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Abstract. We show that the Soft Actor-Critic Reinforced Learning algorithm
is able to find efficient motion patterns for a hyper-redundant robot consist-
ing of 6 identical modules connected in a chain like fashion. The control
is done by applying relative angular velocities between the modules. Anal-
ogous system has been studied before in the context of a robotic trunk-like
manipulator.
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1. Introduction

Biological snakes are extremely well adapted for different environments. This
is mostly the result of the high redundancy of the snake mechanisms. In many in-
stances of irregular environments the bio-inspired robots outperform conventional
wheeled, legged or tracked robots. The snake-resembling robots are researched
already for a few decades. This type of locomotion has been studied already in
the 1940s [1], and a half century later, its rigorous mathematical model has been
developed. In the late 90’s, a trunk-like locomotors and manipulators have been
introduced in [2].

A number of various snake-like robots have been built [3]; most of the designs
were intended for crawling on ground [4, 5, 6, 7, 8], some of them for swimming
[9, 10], and even fewer for both swimming and crawling on the ground [11, 12].
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Snake-like robots are also developed in the context of space applications. In partic-
ular, NASAs Exobiology Extant Life Surveyor (EELS) [13] – somehow mechan-
ically similar to the robot discussed here – is being designed for operation in icy
crust of Saturn’s moon Enceladus (however, EELS, has many potential down-to-
Earth application as well).

Fig. 1 shows one of modular snake robots developed in Biorobotics Lab at the
Carnegie Mellon University, which is not only capable of crawling on the ground
but can also climb vertical posts (for more information see [14]).

Figure 1. Modular Snake Robot “Uncle Sam”. From the left: the module, the robot
and the tree climbing action. Photographs©2010 Biorobotics Lab at the Carnegie
Mellon University.

For a concise overview of other biological inspirations for robot concepts see [15].

2. Extremely Modular Hyperredundant Robot

The snake robot presented here is based on Arm-Z, which is a concept of
robotic manipulator introduced in [16] composed of congruent modules each hav-
ing one degree of freedom (1-DOF) - a relative twist. In principle, each module
is defined by the following parameters: size r, offset d, and ζ, that is the angle
between upper (T) and lower (B) faces of the module. s (slenderness), is an addi-
tional parameter, i.e. a d to r ratio. Fig. 2 shows the geometrical interpretation of
these parameters and the early, functional prototype.
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Figure 2. On the left: visualization of the Arm-Z unit defined by three parameters:
r, d and ζ. On the right: an early functional prototype of the Arm-Z manipulator
with partial chain of congruent units.

For more information on the concept of Arm-Z including its folding study see
[17], for early successful implementations of meta-heuristics to control of Arm-Z
see [18], for documentation of several preliminary prototypes see [19, 20]. The
domain of robotic locomotion traditionally uses classical methods designed to ad-
dress the intricate challenges of enabling robots to navigate their surroundings.
Conventional approaches involve specifically engineered control systems and pre-
defined algorithms. However, despite these classical methodologies, locomotion
in complex and dynamic environments remains difficult due to the inherent uncer-
tainties and mathematical problems related to kinematic and inverse kinematics.
The difficulties in modeling and adapting to diverse terrains, unforeseen obstacles,
and dynamic scenarios underscore the need for innovative solutions. Reinforce-
ment learning (RL) emerges as a compelling alternative, offering the capability to
learn adaptive locomotion strategies through interaction with the environment and
it has been successfully applied in many cases [21]. Due to the non-trival kinemat-
ics and possible ways of interaction with the environment, it is tempting to verify
if RL can be used to control the hyper-redundant manipulator so as to enable its
horizontal movement on the ground.

3. The model and results
Choosing the right physics engine is of fundamental importance for effective RL
in robotics. The physics engine acts as the virtual playground for agents to learn
and interact, impacting training accuracy and efficiency. For the results presented
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here, PyBullet [22] was use due to its accuracy in modeling physical interactions,
computational efficiency, and open source nature. The mass of each module is
assumed to be 1kg and the radius R = 1m. The friction parameters for the flat
ground are lateral=1.0, rolling=0.5, spinning=0.9. Using these values PyBullet
calculates “real physical” coefficients of friction during contact.

Figure 3. Images rendered by the physics engine representing the robot (alternating
colors were chosen to distinguish the modules). Left: the initial state, right the state
at timestep=70.

States of the system is described by a vector S = [s1, . . . , s5] in this case, since
there are 6 modules and therefore 5 relative twists between them, described as si

[rad]. The observation of the model is assumed to be simply S . Actions consist
of expected angular velocities A = [ω1, . . . ω5], the maximum allowed velocity
is ±1rad s−1. The physics engine applies torque in order to achieve the desired
angular velocity, the maximum allowed value of torque is 100 [N m].

As the RL algorithm, the Soft Actor-Critic (SAC) off-policy [23] was chosen in
the discussed case and its implementation in Stable-Baselines3 [24]. SAC has been
successfully applied to a number of interesting problems, including navigation of
mobile robots [25]. After basic hyperparameter tuning, the following parameters
were applied for learning: learning rate=7.3e-4, batch size=256, γ=0.98, τ=0.02,
train freq=8, and SDE were used. The same network architecture (256,256) was
used for both the actor and the critic. At each step the physics engine simulates 0.5s
during which the torques are applied and contact points and frictions are handled.
The reward is simply the sum of the distanced of module centers from the center
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of the coordinate system. It rewards strategies generating fast motion in a straight
line. Initially the robot lies flat si = π along the y axis (Fig. 3 left). During the
learning process the assumed maximal time horizon is 200 time steps. After about
100k steps of training the model is trained in the sense that the average return does
not improve. The model described below is the best in 1M steps (5k episodes).

Figure 4 depicts actions and states in the first 100 steps generated by the model
from the initial state. It is evident that - after the initial transition - a rather sim-
ple velocity pattern emerges which basically constitutes of two configurations.
Switching between these two states leads to motion along almost straight line.

Figure 4. Reward, corresponding actions ωi, states si and a the projection of the
module 6 center onto the (x, y) plane during first 30 or 100 timesteps (correspond-
ing to 15 or 50 s).
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4. Conclusions

It has been shown that – by means of RL methods – it is possible to obtain
motion patterns generating horizontal movement on the ground of the discussed
robot. Further study will focus on models with larger number of modules as well as
incorporating more control regarding movement direction. Study against module
failure will be performed. Current simulations lack any random fluctuations of the
environment (except the random nature of the RL control algorithms) which might
have significant impact on the effectiveness of the RL algorithms. Our ongoing
research is focused on learning with simulations in more complex, random, hilly
terrain and additional noisy perturbations in the control process. Additionally,
work on physical prototype of the robot will be continued which will also make
possible to perform simulations for RL with more realistic physical properties.
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