020). On the other hand, one of the limitations of using Artifi-

cial Intelligence in AE seems to be that it requires a lot of computing

power compared to the processing of typical data and data acquisition

times (Gongora et al., 2023; Krull et al., 2000; Thomas et al., 2022).

Thus, automatic image recognition combined with experimental mea-

surements gives benefits such as saving time, minimizing errors, and

the ability to analyze data with precision not available to the human

eye (Li et al., 2022). Since Artificial Intelligence requires a large

amount of data (Yao & Chen, 2023), however, experimental measure-

ments are time-consuming, and very often theoretical calculations and

simulations based on their results are used to develop data that can

enlarge the required databases. Also, platforms and libraries that

enable the automatic analysis of images at the atomic level are slowly

emerging, such for example Atomvision (Choudhary et al., 2023).

The important issue concerning AI-driven approaches is connected

with the adequacy and diversity of datasets. Thus, the variability pre-

sent in materials science applications that can be beneficial from SPM

should be covered, namely the datasets should represent a wide range

of material compositions, surface properties, defect types, and experi-

mental conditions encountered in SPM. Counteracting various types of

bias in data is also an important element. In turn, to ensure this conver-

gence one can apply the data augmentation techniques. For example,

introducing changes to sample properties, such as surface roughness,

defect size, or chemical composition. Another possibility is to apply

transfer learning, that is, using pre-trained models or knowledge from

related domains can speed up model training and improve performance.

Moreover, in the area of neural network learning, continuous learning

can be applied (Zhu et al., 2024). This allows them to adapt to new data

and evolving experimental conditions, ensuring their relevance and

effectiveness over time. Another approach is to apply the selection of

data sets specific to those important from the point of view of a spe-

cific material. AS a consequence, AI algorithms will capture only rele-

vant features and differences inherent in SPM measurements.

One of the future directions of research is the development of

generative Artificial Intelligence, which can enable the formulation

of answers in the natural language regarding the course of micro-

scopic measurements and samples in the SPM (Kalinin et al., 2023). It

also can contribute to the creation of next-generation intelligent labo-

ratories for functional nanomaterials (Peng & Wang, 2023). The first

attempt has been made in the fields of AFM automation, in particular,

data collection (Dujardin et al., 2019; Szeremeta et al., 2021). On the

other hand, the development of tools for effective analysis of texts, in

particular scientific texts, will also enable the creation of structured

databases (Tshitoyan et al., 2019). Another research line is connected

with the development of methods for reliable assessment of measure-

ments carried out by non-specialists. However, the key to improving

the overall understanding of the process of scanning probe micros-

copy and the mechanisms that govern it is to combine the experiment

with its numerical simulations and support it with AI-based tools.

Thus, Artificial Intelligence, with its capability of modeling and

analyzing the results and comparing them with a constantly growing

database of measurements, increases the credibility of the new results

obtained with SPM. Nowadays, the possibility to use AI resources has

significantly expanded the capabilities of scanning probe devices,

improving the reliability of their results by eliminating errors coming

from ignorance and experiments. The theoretical output obtained

from AI models can be correlated with experimental data and
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introduced into the device control system to obtain more trustworthy

models. Thus, integration of the SPM technique with Artificial

Intelligence-based algorithms offers the potential to eliminate most of

these measurement technique flaws, especially those associated with

artifacts or human factors. This integration significantly enhances the

process of sample analysis (Gregoire et al., 2023). It also enables an

autonomous system operation to optimize and acquire data without

on-site supervision (Wu et al., 2018). To summarize, the results

obtained indicate that both modeling and the use of Artificial

Intelligence-based algorithms, in particular Machine Learning tech-

niques, can significantly improve scanning probe microscopy and data

interpretation processing (Ragone et al., 2023). The proposed

approach can be applied in molecular diagnostics and screening appli-

cations. The simulations can offer an understanding of the fundamen-

tal physical and chemical principles governing the behavior of

materials. In turn, AI-based methods can enable probabilistic learning

of atomic interactions. In addition, natural language processing (NLP)

can also help organize and classify knowledge in the context of SPM

by searching for key information in the literature. Moreover, the com-

bination of Artificial Intelligence and quantum computation may be a

benefit, however, both require significant improvement (Melnikov

et al., 2023; Qin et al., 2023). Thus, the tensor network systems that

transmit and process a huge amount of information seem to be imple-

mented in the future in almost every area of life.

Quantum computing is a promising alternative to classical com-

puters due to its ability to perform certain calculations exponentially

faster. However, the feasibility of integrating quality control into SPM

systems is currently limited by hardware limitations, error rates, and

the complexity of quantum algorithms. Quantum Machine Learning

(QML) can be used to analyze and classify SPM data more efficiently

than classical machine learning approaches. For example, quantum

support vector machines and quantum neural networks may have the

potential to infer large data sets with greater accuracy and speed

(Kimoto et al., 2024). Another QC feature that can accelerate mate-

rials discovery and optimization processes, reducing the need for

time-consuming and expensive experimental trials is quantum simula-

tion (Khajavi et al., 2024). It enables mimic and predict the behavior of

complex materials. Also, quantum optimization algorithms like quan-

tum annealing and variational quantum algorithms are very promising.

They can be applied in various tasks, including image reconstruction,

feature extraction, and pattern recognition, optimizing the measure-

ment process and improving the resolution and sensitivity of SPM

techniques. Despite the above-mentioned advantages, QC also has

disadvantages such as hardware scalability, error mitigation, and

designing quantum algorithms that are tailored to specific require-

ments. The latter will be crucial to realizing the full potential of quality

control integration.

10 | FUTURE PLANS

One of the most promising research directions appears to be the

development of algorithms that harness the power of quantum

computing to efficiently analyze large experimental datasets gener-

ated by SPM, including Quantum Machine Learning algorithms. Com-

bining AI and QC in this context and developing adaptive control

algorithms that optimize scanning parameters based on feedback from

quantum sensors and classical data analysis represents the next fron-

tier of research. This could be extremely beneficial, for instance, in

predictive modeling of nanoscale processes and automated decision-

making to optimize experimental parameters in real-time. Additionally,

the application of quantum simulations in the case of nanoscale sys-

tems may enable more accurate modeling of atomic and molecular

interactions, thereby leading to more precise predictions of the

behavior of nanoscale materials under various conditions.

Another research direction is linked to advancing generative Arti-

ficial Intelligence systems. These systems hold the potential to articu-

late responses in natural language concerning the progression of

microscopic measurements and samples within SPM experiments.

It is worth mentioning that a key issue is to foster cooperation

between fields, particularly informatics, physics, materials science, and

others. Financing joint (cross-field) research initiatives appears to be a

positive step. Similarly, providing resources and infrastructure to sup-

port interdisciplinary projects focused on integrating artificial intelli-

gence, quantum computing, and SPM could yield significant progress.

Organizing various scientific events where researchers from different

fields can exchange ideas, share observations, and identify common

research interests may also be beneficial. Moreover, ensuring open

access to data and resources is crucial for developing effective Artifi-

cial Intelligence methods, regardless of the field.
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