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A B S T R A C T

A reliable prediction of the pseudoelastic behavior necessitates the involvement of martensite reorientation
in the model. This is important not only under non-proportional loading but in general when the phase
transformation proceeds in a localized manner, which results in complex local deformation paths. In this work,
an advanced model of pseudoelasticity is developed within the incremental energy minimization framework. A
novel enhancement of the model over its original version lies in the formulation of a suitable rate-independent
dissipation potential that incorporates the dissipation due to martensitic phase transformation and also due
to martensite reorientation, thus yielding an accurate description of the inelastic transformation strain. The
finite-element implementation of the model relies on the augmented Lagrangian treatment of the non-smooth
incremental energy problem. Thanks to the micromorphic regularization, the related complexities are efficiently
handled at the local level, leading to a robust finite-element model. Numerical studies highlight the predictive
capabilities of the model. The characteristic mechanical behavior of NiTi tube under non-proportional tension–
torsion and the intricate transformation evolution under pure bending are effectively captured by the model.
Additionally, a detailed analysis is carried out to elucidate the important role of martensite reorientation in
promoting the striations of the phase transformation front.
1. Introduction

The reversible evolution of martensitic microstructure is the un-
derlying mechanism behind the unique properties of shape memory
alloys (SMAs), namely pseudoelasticity and shape memory effect (Bhat-
tacharya, 2003). When SMA is subjected to mechanical loading, a
biased martensitic microstructure develops that accommodates those
martensite variants with crystallographic structures favorable to the
loading direction (Miyazaki et al., 1989; Duerig et al., 2013). Upon
altering the direction of the applied load within a non-proportional
loading path, a different set of variants becomes preferable, and this
leads to the phenomenon of variant reorientation. In pseudoelastic SMAs,
the process of variant alignment/reorientation occurs in conjunction
with austenite–martensite phase transformation. Various experimental
studies have shown the complex transformation behavior resulting from
the simultaneous evolution of transformation and reorientation under
non-proportional loading conditions and have identified reorientation
as a major inelastic deformation contributor (e.g., Lim and McDowell,
1999; Sun and Li, 2002; Bouvet et al., 2002; McNaney et al., 2003;
Helm and Haupt, 2003; Grabe and Bruhns, 2009; Song et al., 2014).

To date, a plethora of macroscopic models has been developed to
capture the complex behavior of polycrystalline SMAs. The correspond-
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ing literature is quite rich, and a thorough review is beyond the scope
of this discussion; interested readers are directed to Lagoudas et al.
(2006), Saleeb et al. (2011), Auricchio et al. (2014), Cissé et al. (2016)
and Alsawalhi and Landis (2022). Within the phenomenological frame-
work, appropriate internal variables are defined and the corresponding
evolution laws are formulated to represent faithfully the behavior of the
material without a direct link to the micromechanical considerations.
Typically, a scalar-type internal variable, i.e., the volume fraction
of martensite, and a tensorial one, representing the transformation
strain, are adequate to characterize the inelastic deformation (Luig
and Bruhns, 2008). When dealing with unidirectional loading only, the
kinematics of the phase transformation can be considerably simplified,
allowing to confidently assume a fixed and predetermined transfor-
mation strain, as for instance in phase-field-type approaches (He and
Sun, 2010; Wendler et al., 2017). On the contrary, in order to address
arbitrary multiaxial loading conditions, a proper depiction of the mate-
rial’s behavior relies upon a rigorous formulation of the transformation
strain. Such a formulation must effectively account for martensite
variant reorientation and its interaction with the phase transforma-
tion, and this is only achieved when the energetic cost associated
with the evolution of the internal variables is correctly embedded
into the model (Sedlak et al., 2012). In the present work, the model
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is based on the incremental energy minimization approach. Accord-
ingly, a physically meaningful formulation of the evolution equations
demands a suitable dissipation potential that properly penalizes the
changes in the martensite volume fraction and, more crucially, the
transformation strain. It is generally accepted that, under isothermal
conditions, SMAs exhibit macroscopically a rate-independent hysteresis
behavior (Sun and He, 2008). Important to highlight is thus the non-
smoothness of the rate-independent dissipation potential that, along
with the equality/inequality constraints on the internal variables, may
compromise the robustness of the resulting computational model if not
handled carefully.

While devising sophisticated constitutive models that incorporate
various physical aspects and coupling mechanisms is undeniably cru-
cial, implementing the models into the finite-element framework is
a necessary next step for tackling problems of practical relevance.
This necessity arises since the structural response of SMA specimens is
greatly influenced by the transformation localization and propagation,
and is substantially different than the intrinsic material response (Hal-
lai and Kyriakides, 2013). Stress-induced martensitic transformation
in pseudoelastic NiTi under uniaxial tension serves as a typical ex-
ample of localized transformation that has been extensively studied
both experimentally (e.g., Shaw and Kyriakides, 1997; Zhang et al.,
2010; Bechle and Kyriakides, 2014) and numerically (e.g., Jiang et al.,
2017b; Rezaee-Hajidehi et al., 2020; Yu and Landis, 2023). A rich
variety of inhomogeneous transformation patterns has been also re-
ported for NiTi tubes under more involved loading conditions, such
as bending (Bechle and Kyriakides, 2014; Reedlunn et al., 2014) and
combined tension–torsion (Sun and Li, 2002; Reedlunn et al., 2020).
Moreover, it is important to note that the emergence of localization
alters significantly the local deformation process, resulting in material
points experiencing complex non-proportional stress/strain paths under
nominally proportional macroscopic loading (Reedlunn et al., 2020).

A suitable finite-element model is thus the one that, beside fea-
turing an advanced constitutive material formulation, is able to treat
the transformation localization effects. Special strategies ought to be
employed in order to overcome the ill-posed problem of localization
instability, which is led by a softening-type behavior in the material
response. A common strategy involves enhancing the model, more
specifically, the free energy function, with the gradient of the internal
variable (Rezaee Hajidehi and Stupkiewicz, 2018). Here, the primary
challenge is to come up with a robust finite-element implementation
of the gradient-enhanced model, in particular, in view of resolving the
localization and propagating interfaces, which necessitates adequately
fine mesh densities and incurs high computational costs. Indeed, this
challenge, together with the complexities inherent in the underly-
ing constitutive equations, pose significant obstacles to the practical
application of the existing models.

The model in this study originates from the model of pseudoelastic-
ity proposed by Stupkiewicz and Petryk (2013), with the following im-
portant characteristics: (i) it is based on the finite-
deformation kinematics, (ii) its constitutive description involves
tension–compression asymmetry and transverse isotropy of the trans-
formation strain, (iii) it is formulated within the incremental energy
minimization framework, and (iv) an augmented Lagrangian approach
is utilized to satisfy the inequality constraints on the martensite vol-
ume fraction and to treat the non-smoothness of the rate-independent
dissipation potential. The latter was deemed essential for a robust and
efficient finite-element implementation. In light of the innate properties
of the original model, its gradient-enhanced version was later devel-
oped and successfully applied to study the problem of transformation
evolution in NiTi specimens under uniaxial tension and combined
tension–torsion (Rezaee-Hajidehi et al., 2020; Rezaee-Hajidehi and
Stupkiewicz, 2021b, 2023). On the debit side, a major simplification
of the model lies in the form of the dissipation potential which solely
penalizes the evolution of the martensite volume fraction, i.e., it only
2

considers the dissipation due to phase transformation, while neglecting
the energetic cost associated with martensite variant reorientation. As a
consequence, the application of the model is limited to predominantly
proportional loading conditions. To address this limitation, an extended
form of the dissipation potential that incorporates the contribution of
martensite reorientation is formulated in this work. It is to be remarked
that deriving a mathematically consistent formulation that satisfies
the general requirements of a rate-independent dissipation potential
(specifically, being a positively homogeneous function of degree one
in the rate of the internal variables, see more details in Stupkiewicz
and Petryk (2013)) is rather straightforward. The main difficulty, how-
ever, resides in a proper computational treatment that maintains the
robustness of the resulting finite-element model. This is accomplished
here by generalizing the augmented Lagrangian approach, which marks
the novelty of the present work in terms of the model development.

The remainder of this paper is organized as follows. Section 2
presents the model formulation. The particular emphasis of this sec-
tion is on the choice of the dissipation potential, as elaborated in
Section 2.4. The description of the finite-element model is provided
in Section 3. Of prime importance in this section are the augmented
Lagrangian functions that are tailored to the specific requirements of
the present implementation. Section 4 is devoted to the finite-element
studies. Three different scenarios are considered, each reflecting a
different key aspect of incorporating the dissipation due to martensite
reorientation into the model, and all intrinsically connected with the
phase transformation localization/propagation.

2. Model formulation

This section is devoted to the description of the model formula-
tion. The kinematics and the gradient-enhanced Helmholtz free en-
ergy function are identical to those in the previous version of the
model (Rezaee-Hajidehi et al., 2020). The related equations are reca-
pitulated in Sections 2.1 and 2.2, respectively. The incremental energy
minimization framework is briefly outlined in Section 2.3. In Sec-
tion 2.4, a detailed discussion is provided regarding the choice of the
dissipation potential. A novel dissipation potential that accounts for
martensitic transformation and reorientation is then adopted for the
finite-element studies, which are reported in Section 4.

2.1. Kinematics

The kinematics of the model are formulated within the finite-
deformation theory and are summarized below.

• Deformation gradient 𝑭 = ∇𝝋, with 𝝋 as the reference–current
deformation mapping, is the primary kinematic quantity and is
decomposed, in a multiplicative manner, into the elastic part 𝑭 e

and the transformation part 𝑭 t,

𝑭 = 𝑭 e𝑭 t. (1)

• Two internal variables characterize the material state: the trans-
formation strain 𝒆t and the martensite volume fraction 𝜂. The
present model postulates that the transformation strain 𝒆t is
purely deviatoric, thus tr(𝒆t) = 0.

• Upon applying the polar decomposition, the transformation defor-
mation gradient 𝑭 t is represented in terms of a symmetric stretch
tensor 𝑼 t and a rotation tensor 𝑹t, given by 𝑭 t = 𝑹t𝑼 t. The
transformation stretch tensor 𝑼 t is then expressed in the following
exponential form,

𝑼 t = exp(𝒆t), (2)

while the specification of the rotation 𝑹t is unnecessary, given
the assumption of elastic isotropy, see Eq. (10). Clearly, in view
of tr(𝒆t) = 0, Eq. (2) implies det 𝑼 t = 1. Moreover, the reference

t t
(stress-free) austenitic state is described by 𝑭 = 𝑼 = 𝑰 .
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• It is assumed that the transformation strain 𝒆t is defined as a
product of the volume fraction 𝜂 and the transformation strain
of fully-oriented martensite �̄�t (which is hereafter referred to as
‘limit transformation strain’), viz.,

𝒆t = 𝜂�̄�t. (3)

• The variables 𝜂 and �̄�t satisfy the following constraints,

0 ≤ 𝜂 ≤ 1, �̄�t ∈ ̄ = {�̄�t ∶ 𝑔(�̄�t) = 0}, (4)

where 𝜂 = 0 and 𝜂 = 1 characterize, respectively, the pure
austenite and pure martensite phases, and 𝑔(�̄�t) = 0 defines the
surface of the admissible limit transformation strains.

• The function 𝑔(�̄�t) is capable of describing tension–compression
asymmetry and transverse isotropy. It is defined in terms of the
invariants 𝐼𝑘 of the limit transformation strain tensor �̄�t,

𝐼2 = −1
2
tr(�̄�t)2, 𝐼3 = det �̄�t, 𝐼4 = 𝒎 ⋅ �̄�t𝒎. (5)

Note that 𝐼4 serves as a mixed invariant of the tensor �̄�t and the
vector 𝒎, with 𝒎 defining the axis of transverse isotropy. The
function 𝑔(�̄�t) is formulated as

𝑔(�̄�t) =
[

(−𝐼2)3∕2 − 𝑏𝐼3 − 𝑐𝐼34
]1∕3 − 𝑎, (6)

where

𝑎 = 𝜖T

[ 3
√

3
4(1 + 𝛼3)

]1∕3
, 𝑏 =

√

3
6

9𝛼3𝛽3 − 7𝛼3 + 7𝛽3 − 9
(1 + 𝛼3)(1 + 𝛽3)

,

𝑐 =
2
√

3
3

𝛼3 − 𝛽3

(1 + 𝛼3)(1 + 𝛽3)
.

(7)

The parameters 𝛼, 𝛽 and 𝜖T characterize, respectively, the tension–
compression asymmetry ratio, the degree of transverse isotropy
and the maximum transformation strain attainable in uniaxial
tension.

2.2. Free energy function

The gradient-enhanced Helmholtz free energy function 𝜙 is com-
posed of the following contributions: the chemical energy 𝜙chem, the
elastic strain energy 𝜙el, the interaction energy 𝜙int, and the contri-
bution 𝜙grad pertaining to the energy of the diffuse interfaces (macro-
scopic transformation fronts),

𝜙(𝑭 , �̄�t, 𝜂,∇𝜂) = 𝜙chem(𝜂) + 𝜙el(𝑭 , �̄�t, 𝜂) + 𝜙int(�̄�t, 𝜂) + 𝜙grad(∇𝜂). (8)

Below, a brief description of each contribution is provided.

• The chemical energy 𝜙chem is formulated as

𝜙chem(𝜂) = (1 − 𝜂)𝜙a
0 + 𝜂𝜙m

0 = 𝜙a
0 + 𝛥𝜙0𝜂, (9)

where 𝜙a
0 and 𝜙m

0 , represent, respectively, the reference (stress-
free) free energy densities of austenite and martensite phases.

• A neo-Hookean elastic strain energy is adopted in the following
form

𝜙el(𝑭 , �̄�t, 𝜂) = 1
2
𝜇(𝜂)(tr(�̂�e)−3)+ 1

4
𝜅(det(𝒃e)−1− log(det(𝒃e))), (10)

where 𝒃e = 𝑭 e(𝑭 e)T is the left Cauchy–Green tensor and �̂�e =
(det(𝒃e))−1∕3 𝒃e is the corresponding volume-preserving part. The
shear modulus 𝜇(𝜂) is considered to be phase-dependent and is
obtained as 1∕𝜇(𝜂) = (1 − 𝜂)∕𝜇a + 𝜂∕𝜇m, with 𝜇a and 𝜇m as the
shear moduli of austenite and martensite phases, while the bulk
modulus 𝜅 is constant.

• The interaction energy 𝜙int governs the response of the material
within the transformation regime and is assumed as a quadratic
function of 𝜂, i.e.,

𝜙 (�̄�t, 𝜂) = 1𝐻(�̄�t)𝜂2, (11)
3

int 2 t
where 𝐻 determines the slope of the response and is assumed to
be dependent on the limit transformation strain �̄�t through the
following relation,

𝐻(�̄�t) = 𝐻T −
(𝜖T −

√

2∕3 𝜖(�̄�t))(𝐻T −𝐻C)
𝜖T − 𝜖C

, 𝜖(�̄�t) =
√

tr(�̄�t)2. (12)

Here, 𝐻T and 𝐻C denote, respectively, the softening modulus in
tension and the hardening modulus in compression, 𝜖C = 𝜖T∕𝛼
denotes the maximum transformation strain in uniaxial com-
pression, and

√

2∕3 𝜖(�̄�t) is the equivalent limit transformation
strain.

• Finally, the gradient energy term 𝜙grad reads

𝜙grad(∇𝜂) =
1
2
𝐺∇𝜂 ⋅ ∇𝜂, (13)

where 𝐺 > 0 is the corresponding penalization parameter.

It is pertinent to note that the linear dependence between the in-
eraction energy coefficient 𝐻 and the equivalent limit transformation
train

√

2∕3 𝜖(�̄�t), as introduced in Eq. (12), is sufficient to adequately
calibrate the intrinsic material response in tension, compression and
shear (typically, NiTi manifests a softening-type behavior in tension and
a hardening-type behavior in compression and shear). Additionally, the
quadratic form of the interaction energy 𝜙int in Eq. (11) yields a simple
trilinear (flag-shaped) intrinsic response. While more sophisticated for-
mulations of the interaction energy could be devised (e.g., Wang et al.,
2017) to achieve a more realistic nonlinear intrinsic response (Hallai
and Kyriakides, 2013; Alarcon et al., 2017), a deliberate choice is
made for a trilinear one. This decision is guided by the recognition
that a nonlinear response might also contribute to the striations of the
propagating transformation front alongside martensite reorientation, as
discussed in more details in Section 4.4. Therefore, with the aim to
isolate the effects attributed to martensite reorientation, in line with the
primary focus of this paper, a quadratic form of the interaction energy
𝜙int is adopted.

2.3. Incremental energy minimization framework

After formulating the Helmholtz free energy function 𝜙, a suitable
dissipation potential 𝛥𝐷 is defined (to be discussed in the next subsec-
ion), thereby establishing all essential components of the incremental
nergy minimization framework. Subsequently, a global incremental
otential 𝛱 is constructed from the Helmholtz free energy functional
= ∫𝐵 𝜙 d𝑉 and the global dissipation potential 𝛥 = ∫𝐵 𝛥𝐷 d𝑉 . The

ncremental solution is then sought by minimizing 𝛱 with respect to
he problem unknowns, including the deformation mapping 𝝋, the limit
ransformation strain �̄�t, and the volume fraction of martensite 𝜂. This
s expressed as

= 𝛥𝛷 + 𝛥 + 𝛥𝛺 → min
𝝋,�̄�t ,𝜂

(14)

here 𝛥𝛺 is the potential energy arising from the external loads.
ote that the minimization problem (14) is subject to the constraints

pecified in Eq. (4). For the general concept, details and applications of
he incremental energy minimization principle, the reader is referred
o Petryk (2003), Miehe (2011), Stupkiewicz and Petryk (2013) and
ezaee-Hajidehi et al. (2020).

.4. Dissipation potential

The simplest choice for the dissipation potential is the one that
onsiders only the dissipation resulting from the phase transformation,
.e., from the evolution of the martensite volume fraction 𝜂. In the
ime-discrete setting, it takes the form

𝐷(𝛥𝜂) = 𝑓c|𝛥𝜂|, (15)

here 𝑓c > 0 is a material parameter (i.e., critical driving force of
ransformation) that determines the width of the hysteresis loop in the
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intrinsic response, and 𝛥𝜂 = 𝜂 − 𝜂𝑛, with 𝜂𝑛 as the martensite volume
raction related to the previous time step. This form of dissipation
otential can be considered reasonable for applications limited to (pre-
ominantly) proportional loading paths (Rezaee-Hajidehi et al., 2020;
ezaee-Hajidehi and Stupkiewicz, 2023).

On the other hand, in cases where the martensite reorientation plays
n important role, as for instance under non-proportional loading paths,
he model with this simplistic dissipation potential fails to capture
ppropriately the transformation evolution. This is due to the absence
f an energetic cost assigned to the reorientation process, which, in the
resent formulation, amounts to the lack of dissipation for the evolution
f the transformation strain 𝒆t. Accordingly, in order to extend the
ange of applicability of the model, a more generalized dissipation
otential ought to be constructed. Two possible choices are explored
ere, each associated with a specific form of the rate-independent
issipation potential defined for the pair (𝛥𝒆t, 𝛥𝜂), where 𝛥𝒆t = 𝒆t − 𝒆t

𝑛.
The first choice adopts the 𝑙1 norm (also called taxicab norm) of the

air (𝛥𝒆t, 𝛥𝜂) and is expressed as,

𝐷(𝛥𝒆t, 𝛥𝜂) = 𝛥𝐷(𝛥�̄�t, 𝛥𝜂, �̄�t, 𝜂) = 𝑓c|𝛥𝜂| +
𝑓r

𝜖(�̄�t)
‖𝛥𝒆t

‖,

‖𝛥𝒆t
‖ =

√

𝛥𝒆t ⋅ 𝛥𝒆t, (16)

where 𝑓r represents the reorientation dissipation parameter. Notice the
normalization of the norm ‖𝛥𝒆t

‖ by 𝜖(�̄�t), cf. Eq. (12)2. This normal-
ization serves dual purposes: first, it aligns the magnitude of 𝑓r with
that of 𝑓c, hence a coherent scaling of dissipation contributions, and
second, in line with the definition of the limit transformation strain �̄�t,
it renders the reorientation dissipation mechanism loading-dependent.
Additionally, it is important to note that the term 𝑓r∕𝜖(�̄�t)‖𝛥𝒆t

‖ brings
on additional dissipation associated with the phase transformation. This
is because 𝒆t = 𝜂�̄�t, see Eq. (3), and thus any penalization of the
evolution of 𝜂 also penalizes the evolution of 𝒆t. Nevertheless, the
presence of the transformation-only term 𝑓c|𝛥𝜂| is still crucial, as it
nables to adequately adjust the contributions arising from the two
echanisms.

The second choice adopts the 𝑙2 norm (Euclidean norm) and takes
he form

𝐷(𝛥𝒆t, 𝛥𝜂) = 𝛥𝐷(𝛥�̄�t, 𝛥𝜂, �̄�t, 𝜂) =

√

𝑓 2
c 𝛥𝜂2 +

𝑓 2
r

𝜖(�̄�t)2
𝛥𝒆t ⋅ 𝛥𝒆t. (17)

In both potentials (16) and (17), upon setting 𝑓r = 0, the simplistic
case of Eq. (15) is retrieved. Similar forms of dissipation potentials
have been devised by Barrera et al. (2014), see also Petrini and Bertini
(2020), in the context of pseudoelasticity and functional degradation.
Therein, discussions are provided on the physical and mathematical
attributes of various dissipation potentials.

As a preface to the finite-element studies presented in Section 4, a
material-point analysis is carried out in order to hint on the implica-
tions of including the reorientation dissipation in the model. A single
material point is subjected to combined non-proportional axial–shear
loading within a mixed-type loading control, where the axial strain 𝜀
and shear strain 𝛾 are prescribed and the axial stress 𝜎 and shear stress
𝜏 are measured. All the other stress components are constrained to zero.
Various axial–shear strain paths are examined, including box-, circular-
and butterfly-shaped paths, as illustrated in Fig. 1. To simplify the
analysis, a small-strain version of the model is employed, and clearly,
the gradient energy term, Eq. (13), is ignored. In this analysis, the
constrained minimization problem, cf. Eq. (14), is solved in Mathemat-
ica (www.wolfram.com) by using the built-in FindMinimum function
which relies on the interior-point method. The calculations are done by
the models with different forms of dissipation potentials, i.e., Eqs. (15),
(16) and (17), which are herein labeled, respectively, as model T, model
TR/1 and model TR/2 (T denoting transformation and TR denoting
transformation and reorientation). The material parameters are the
same as those adopted in the finite-element study in Section 4.2. The
parameters related to dissipation are adopted as: 𝑓 = 6 MPa for
4

c

model T, whereas 𝑓c = 3 MPa and 𝑓r = 3 MPa for models TR/1 and
TR/2.

Fig. 2 collects and compares the responses obtained for differ-
ent models. A close examination reveals that models incorporating
martensite reorientation dissipation, TR/1 and TR/2, are capable of
capturing characteristic features overlooked by model T, which align
with the experimental observations of Grabe and Bruhns (2009). Par-
ticularly noteworthy is the pronounced hysteresis observed in axial
and shear responses obtained by TR/1 and TR/2 models within the
non-proportional segments of circular- and box-shaped paths, while
model 𝑇 shows considerably smaller hysteresis. Another notable feature
pertains to the emergence of a positive shear stress at the endpoints of
circular- and box-shaped paths (see the proximity of arrow 6 in panel
(c) and arrow 7 in panel (f)), which is also missed by model T. At
the same time, for the butterfly-shaped path which is characterized
by a number of proportional segments, model 𝑇 presents responses
qualitatively similar to those of models TR/1 and TR/2.

Overall, Fig. 2 underlines the importance of martensite reorientation
dissipation in capturing a number of intrinsic features at the material-
point level. Both 𝑙1 and 𝑙2 norms can be regarded as legitimate choices
for the dissipation potential. However, it is important to note that
the computational treatment of the 𝑙2-norm dissipation potential could
not be done successfully as the resulting finite-element model suffered
from severe convergence issues. This, as a result, has prompted the
adoption of the 𝑙1-norm dissipation potential for the studies reported in
Section 4. Further details on the computational treatment of the model
are provided in Section 3.3.

Remark. The dissipation potentials (16) and (17) represent an isotropic
dissipation mechanism of martensite reorientation. Both potentials
can be readily adapted to an anisotropic case. As an example, the
anisotropic version of the 𝑙1-norm dissipation potential is expressed as

𝛥𝐷(𝛥𝒆t, 𝛥𝜂) = 𝛥𝐷(𝛥�̄�t, 𝛥𝜂, �̄�t, 𝜂) = 𝑓c|𝛥𝜂| + ‖𝛥𝒆t
‖Dr , (18)

here ‖𝛥𝒆t
‖Dr denotes the elliptic norm of the transformation strain

ncrement 𝛥𝒆t relative to Dr, a positive-definite fourth-rank tensor
hat contains the material parameters associated with reorientation
issipation,

𝛥𝒆t
‖Dr =

√

𝛥𝒆t ⋅ Dr𝛥𝒆t. (19)

t is worth noting that the finite-element treatment of the anisotropic
issipation potential can be accomplished by extending the augmented
agrangian function used for the isotropic dissipation, see Section 3.3.

. Finite-element model

In this section, first, the micromorphic regularization and thermo-
echanical couplings are described, respectively, in Sections 3.1 and
.2. The computational treatments and implementation of the model
re then briefly discussed in Section 3.3.

.1. Micromorphic regularization

The finite-element implementation of the model hinges on the mi-
romorphic regularization technique (Forest, 2009; Mazière and Forest,
015). The technique has been successfully employed in our previous
tudies (Rezaee Hajidehi and Stupkiewicz, 2018; Rezaee-Hajidehi et al.,
020) related to the current context; see Rezaee-Hajidehi and Stup-
iewicz (2021a) for the application of the micromorphic technique in
hase-field modeling of multi-variant martensitic transformation; see
lso Yu and Landis (2023) for a more recent application.

The presence of the gradient term 𝜙grad in the Helmholtz free
nergy function 𝜙 dictates the martensite volume fraction 𝜂 to be a
lobal degree of freedom. However, the complexities associated with
he constitutive equation for 𝜂, in particular, the new form of the rate-
ndependent dissipation potential that relies on the coupling between 𝜂

http://www.wolfram.com
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Fig. 1. Axial–shear strain paths used in the material-point analysis: (a) circular-shaped, (b) box-shaped, and (c) butterfly-shaped. The maximum axial strain and the maximum
(scaled) shear strain in all cases is limited to 3% while the corresponding mean strains are zero.

Fig. 2. Material-point responses obtained for different dissipation potentials under different axial–shear strain paths: (a,b,c) circular-shaped path, (d,e,f) box-shaped path, and
(g,h,i) butterfly-shaped path. Panels (a,d,g) depict the axial stress–axial strain responses, panels (b,e,h) depict the shear stress–shear strain responses, and panels (c,f,i) depict the
shear stress–axial stress responses. The superimposed arrows on the plots are solely intended to indicate the trajectories.
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,

and the limit transformation strain �̄�t, render such a global formulation
f 𝜂 infeasible. Upon resorting to the micromorphic regularization, 𝜂
an be treated as a local quantity and thus the associated complexities
an be efficiently addressed. To this end, a new global degree of free-
om �̆� is introduced and is linked to the martensite volume fraction 𝜂
ia a penalty term 𝜙pen,

pen(𝜂, �̆�) =
1
2
𝜒(𝜂 − �̆�)2, (20)

here 𝜒 is the corresponding penalty parameter. Clearly, the larger
he parameter 𝜒 , the better the approximation of 𝜂 by �̆�. Accordingly,
he gradient energy term 𝜙grad is rewritten in terms of the gradient of
he micromorphic variable �̆� as 𝜙grad = 1∕2𝐺∇�̆� ⋅ ∇�̆�. Therefore, the
elmholtz free energy function 𝜙 takes the following new form

(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�) = 𝜙chem(𝜂) + 𝜙el(𝑭 , �̄�t, 𝜂) + 𝜙int(�̄�t, 𝜂) + 𝜙grad(∇�̆�)

+ 𝜙pen(𝜂, �̆�). (21)

A new global incremental potential 𝛱 is then constructed,
cf. Eq. (14), and the minimization problem is solved by minimizing the
new incremental potential with respect to the deformation mapping 𝝋,
the limit transformation strain �̄�t, the martensite volume fraction 𝜂 and
also the micromorphic variable �̆�. As mentioned above, in light of the
micromorphic regularization, 𝜂 is transformed into a local quantity and
its evolution equation, together with that of the limit transformation
strain �̄�t, is solved locally at each integration point. This translates to
the following local minimization problem,

{�̄�t, 𝜂} = argmin
�̄�t ,𝜂

𝜋(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�). (22)

The local potential 𝜋 is defined as

𝜋(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�) = 𝜙(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�) − 𝜙𝑛 + 𝛥𝐷(𝛥𝒆t, 𝛥𝜂) + 𝐼[0,1](𝜂) + 𝐼̄ (�̄�t),

(23)

where 𝜙𝑛 represents the free energy related to the previous time step,
and the indicator functions 𝐼[0,1] and 𝐼̄ account for the inequality
constraints on the order parameter and the equality constraint of 𝑔(�̄�t) =
0, respectively,

𝐼[0,1](𝜂) =

{

0 if 0 ≤ 𝜂 ≤ 1,
+∞ otherwise,

𝐼̄ (�̄�t) =

{

0 if �̄�t ∈ ̄ ,
+∞ otherwise.

(24)

On the global level, the minimization is performed with respect to 𝝋
and �̆�. The corresponding stationarity conditions lead to, respectively,
the weak form of the mechanical equilibrium (virtual work principle)
and the weak form of the averaging Helmholtz-type PDE. Details are
omitted for brevity, see Rezaee-Hajidehi et al. (2020).

3.2. Thermomechanical couplings

The thermomechanical extension of the model follows that adopted
in the previous versions of the model (Rezaee Hajidehi and Stup-
kiewicz, 2018; Rezaee-Hajidehi et al., 2020). Specifically, two key ther-
momechanical coupling effects are incorporated. First, the Clausius–
Clapeyron relationship is embedded into the model through establish-
ing a linear dependence between the temperature 𝑇 and the chemical
energy of transformation 𝛥𝜙0. The chemical energy contribution 𝜙chem
of the Helmholtz free energy function 𝜙 is hence reformulated as

𝜙chem(𝜂, 𝑇 ) = 𝜙a
0 + 𝛥𝜙0(𝑇 )𝜂, 𝛥𝜙0(𝑇 ) = 𝛥𝑠∗(𝑇 − 𝑇t), (25)

with 𝛥𝑠∗ as the entropy difference between pure phases of austenite
and martensite and 𝑇t as the transformation equilibrium temperature.

Secondly, an internal heat source of transformation/reorientation is
introduced in the following (rate) form,

�̇� = 𝛥𝑠∗𝑇 �̇� + 𝑓c|�̇�| +
𝑓r

‖�̇�t
‖, (26)
6

𝜖(�̄�t)
where the first term on the right-hand side reflects the latent heat
of transformation, while the other two account for the mechanical
dissipation and simply correspond to the dissipation potential of the
taxicab norm, cf. Eq. (16), expressed here in the rate form. Obviously,
the martensite reorientation solely contributes to heat release through
mechanical dissipation.

Finally, the heat conduction equation is introduced to the model
and is expressed in the following form (Holzapfel, 2006)

𝜚0𝑐�̇� + ∇ ⋅𝑸 = �̇�, 𝑸 = −𝐾𝑪−1∇𝑇 , (27)

where 𝜚0𝑐 is the specific heat capacity, 𝑸 is the nominal heat flux,
is the heat conduction coefficient, and 𝑪 = 𝑭 T𝑭 is the right

auchy–Green strain tensor.
Note that although in all the simulation studies reported in Section 4

elatively low loading rates are applied, hence resulting in minimal
emperature effects, the model is deliberately made thermomechani-
ally coupled. This choice is mainly driven by the regularization effects
ffered by thermomechanical couplings that enhance the robustness of
he model even under nearly isothermal conditions.

.3. Computational treatments and implementation

There are several components of the potential 𝜋 of the local min-
mization problem that require careful attention due to their contri-
ution to the non-smoothness of the local problem (23). These in-
lude the indicator function 𝐼[0,1] representing the inequality constraints
≤ 𝜂 ≤ 1, the indicator function 𝐼̄ representing the surface of the

imit transformation strain 𝑔(�̄�t) = 0, and most importantly, the rate-
ndependent dissipation potential 𝛥𝐷. Recall that 𝛥𝐷 is in the form
f the taxicab norm and consists of two terms, the transformation-
nly term 𝑓c|𝛥𝜂| and the term 𝑓r∕𝜖(�̄�t)‖𝛥𝒆t

‖ that encompasses marten-
ite reorientation dissipation. The non-differentiability arising from
ach dissipation term must be adequately addressed and the strategy
dopted here is the augmented Lagrangian method. To this end, two
agrangian functions are introduced. Firstly, following Stupkiewicz and
etryk (2013), an augmented Lagrangian function 𝑙𝜂 is constructed
hat handles simultaneously the transformation-only part 𝑓c|𝛥𝜂| of
he dissipation potential and the inequality constraints 0 ≤ 𝜂 ≤ 1,
ia utilization of a single Lagrange multiplier 𝜆𝜂 . The function 𝑙𝜂 is
ormulated as

𝜂(𝛥𝜂, 𝜆𝜂) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜆𝜂(𝛥𝜂 − 𝛥𝜂−) +
𝜌𝜂
2
(𝛥𝜂 − 𝛥𝜂−)2

−𝑓c𝛥𝜂− if �̂�𝜂 ≤ 𝜌𝜂𝛥𝜂− − 𝑓c,

− 1
2𝜌𝜂

(

𝜆2𝜂 + 2𝑓c�̂�𝜂 + 𝑓 2
c

)

if 𝜌𝜂𝛥𝜂− − 𝑓c < �̂�𝜂 < −𝑓c,
(

𝜆𝜂 +
𝜌𝜂
2
𝛥𝜂

)

𝛥𝜂 if − 𝑓c ≤ �̂�𝜂 ≤ 𝑓c,

− 1
2𝜌𝜂

(

𝜆2𝜂 − 2𝑓c�̂�𝜂 + 𝑓 2
c

)

if 𝑓c < �̂�𝜂 < 𝜌𝜂𝛥𝜂+ + 𝑓c,

𝜆𝜂(𝛥𝜂 − 𝛥𝜂+) +
𝜌𝜂
2
(𝛥𝜂 − 𝛥𝜂+)2

+𝑓c𝛥𝜂+ if 𝜌𝜂𝛥𝜂+ + 𝑓c ≤ �̂�𝜂 ,

(28)

where �̂�𝜂 = 𝜆𝜂 + 𝜌𝜂𝛥𝜂, 𝜌𝜂 > 0 is a regularization parameter, and
𝛥𝜂− = −𝜂𝑛 ≤ 0 and 𝛥𝜂+ = 1 − 𝜂𝑛 ≥ 0 are the bounds imposed on the
increment 𝛥𝜂.

Secondly, to tackle the non-differentiability of the term 𝑓r∕𝜖(�̄�t)‖𝛥𝒆t
‖

an augmented Lagrangian function is constructed in the spirit of the
frictional contact problem (Alart and Curnier, 1991; Pietrzak and
Curnier, 1999). A set of Lagrange multipliers 𝝀r, which are conju-
gate to the transformation strain increment 𝛥𝒆t, are introduced. The
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Lagrangian function 𝑙r is then formulated as

r(𝛥𝒆t,𝝀r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝝀r +
𝜌r
2
𝛥𝒆t

)

⋅ 𝛥𝒆t if ‖�̂�r‖ ≤
𝑓r

𝜖(�̄�t)
,

− 1
2𝜌r

(

‖𝝀r‖
2 −

2𝑓r

𝜖(�̄�t)
‖�̂�r‖ +

𝑓 2
r

𝜖(�̄�t)2

)

otherwise,
(29)

where �̂�r = 𝝀r + 𝜌r𝛥𝒆t and 𝜌r > 0 is the corresponding regularization
parameter. It is worth noting that an anisotropic variant of the friction-
type Lagrangian function (29) was previously used in the context of
phase-field modeling of multi-variant martensitic transformation for an
analogous issue of non-differentiability of rate-independent dissipation
effects (Rezaee-Hajidehi and Stupkiewicz, 2021a). For further insights
into the formulation procedure, the reader is referred to Appendix A
therein.

Lastly, the equality constraint 𝑔(�̄�t) is enforced by standard penalty
regularization method. Consequently, the potential 𝜋 of the local min-
imization problem, see Eqs. (22) and (23), is replaced by the following
Lagrangian function,

𝐿(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�,𝝀r, 𝜆𝜂) = 𝜙(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�) − 𝜙𝑛 + 𝑙r(𝛥𝒆t,𝝀r) + 𝑙𝜂(𝛥𝜂, 𝜆𝜂)

+ 1
2
𝜔𝑔(�̄�t)2, (30)

and thereby, the local constrained minimization problem is transformed
to the following unconstrained saddle-point problem,

{�̄�t, 𝜂,𝝀r, 𝜆𝜂} = argmin
�̄�t ,𝜂

max
𝝀r ,𝜆𝜂

𝐿(𝑭 , �̄�t, 𝜂, �̆�,∇�̆�,𝝀r, 𝜆𝜂). (31)

The complete thermomechanically-coupled problem is structured as
a global–local nested iterative–subiterative scheme, where the Newton
method is applied to solve the problem at both the local and global
levels. The global degrees of freedom include the displacement 𝒖, the
micromorphic variable �̆� and the temperature 𝑇 . Within each Newton
iteration, the unknowns are solved in a monolithic manner (all at
the same time) by a direct linear solver (Intel MKL PARDISO). The
finite-element discretization of the global fields is done as follows:
20-noded serendipity hexahedral elements with reduced integration
rule are employed for the displacement field 𝒖, while 8-noded linear
exahedral elements with standard integration rule are employed for
he fields of �̆� and 𝑇 . The model is translated into a computer code
ritten in Mathematica package AceGen (Korelc, 2009; Korelc and
riggers, 2016). AceGen is based on automatic differentiation and fea-

ures code simplification techniques, and thereby, renders the resulting
omputer code to be optimized and highly efficient. This is crucial
or the implementation as it leads to an exact global tangent matrix
nd guarantees quadratic convergence of the Newton method. The
imulations are carried out in the finite-element environment AceFEM.

During the preliminary testing of the finite-element model, it was
bserved that the model encounters serious convergence issues, partic-
larly in the simulations where strain localization occurs. Upon closer
xamination, it was discovered that the convergence issues are traced
o the poor performance of the friction-type augmented Lagrangian
unction (29). The issue is then resolved by disuniting the transforma-
ion strain 𝒆t = 𝜂�̄�t that enters the kinematics and the Helmholtz free
nergy function from the one that enters the friction-type augmented
agrangian function (29). To achieve this, a new set of local variables
re introduced into the model to approximate the transformation strain
t, where the approximation is realized by the penalty regularization
ethod. Subsequently, the original variables of 𝒆t in the Lagrangian

unction (29) are replaced by the newly introduced variables. This is a
imple but potent computational treatment that dramatically improves
he performance and robustness of the finite-element model, provided
7

hat the related penalty parameter is not too large.
4. Finite-element simulations

Three distinct numerical studies are carried out to assess the range
of applicability of the model and showcase its ability in capturing
various experimentally-observed features. Each numerical study corre-
sponds to a particular experimental scenario and in each case compar-
isons with the experimental results are made to validate the obtained
results. The first study concerns a NiTi tube specimen subjected to
combined non-proportional tension–torsion loading. This study refers
to the experiment of McNaney et al. (2003). The aim of the study is
to demonstrate the immediate implications of incorporating martensite
reorientation dissipation into the model. In the second study, with
reference to the experiment of Bechle and Kyriakides (2014), a NiTi
tube under pure bending is analyzed. This study highlights the role
of martensite reorientation dissipation as a crucial modeling asset that
enables the successful simulation of this specific scenario. The third nu-
merical study explores the striations of the propagating fronts, a subtle
characteristic of the martensitic transformation pattern that, despite
its emergence, is often overlooked in the experiments and modeling
studies. Here, the importance of martensite reorientation dissipation in
capturing and controlling the striations is underlined. While striations
have been noted in several experiments, the more recent experimental
study by Shariat et al. (2022) serves as a reference for the current
investigation.

4.1. Choice of the model parameters

Table 1 lists the model parameters adopted in the numerical studies.
There exist certain parameters that remain consistent across all the
three studies and their values are sourced from the existing literature
data. These include the bulk modulus 𝜅 = 130 GPa, the specific
ntropy difference 𝛥𝑠∗ = 0.24 MPa/K, and the parameters that govern
he heat flow: the heat conductivity coefficient 𝐾 = 18 W/(m K)
nd the specific heat capacity 𝜚0𝑐 = 2.86 MJ/(m3 K). At the same
ime, the material parameters that characterize the intrinsic mechanical
esponses are calibrated based on the structural response of the related
xperiment. This calibration involves adjusting the trilinear (softening-
ype) response in tension to align its Maxwell construction within the
orward and reverse transformation with the stress plateau observed
n the experiment. As a result of this, the austenite and martensite
hear moduli 𝜇a and 𝜇m, the transformation equilibrium temperature
t, the dissipation parameter 𝑓c, the tensile transformation strain 𝜖T,
nd the softening modulus 𝐻T are selected. It is worthwhile to ac-
nowledge the inherent ambiguity (and thus freedom) in the selection
f the softening modulus 𝐻T, as it cannot be directly inferred from
he experimental plateau-type response. This delicate issue is discussed
n more details in Rezaee-Hajidehi and Stupkiewicz (2023). Next, the
ntrinsic response in compression and/or shear is refined by calibrat-
ng the tension–compression asymmetry parameter 𝛼, the transverse
sotropy parameter 𝛽, and the hardening modulus 𝐻C. This refinement
s particularly pertinent to numerical studies 1 and 2, which involve
ombined tension–torsion and pure bending, respectively, with the
orresponding parameters determined based on the structural response
nder pure torsion and uniaxial compression. To illustrate the outcome
f the parameter identification process, Fig. 3 depicts the tensile and
ompressive intrinsic responses related to numerical study 2.

At the same time, the admissible range for the dissipation parameter
r is selected with reference to the available experiments on pseudoe-

lastic NiTi (Grabe and Bruhns, 2009; McNaney et al., 2003). From the
outcome of the preliminary analysis it follows that 𝑓r should be of the
same order of magnitude as that of the transformation-only dissipation
parameter 𝑓c. Therefore, in all the three numerical studies reported
below the reference value for 𝑓r is set equal to 𝑓c. Note that, a major
part of the investigation in each study is dedicated to the parametric
study examining the impact of the dissipation parameters 𝑓c and 𝑓r.

It is important to point out that in view of the construction of the
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Table 1
Parameters adopted in the numerical studies.

Parameter Unit Value (study 1) Value (study 2) Value (study 3)

𝛥𝑠∗ Specific entropy difference MPa/K 0.24 0.24 0.24
𝜅 Bulk modulus GPa 130 130 130
𝜇a Shear modulus for austenite GPa 12.7 21.1 10.3
𝜇m Shear modulus for martensite GPa 8.6 9.8 6.8
𝑇t Transformation equilibrium temperature K 236 214 234
𝑓c Dissipation parameter (reference value) MPa 3 3.5 3
𝑓r Dissipation parameter (reference value) MPa 3 3.5 3
𝜖T Maximum transformation strain in tension [–] 4.8% 5.3% 5.2%
𝐻T Softening modulus in tension MPa −2 −8 −5
𝐻C Hardening modulus in compression MPa 8 8 8
𝛼 Tension–compression asymmetry ratio [–] 1.2 1.4 1.4
𝛽 Transverse isotropy parametera [–] 1.0 1.0 1.0
𝐺 Gradient energy parameter Pa mm2 50 350 104

𝜒 Micromorphic penalty parameter MPa 200 850 500
𝐾 Heat conductivity coefficient W/(m K) 18 18 18
𝜚0𝑐 Specific heat capacity MJ/(m3 K) 2.86 2.86 2.86

a The axis of transverse isotropy alignes with the longitudinal axis of the specimen.
Fig. 3. The intrinsic response in tension and compression calibrated for the numerical
example of NiTi tube under pure bending (Section 4.3). The dashed curves represent
the structural responses obtained in the experiment of Bechle and Kyriakides (2014)
at 23◦.

dissipation potential (16), as long as the sum of 𝑓c and 𝑓r remains fixed,
any alternation in their values will not affect the dissipation associated
with phase transformation in simple proportional loading paths.

It remains to properly choose the gradient energy parameter 𝐺
and the micromorphic penalty parameter 𝜒 . These parameters are
identified by means of the analytical solution of the corresponding
1D model (Rezaee Hajidehi and Stupkiewicz, 2018). Concerning the
gradient energy parameter 𝐺, a suitable value for the thickness of the
theoretical interface, 𝜆, is assumed first. The parameter 𝐺 is then calcu-
lated based on the analytical relation 𝐺 = −𝐻T𝜆2∕𝜋2. It is necessary to
highlight that in 3D simulations, beyond the regularization provided
by the gradient term in the free energy, additional regularization
arises from the 3D geometry of the problem, specifically, from the 3D
deformation state of the specimen (He and Sun, 2009; Rezaee-Hajidehi
et al., 2020). Notably, as discussed in our previous study (Rezaee-
Hajidehi et al., 2020), the larger the specimen’s thickness the more
pronounced the 3D effects. This implies that the ‘actual’ thickness of
the austenite–martensite diffuse interfaces obtained in the simulations
is larger compared to the theoretical thickness given by the gradient-
enhanced model. In addition, our experience with the simulation of
thick-walled NiTi tubes indicates that opting for a relatively low value
of 𝐺 is necessary to preserve the subtle morphological pattern of
8

the transformation front, while still providing adequate regularization
effects.

Based on the above discussion, a small value of 𝜆 is employed in
numerical studies 1 and 2, hence a small value of 𝐺. At the same
time, in numerical study 3 which involves straight NiTi specimens,
an interface thickness equal to the finite-element size is considered,
𝜆 = 0.14 mm, which results in 𝐺 = 104 Pa mm2. Note also that the
finite-element mesh adopted to discretize the geometries is too coarse
to exclude all the possible numerical artifacts that may arise. However,
as confirmed by the results of our auxiliary simulations, the artifacts are
not severe enough to impose qualitative influences. As a side remark, it
is worth noting that in 2D problems, regularization is solely governed
by the gradient energy. Therefore, it is crucial to adjust carefully the
element size in relation to the theoretical interface thickness to ensure
a proper resolution of the interfaces (Yu and Landis, 2023).

Finally, the rationale behind the choice of the micromorphic param-
eter 𝜒 is that it must be adequately large to ensure a close correla-
tion between the local variable 𝜂 and the global unknown �̆� without
compromising the computational performance.

4.2. Numerical study 1: NiTi tube under non-proportional tension–torsion

An hourglass-shaped thin-walled NiTi tube of the total length of
𝐿0 = 75 mm was used in the experiment of McNaney et al. (2003). The
tube had an inner diameter of 3.9 mm throughout the entire length,
a wall thickness of 0.2 mm along the 25 mm central segment, and a
wall thickness of 0.37 mm elsewhere. The tube was subjected to both
proportional and non-proportional tension–torsion in a displacement-
control loading configuration with various combinations of maximum
axial and shear strains. The experiments were conducted at an ambient
temperature of 22◦ and the applied strain rate corresponded to nearly
isothermal conditions. The same setup is mimicked in the present
numerical study. To comply with the aim of the study, only non-
proportional loading is considered. Representative torsion-then-tension
and tension-then-torsion paths are examined, where the prescribed
shear strain 𝛾 is limited to 4% while the prescribed axial strain 𝜀 takes
two maximum values: 3% and 6%. The unloading phase in each path
is applied in a reverse order as that of loading. The tube is discretized
using elements with an in-plane size of 0.15 mm. To prevent overly
expensive computations, the mesh is coarsened outside the 25 mm
central segment, and only one element is used through the thickness.
Note that the reference values of the dissipation parameters for this
analysis are 𝑓c = 𝑓r = 3 MPa.

Following the convention of McNaney et al. (2003), the mechanical

responses are presented here in terms of the equivalent stress 𝜎eq and
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b

b

Fig. 4. NiTi tube under torsion-then-tension: the predicted equivalent stress–equivalent strain response compared with that from the experiment of McNaney et al. (2003). The
lue dashed lines represent the simulation results with no dissipation due to reorientation, i.e., 𝑓c = 6 MPa and 𝑓r = 0.
Fig. 5. NiTi tube under tension-then-torsion: the predicted equivalent stress–equivalent strain response compared with that from the experiment of McNaney et al. (2003). The
lue dashed lines represent the simulation results with no dissipation due to reorientation, i.e., 𝑓c = 6 MPa and 𝑓r = 0.
equivalent strain 𝜀eq, which are defined as

𝜎eq =
√

𝜎2 + 3𝜏2, 𝜀eq =
√

𝜀2 + 𝛾2∕3, (32)

where 𝜎 and 𝜏 denote, respectively, the nominal axial stress and the
nominal shear stress.

An important observation in the torsion-then-tension simulations
with a maximum axial strain of 6% was the occurrence of the so-
called helical buckling during unloading, which has not been reported
by McNaney et al. (2003). To avoid buckling, the thickness of the
tube in the 25 mm central segment has been increased to 0.25 mm
for this particular loading path. The case demonstrating the helical
buckling is thus removed from the main analysis in this section and
the corresponding results are deferred to Appendix A.

Fig. 4 illustrates the mechanical responses predicted by the model
for torsion-then-tension loading paths and compares them with those
from the experiment. For a comprehensive comparison, the responses
obtained without the reorientation dissipation are also included in
the figure, as indicated by dashed curves. It is evident at the first
glance that the incorporation of reorientation dissipation gives rise to
admirable results. The mechanical response displays two hallmarks: one
during loading when the maximum shear strain of 4% is attained and
9

the axial strain starts to apply, and the other during unloading when
the axial strain decreases towards zero. The significant stress varia-
tions linked to these two characteristic instants have been effectively
captured by the model, albeit with some quantitative discrepancies,
especially related to the underestimation of the stress rise during un-
loading. From the comparison in Fig. 4 it is clear that in the absence
of reorientation dissipation the model fails to capture properly the
two hallmarks of the mechanical response. On the other hand, in
tension-then-torsion loading paths, as depicted in Fig. 5, the simulation
results with and without the reorientation dissipation exhibit great
similarity. Minor differences can be observed between the responses
in the case with 3% of axial strain. In particular, sudden stress changes
at the beginning of reverse transformation during unloading have been
reproduced with reorientation dissipation, which are, however, visibly
less significant compared to the stress drop seen in the experiment. At
the same time, almost identical responses are predicted in the case with
6% of axial strain. In this case, the small hallmark at the beginning of
unloading is totally missed in the simulations.

The observations from Fig. 5 are supplemented by two important
remarks. Firstly, auxiliary analysis (results not shown here) has re-
vealed that the softening modulus 𝐻T visibly influences the magnitude
of the stress variations. As discussed previously, there exists a degree of
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Fig. 6. NiTi tube under torsion (4%) followed by tension (6%): the effect of the dissipation parameters 𝑓c and 𝑓r on (a) the equivalent stress–equivalent strain response and (b)
hear stress–axial stress response.
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lexibility in adopting the value of 𝐻T and its definitive determination
annot be based solely on the structural response in the experiment.
econdly, in the case with an allowable axial strain of 6%, nearly
ull transformation is achieved at the onset of applying the shear
train, which potentially explains the absence of stress variation in the
redicted response during unloading.

Next, the impact of the dissipation parameters 𝑓c and 𝑓r on the
imulation results is explored. The loading path chosen for this in-
estigation is torsion-then-tension with a maximum axial strain of
%. The reason for this choice is twofold. Firstly, unlike the case
ith a maximum axial strain of 3%, this case presents a localized
hase transformation, which is also intriguing to examine. Secondly,
s follows from Figs. 4 and 5, the role of the reorientation dissipation
echanism in torsion-then-tension scenario is more important than in

ension-then-torsion. Fig. 6(a) shows the mechanical responses in terms
f the equivalent stress–equivalent strain for various combinations of
c and 𝑓r. A systematic tendency is obviously found: the larger the
arameter 𝑓r, the more pronounced the characteristic stress variations.
o enrich the analysis, the mechanical responses in terms of the shear
tress–axial stress are also compared (Fig. 6(b)), highlighting the impact
f reorientation dissipation from a different viewpoint.

The discussion concludes with a comparison of the transformation
atterns for the cases with and without the reorientation dissipation, as
hown in Fig. 7. Transformation patterns are represented by the com-
onents of the Green–Lagrange finite-strain measure (a convention that
s consistently used in the subsequent studies). Noticeable differences
re discernible, particularly concerning the level of axial and shear
trains during the transformation, as well as the detailed morphology
f the transformation front in propagation. Since no information on the
ransformation pattern from the experiment of McNaney et al. (2003)
s available, the validity of the results in Fig. 7 remains elusive. A
etailed presentation of the simulation results for the case with 4%
f torsion followed by 6% of tension with dissipation parameters of
c = 𝑓r = 3 MPa is provided as a supplementary movie (S1).

.3. Numerical study 2: NiTi tube under bending

Pseudoelastic NiTi tubes exhibit an attractive phase transforma-
ion pattern when subjected to bending. As documented by Bechle
nd Kyriakides (2014), diamond-shaped martensite regions with high
train/curvature localization emerge on the tensioned side of the tube,
hich gradually spread and dominate over the whole length. Con-
ersely, the transformation on the compressed side of the tube is
10

s

niform, albeit not entirely so due to the high strain/curvature localiza-
ion effects on the tensioned side. The transformation is accompanied
y a plateau-type moment-curvature response that resembles the typi-
al response of NiTi specimens under tension. The intricate behavior of
iTi tube under bending is attributed to arise from the combined effects
f tube’s circular geometry and the tension–compression asymmetry
nherent in the material (Watkins et al., 2018).

The focus of this section is the analysis of a NiTi tube under
ure bending. The study draws upon the experiment of Bechle and
yriakides (2014) whose modeling was later performed by Jiang et al.
2017a). It is important to stress here that the success of such a
odeling endeavor hinges on the inclusion of martensite reorientation
issipation. Without it, the model fails immediately at the onset of
ocalized transformation. This failure is believed to result from the
ncontrolled growth of the transformation strain within the localization
one, leading to a form of local buckling in the tube that disrupts
he simulation. However, when the reorientation dissipation comes
nto play, the transformation strain evolves in a physically reasonable
anner, and this hinders the occurrence of buckling. In this section,

he simulation results based on the reference values of the dissipation
arameters 𝑓c = 𝑓r = 3.5 MPa are investigated first, with the aim
o demonstrate the capability of the model in capturing essential fea-
ures. Subsequently, the impact of the dissipation parameters on the
imulation results is examined.

Adhering to the specifications provided by Bechle and Kyriakides
2014), the tube under study possesses an outer diameter of 5.11 mm,
wall thickness of 0.625 mm, and a length of 2𝐿0 = 76.7 mm. In the

experimental setup, the tube underwent isothermal bending using a
custom-built device designed for pure bending. To mimic pure bending,
idealized boundary conditions are enforced here. Following Hallai and
Kyriakides (2011), the end sections are assumed to remain plane while
being free to ovalize. This constraint is expressed as

tan 𝜃end =
𝑥ref − 𝑥𝑖
𝑧ref − 𝑧𝑖

, (33)

where 𝑥𝑖 and 𝑧𝑖 denote the coordinates of the nodes located on the end
ections, 𝑥ref and 𝑧ref the coordinates of the corresponding reference
ode, and 𝜃end the prescribed rotation angle.

By leveraging the symmetry about the plane of bending, only one
alf of the cross section is simulated, with appropriate symmetry con-
itions enforced at the cut surface. The symmetry about the mid-span
an also be taken advantage of, so that only one quarter of the complete
eometry is simulated. To illustrate the significance of this symmetry
onsideration, the main simulation is performed twice, once with the
ymmetry disregarded and once with the symmetry exploited. These
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Fig. 7. NiTi tube under torsion (4%) followed by tension (6%): snapshots of the axial strain field 𝜀ZZ (a) and shear strain field 𝛾𝛩Z (b) for the simulations without and with the
dissipation due to martensite reorientation, respectively, with 𝑓c = 6 MPa and 𝑓r = 0 (snapshots on the left) and 𝑓c = 3 MPa and 𝑓r = 3 MPa (snapshots on the right).
Fig. 8. NiTi tube under bending: (a) comparison between the predicted bending moment–end rotation response with that from the experiment of Bechle and Kyriakides (2014)
and (b) comparison between the bending moment–end rotation responses obtained for the simulations with full tube and half tube.
cases are referred to, respectively, as ‘full tube’ and ‘half tube’ in the
sequel. A uniform finite-element mesh is adopted in the simulations
with equiaxed elements of the size 0.21 mm, i.e., 3 elements are
used through the thickness. Auxiliary simulations have confirmed the
adequacy of this mesh density, as a finer mesh density did not lead
to any appreciable improvement in the results. Note that to initiate
the transformation localization consistently in all the simulations, a
geometrical imperfection is introduced on the top edge close to the end
section.

Let us first delve into the simulation results of the full tube and
compare them with the experimental data. Figs. 8(a) and 9 depict the
predicted and experimental bending moment–end rotation responses
11
and phase transformation evolutions, respectively. The predicted me-
chanical response is normalized using the same variables 𝑀0 = 4790
N mm and 𝜅0 = 0.0032 mm−1 as those employed in the experiment,
see Table 1 of Bechle and Kyriakides (2014). Recall that the axial
component of the Green–Lagrange strain measure is used to represent
the transformation pattern. To accentuate the similarities between
the transformation patterns, the same color contour as that in the
experiment is used. Numerous similarities become immediately appar-
ent. Firstly, the upper and lower moment plateaus are well captured
by the model. Although, on average, the lower plateau exhibits a
slightly higher level of moment than that in the experiment, overall,
the agreement is good. Unlike the typical transformation evolution
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Fig. 9. NiTi tube under bending: comparison between (a) the predicted transformation evolution and (b) the transformation evolution observed in the experiment of Bechle and
Kyriakides (2014). The experimental snapshots are taken from the paper of Jiang et al. (2017a) (reproduced with permission from Elsevier). The numbers marking the simulation
snapshots correspond to those indicated on the mechanical response in Fig. 8(a).
observed in tension, the transformation under bending does not feature
a propagating front. Instead, individual martensite domains nucleate
continuously and turn into diamond-shaped pockets. A similar pattern
is observed during unloading. The raggedness of the moment plateaus is
indeed linked to this continuous domain nucleation and is qualitatively
comparable with that reproduced by the model. A notable difference
in the mechanical responses concerns the extent of the upper moment
plateau, which is larger in the predicted response. This observation
was also made in the modeling study of Jiang et al. (2017a). One
possible reason for this inconsistency is related to the extent of the
transformation regime in the material response under uniaxial compres-
sion. A close examination of Fig. 3 reveals that the structural response
in the experiment represents a nearly complete transformation under
compression, as the corresponding response is about to enter the stiff
branch of saturated martensite (Fig. 5 in Bechle and Kyriakides (2014)
clearly shows this nearly complete transformation). At the same time, in
the calibrated intrinsic response, the material still remains within an in-
complete transformation state under the maximum applied strain, with
a martensite volume fraction of about 𝜂 = 0.6. This is in fact due to the
limitation of the model that does not allow a full quantitative calibra-
tion of the intrinsic responses in both tension and compression, see the
related discussion in Rezaee-Hajidehi and Stupkiewicz (2023). Another
12
noticeable and delicate difference in the mechanical responses is that
the experimental curve shows a moment increase between instants 3
and 4 (as indicated by the arrow in Fig. 8(a)). This is likely related to
the saturation of the transformation in the high-curvature region of the
tube, which is followed by an elastic deformation throughout the tube.
As transformation nucleates in the other end of the tube, the moment
drops and continues along the original plateau. This feature has not
been captured in the model prediction.

Regarding the transformation evolution, the resemblance to the
experiment is striking, with many essential features being well cap-
tured. One particularly interesting feature is the co-existence of high-
curvature and low-curvature regions, clearly evident in the deformed
tube configuration, see e.g., snapshots 3 or 11 in Fig. 9. This aspect
is further discussed later on. On the other hand, one notable disparity
lies in the manner in which the martensite domains spread throughout
the entire tube during loading. In the simulation, the transformation
proceeds via the formation of diamond-shaped pockets of martensite
that are visibly separated from each other. The spaces between the
pockets are then filled by smaller and more randomly oriented domains.
In the experiment, however, such clear spacing between the individual
pockets is not as prominent. For a more comprehensive visualization
of the transformation evolution, refer to the supplementary movie S2
accompanying this paper.
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Fig. 10. NiTi tube under bending: comparison between the transformation evolutions in the simulations with (a) full tube and (b) half tube. For the ease of comparison, the half
tube is reflected along the plane of symmetry (mid-span) and is shown as full. The snapshots correspond to nearly the same prescribed angle 𝜃end.
The assumption of symmetry about the mid-span is a common prac-
tice in modeling tube specimens under bending (Hallai and Kyriakides,
2011; Jiang et al., 2017a; Kazinakis et al., 2021; Frost et al., 2021).
Here, as a side analysis, the implications of enforcing this symmetry
on the results are explored. Figs. 8(b) and 10 compare the simulation
results between the full tube and half tube configurations, with the
latter implementing this symmetry consideration. Fig. 8(b) reveals two
marked differences in the mechanical response. The major one concerns
the value of the transformation-onset moment during unloading and
the level of ensuing moment plateau, which are lower in the half
tube simulation. Additionally, the number of oscillations within the
ragged plateaus in the half tube simulation is visibly lower than that
in the full tube. This is mostly the consequence of halving the tube
in length, and hence reducing the number of domain nucleations. The
comparison of the transformation evolutions in Fig. 10 suggests that
the prediction made by half tube configuration is reasonably accurate,
as the main features are correctly captured. However, one point that
deserves further attention regards the distribution of curvature along
the tube’s length. In the full tube simulation, the division of the tube
into high-curvature and low-curvature zones is evident. Such a division
is not possible in the half tube configuration, as the tube lacks sufficient
freedom to accommodate it. This aspect is reflected in the distribution
13
of slope 𝜃 along the tube’s length in Fig. 11 (the distribution of curva-
ture can be readily envisioned from the distribution of slope). The top
fiber of the tube, which is under maximum tension, is chosen for this
analysis. Setting aside the local slope variations, it can be seen that as
the loading increases/decreases the slope in the half tube configuration
increases/decreases in a somewhat more uniform fashion compared to
the full tube. The co-existence of high- and low-curvature zones in the
full tube can be conceived from the overall trend of the graphs as well
as the asymmetry of the graphs about the centerline, see the magnified
views in Fig. 11(a,b).

Finally, the impact of the dissipation parameters 𝑓c and 𝑓r on
the simulation results is discussed. In view of the high computational
cost associated with full tube simulation, the related computations
are conducted for the half tube configuration. Given the proportional
nature of the bending loading, it is expected that the martensite reori-
entation does not play a major role in shaping the phase transformation
pathway, hence minimal qualitative impact. The results are illustrated
in Figs. 12 and 13. It follows that the changes mainly manifest in the
distribution and amplitude of moment oscillations in the mechanical
response as well as in the subtle details of the transformation mor-
phology. However, identifying a systematic pattern of changes is likely
infeasible.
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Fig. 11. NiTi tube under bending: distribution of the slope along the tube at various stages of loading and unloading for (a,b) full tube and (c,d) half tube. The numbers in the
legends correspond to the deformation stages shown in Fig. 10. For the ease of comparison, the plots related to half tube are reflected along the plane of symmetry (mid-span)
and are shown as full. The vertical dashed line indicates the mid-span of the undeformed tube.
Fig. 12. NiTi tube under bending: bending moment–end rotation response obtained
for different combinations of dissipation parameters 𝑓c and 𝑓r.
14
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4.4. Numerical study 3: on the striations of the transformation front

It has been frequently observed in the experiments involving NiTi
straight/tube specimens under tension-dominated loading that faint
striations1 are left behind at the wake of a traveling phase trans-
formation front, in particular when the front features a criss-cross
pattern (as in straight samples) or a multi-finger pattern (as in tube
geometries) (Kim and Daly, 2011; Bechle and Kyriakides, 2014; Reed-
lunn et al., 2014, 2020; Shariat et al., 2022). Fig. 14, reproduced
from Shariat et al. (2022), showcases the presence of front striations in
a NiTi dog-bone specimen under tension. The revelation of striations
has been facilitated by the use of Digital Image Correlation (DIC)
technique, which unveils the very fine details of the transformation evo-
lution pattern, although hints on their existence were noted in earlier
studies that did not employ the DIC technique (Shaw and Kyriakides,
1997). Despite their ubiquitous presence, scant attention has been given
to the origin and characteristics of striations. The general consensus is

1 The term ‘striations’ is adopted here following the terminology
f Reedlunn et al. (2014, 2020).
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Fig. 13. NiTi tube under bending: predicted transformation pattern for different combinations of dissipation parameters 𝑓c and 𝑓r. The numbers marking the snapshots correspond
to the same end rotations as those indicated on the mechanical response in Fig. 8.
Fig. 14. Phase transformation evolution recorded in the experiment of Shariat et al. (2022): (a) representative snapshots of the transformation pattern during loading and (b)
details of the transformation pattern at the end of loading, displaying clearly the striations. In both panels, the transformation is represented by the axial strain field, however,
the color scale used in panel (b) is manipulated to enhance the visibility of striations. The figure is reproduced with permission from Elsevier.
that striations represent regions of incompletely transformed marten-
site, which may eventually reach saturation at higher stresses. In our
previous study (Rezaee-Hajidehi and Stupkiewicz, 2023), we argued
that striations emerge as a result of a distinct evolution pathway within
the front fingers and their surroundings, indicating a different evolution
of the transformation strain. This implies that a model that accurately
captures the evolution of the transformation strain can effectively
describe the striations. In the present framework, this is made feasible
by the incorporation of the martensite reorientation dissipation. In fact,
the goal of this investigation is to highlight the role of martensite
reorientation dissipation in predicting the striations.

The NiTi dog-bone specimen in the experiment of Shariat et al.
(2022) was examined under isothermal uniaxial tension in a
displacement-control loading mode. The dog-bone had a gauge length
of 𝐿0 = 30 mm, a gauge width of 5 mm and a thickness of 0.22 mm.
The same setup is employed in this study. The dog-bone geometry is
discretized uniformly within the gauge segment using elements of an
in-plane size of 0.14 mm. To optimize the computational effort, only
one element is used through the thickness. In addition, the mesh is
made coarser within the clamping segments which do not participate
in the transformation. Idealized boundary conditions are imposed:
displacements at the bottom surface are fully constrained, while at
the top surface, lateral displacements are constrained and the axial
displacement 𝛿 is prescribed. To provoke the localization of a single
martensite band, a geometrical imperfection is placed at the bottom
end of the gauge segment. The analysis begins by examining the case
with the reference pair of dissipation parameters, 𝑓 = 𝑓 = 3 MPa,
15
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to establish a baseline for subsequent comparisons. The analysis is
then extended to explore the impact of dissipation parameters on the
evolution of striations.

Fig. 15 presents the mechanical response alongside selected snap-
shots of the predicted transformation pattern during loading and un-
loading. The mechanical response is expressed in terms of the average
axial stress 𝑃∕𝐴0 versus the normalized elongation 𝛿∕𝐿0, with 𝑃 and
𝐴0 denoting the axial force and initial cross-section area, respectively.
A rich color-scale is utilized for a vivid illustration of the transfor-
mation pattern, enabling a clear identification of the striations. The
results show a strong correlation with the experimental counterpart,
see Fig. 14 for the comparisons of the transformation patterns. Initially,
the transformation features a single traveling inclined interface that
persists until a normalized elongation of about 3%. Afterwards, the
front transitions into a criss-cross configuration characterized by alter-
nating left-handed and right-handed fingers. As a consequence of this
transition, the stress plateau in the mechanical response changes from a
smooth appearance to a ragged appearance. During unloading, a similar
front transitioning occurs in a reverse sequence, with the front initially
adopting a criss-cross configuration shrinking simultaneously from both
ends, and later reforming into inclined interfaces that persist for the
remainder of the reverse transformation. Of particular importance is the
manifestation of striations within the transformed domain that extend
over the criss-cross route. Consistent with the experiment, striations
exhibit an approximately 0.5% of higher axial strain with respect to
the surroundings.
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Fig. 15. NiTi dog-bone under uniaxial tension: (a) mechanical response and (b) transformation pattern. The experimental response in panel (a) refers to Shariat et al. (2022), and
the corresponding transformation pattern is depicted in Fig. 14.
Fig. 16. NiTi dog-bone under uniaxial tension: a more detailed look at the transformed
domain at the end of loading for different combinations of the dissipation parameters
𝑓c and 𝑓r.

The striations form when a criss-cross propagation mode is active.
The criss-cross propagation is a self-adjusting mechanism in response to
the excessive misalignment of the specimen and the ensuing intolerable
in-plane bending moment. The alternating arrangement of the criss-
cross fingers acts as a corrective measure to straighten the specimen
and mitigate the bending moment, as discussed by Shaw and Kyriakides
(1997), Jiang et al. (2017b) and Shariat et al. (2022). The right-handed
and left-handed fingers are associated with shear strains of opposing
directions, an observation which is in line with the experimental find-
ings of Shariat et al. (2022), see Fig. 4 therein. Indeed, the formation
of striations can be intuitively linked to the evolution of shear strains:
the larger the shear strains, the more pronounced the striations. This is
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illustrated in Figs. 16 and 17 that compare, for different combinations
of the dissipation parameters 𝑓c and 𝑓r, the transformed domain at
the end of loading and the distribution of the shear strain 𝛾𝛩Z along
the centerline of the dog-bone, respectively. For a clear illustration in
Fig. 16, the color scale covers only the highest 1% of axial strain 𝜀ZZ.
It can be seen that as the dissipation parameter 𝑓r increases, so does
the amplitude of shear strain, and thereby, the striations become more
pronounced. While, for 𝑓r = 0 with no reorientation dissipation, shear
strain is relatively negligible and no trace of striations is visible.

As discussed earlier in this section, striations are commonly per-
ceived as areas of incomplete martensitic transformation. It is thus
intriguing to examine the evolution of martensite volume fraction 𝜂
within the zone of striations. Interestingly, results show no sign of non-
uniformity of 𝜂 within the zone of striations during loading. However,
at the onset of reverse transformation during unloading, a non-uniform
distribution of 𝜂 becomes evident. The non-uniformity is insignificant
and the related results are not explicitly reported here. To further
investigate this aspect, another set of simulations are performed on
a NiTi strip with material parameters identical to those of the dog-
bone and dimensions equal to its gauge segment. The objective is to
allow the transformation to spread throughout the entire specimen and
then analyze the potential impacts on the distribution of the martensite
volume fraction 𝜂 during unloading. To achieve this, less restrictive
boundary conditions permitting lateral displacement of the strip are
imposed. The corresponding results are presented in Fig. 18. Similar
to the dog-bone, the transformation evolves in the form of a criss-cross
pattern during loading, see Fig. 18(a). An interesting non-uniformity
of 𝜂 is observed that appears abruptly and immediately at the onset of
the reverse transformation, see Fig. 18(b). The non-uniformity adapts
the pattern of striations and becomes more severe as the dissipation
parameter 𝑓r is increased. As a result of this non-uniformity, the reverse
transformation consistently initiates from the top edge of the strip. In
contrast, in the case of 𝑓r = 0 with a uniform distribution of volume

fraction 𝜂, the reverse transformation is triggered at the position of the
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Fig. 17. Distribution of the shear strain 𝛾𝛩Z along the centerline of the dog-bone at the end of the loading stage. The plot corresponds to the gauge segment of the dog-bone.
Fig. 18. NiTi strip under uniaxial tension: (a) the transformation pattern during loading for the reference dissipation parameters 𝑓c = 3 MPa and 𝑓r = 3 MPa, and (b) the effect of
the dissipation parameters 𝑓c and 𝑓r on the pattern of the martensite volume fraction at the onset of the reverse transformation during unloading. The numbers in panel (a) refer
to the same overall elongations as those indicated in Fig. 15(a).
imperfection. A detailed account of the simulation results for the case
with 𝑓c = 2 MPa and 𝑓r = 4 MPa is provided as a supplementary movie
(S3).

The discussion concludes by noting that in addition to martensite
reorientation dissipation, an intrinsic stress–strain response with an ad-
equate nonlinearity within the transformation regime also contributes
to the formation of striations. To further look into this, an additional
simulation has been conducted with a nonlinear intrinsic response,
similar to that employed in our previous study (Rezaee-Hajidehi and
Stupkiewicz, 2023). As expected, the results reveal a non-uniform
distribution of 𝜂 within the striations zone during both loading and
unloading. Striations are also, to some extent, affected, in terms of
both the evolution pattern and the strain amplitude. For brevity, the
corresponding snapshots are not reported here.

5. Conclusion

To reliably predict the phase transformation behavior under arbi-
trary loading conditions, it is crucial that the SMA constitutive model
is capable of accurately capturing the evolution of the transforma-
tion strain. Specifically, the model must adequately account for the
martensite reorientation effects. This necessity is further substantiated
by the occurrence of transformation localization, as a result of which
the material points undergo complex non-proportional stress/strain
paths even under a macroscopically proportional loading. In light of
these considerations, an advanced model of pseudoelasticity is devel-
oped in this work. The model extends the constitutive description
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proposed by Stupkiewicz and Petryk (2013). A new rate-independent
dissipation potential is formulated that assigns dissipation to the evo-
lution of martensite volume fraction and transformation strain. The
finite-element implementation of the model relies on the augmented
Lagrangian treatment of the non-smooth minimization problem. Thanks
to the micromorphic regularization, the resulting computational com-
plexities are taken care of efficiently at the local (integration-point)
level.

The constitutive description of the model encompasses tension–
compression asymmetry and transverse isotropy of the transformation
strain. These features, along with the newly introduced dissipation po-
tential, deliver a unique model of pseudoelasticity, capable of address-
ing a broad range of applications, including non-proportional loading
conditions. In this regard, three numerical studies have been con-
ducted and their outcomes are summarized below. (i) The model has
successfully captured the complex stress response of the NiTi tube un-
der non-proportional tension–torsion. In tension-then-torsion scenarios,
where the transformation localization prevails, the predicted martensite
reorientation effects are less pronounced compared to torsion-then-
tension. (ii) The model has well reproduced the intriguing diamond-
shaped phase transformation pattern of the NiTi tube subjected to pure
bending. The simulated structural features were in a good agreement
with the experimental findings of Bechle and Kyriakides (2014), espe-
cially when the ideal mid-point symmetry condition is not imposed.
(iii) Lastly, the controlling role of the martensite reorientation on
the striations of the transformation front has been pinpointed. The

reorientation effects come into action due to the complex deformation
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Fig. A.1. NiTi tube under torsion (4%) followed by tension (6%) exhibiting helical
buckling: snapshots of the axial strain field 𝜀ZZ (a) and shear strain field 𝛾𝛩Z (b) for
the simulation with the dissipation parameters 𝑓c = 3 MPa and 𝑓r = 3 MPa.

path of the front fingers. This modeling study is apparently the first
time that a detailed analysis is performed on the front striations.
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Appendix A. NiTi tube under torsion-then-tension: occurrence of
helical buckling

A curious result emerged in the study in Section 4.2: the tube
unexpectedly buckled when subjected to 4% torsion followed by 6%
tension. This buckling was not reported in the experiment of McNaney
et al. (2003), and interestingly, it occurred during unloading. In this
appendix, the results of the buckled tube are briefly discussed.

Figs. A.1 and A.2 depict the snapshots of the deformed tube con-
figuration overlaid with contours of axial and shear strain fields, and
the mechanical response of the tube, respectively. Upon comparing the
18
Fig. A.2. NiTi tube under torsion (4%) followed by tension (6%): comparison of the
mechanical responses for the reference case and the case that exhibits buckling. The
reference case is the one for the thicker tube analyzed in Section 4.2.

phase transformation evolution with that of the thicker tube in the
reference simulation (see Fig. 7), it becomes apparent that the trans-
formation evolutions are identical until more than halfway through
tensile unloading. It is at this point, at about an axial strain of 𝜀 = 2%,
that the tube experiences a buckling instability, in the form of a helical
deformation. Accompanied by this, the equivalent stress 𝜎eq declines,
which eventually results in a noticeable bump shape in the mechanical
response.

A peculiar observation in this analysis is that the helical buckling
does occur during unloading. A closer inspection of the transforma-
tion pattern reveals that a mild phase transformation inhomogeneity
exists at the onset of helical buckling, which may have stimulated
the buckling. It is also worthwhile to mention that the finite-element
simulations of the tube involve certain simplifications compared to
real experimental conditions. Notable among them is the absence of
residual stresses that are typically present in drawn tubes. As discussed
by Rodríguez and Merodio (2016), depending on the magnitude of
the residual stresses and the sign of the eigenstrains they induce,
helical buckling can be facilitated or hindered. Nevertheless, an in-
depth analysis of the helical buckling is not pursued here, as it falls
beyond the scope of the current study.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.euromechsol.2024.105376.
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