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A B S T R A C T

Localization of the stress-induced martensitic phase transformation plays an important role in the fatigue
behavior of shape memory alloys (SMAs). The phenomenon of return-point memory that is observed during
the subloop deformation of a partially-transformed SMA is a clear manifestation of the interaction between
localized phase transformation and degradation of the functional properties. The present study aims to
demonstrate this structure–material interaction in the modeling of return-point memory. It seems that this
crucial aspect has been overlooked in previous modeling studies. For this purpose, we developed a gradient-
enhanced model of pseudoelasticity that incorporates the degradation of functional properties in its constitutive
description. The model is employed to reproduce the hierarchical return-point memory in a pseudoelastic NiTi
wire under isothermal uniaxial tension with nested subloops. Additionally, a detailed analysis is carried out for
NiTi strip with a more complex transformation pattern. Our study highlights the subtle morphological changes
of phase transformation under different loading scenarios and the resulting implications for return-point
memory.
1. Introduction

The practical interest in shape memory alloys (SMAs), especially
NiTi, stems from their ability to withstand and recover large strains.
This ability is exhibited through mechanical loading and unloading
at sufficiently high temperatures (pseudoelasticity) or through me-
chanical loading and unloading followed by heating (shape memory
effect). The underlying mechanism is the crystallographically reversible
martensitic phase transformation that occurs between the austenitic
parent phase (stable at higher temperatures, possessing higher crystal
symmetry) and the martensitic product phase (stable at lower tem-
peratures, possessing lower crystal symmetry) [1]. By leveraging the
unique characteristics of SMAs, they have found a broad range of
applications across various fields, from micro-scale biomedical devices
to macro-scale industrial components [2,3]. The operational lifespan
of SMAs in most of the applications involves enduring cyclic me-
chanical/thermal loadings, which highlights the great importance of
identifying their fatigue behavior. It is well-recognized that, due to
the martensitic phase transformation, fatigue in SMAs is more com-
plex than in common engineering metals and is mainly classified into
two aspects: degradation of functional properties (such as recover-
able strain, transformation stress, and hysteresis loop area), known
as functional fatigue, and the evolution of damage in the material,
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known as structural fatigue [4]. This complex nature demands special
attention and, as a result, has prompted a tremendous number of
studies that focus on the fatigue characterization of SMAs from a va-
riety of perspectives and on the underlying micromechanical processes
[3–13].

Stress-induced martensitic transformation in pseudoelastic NiTi ap-
pears (typically, in tension-dominated loadings) as localized instabil-
ities in the form of martensite bands, and subsequently progresses
via propagation of the instabilities in the form of patterned interfaces
(macroscopic transformation fronts) that separate the domains of low-
strained austenite and high-strained martensite, e.g., [14–17]. Due to
the high strain incompatibilities that exist within the transformation
front and the ensuing large local stresses, it can be reasonably inferred
that propagating instabilities can vitally influence both the functional
fatigue and structural fatigue of the material. Despite the longstanding
recognition of this crucial aspect [4,18–21], its direct validation was
provided only a few years ago in the experiments conducted by Zheng
et al. [8,22,23]. It was demonstrated that in view of the repetitive
nucleation and propagation of the localized transformation in NiTi
strips under cyclic uniaxial tension, a rapid degradation of pseudoe-
lasticity occurs that accelerates the fatigue crack initiation and fatigue
failure.
vailable online 20 July 2024
020-7403/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.ijmecsci.2024.109569
Received 17 January 2024; Received in revised form 10 July 2024; Accepted 12 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ly 2024

https://www.elsevier.com/locate/ijmecsci
https://www.elsevier.com/locate/ijmecsci
mailto:mrezaee@ippt.pan.pl
mailto:maciej.rys@ncbj.gov.pl
https://doi.org/10.1016/j.ijmecsci.2024.109569
https://doi.org/10.1016/j.ijmecsci.2024.109569
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2024.109569&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Mechanical Sciences 282 (2024) 109569M. Rezaee-Hajidehi and M. Ryś
Fig. 1. Return-point memory in NiTi wire subjected to uniaxial tension with three nested subloop paths: (a) the structural stress–strain response, and (b) hypothetical schematics
of the corresponding transformation front evolution. The stress–strain response in panel (a) is reproduced from Tobushi et al. [24] (courtesy of R. Matsui). The red arrows in panel
(b) indicate the trajectory of the front propagation, and the color scales quantify the recurrence of the front’s traversal over the wire’s segments.
An interesting manifestation of the interaction between propagating
instabilities and functional degradation is found in the subloop defor-
mation of a partially-transformed SMA specimen under displacement-
control loading. The subloop deformation has been extensively inves-
tigated experimentally, notably for NiTi [18,19,23–26] but also for
other SMAs [27,28]. Fig. 1(a), reproduced from Tobushi et al. [24],
depicts the mechanical response of a NiTi wire subjected to nested
subloop paths. For a more intuitive description of the phenomenon,
hypothetical schematics of the corresponding transformation front evo-
lution are provided in Fig. 1(b). As the front propagates along the
wire, it leaves behind transformation-induced microstructural defects,
such as dislocations and stabilized (locked-in) martensite. During the
subloop unloading (for instance, the first subloop, which starts at point
A), the front travels backward over an already swept zone (from A to
B), hence intensifying the generated defects. Accordingly, during the
subloop reloading, the propagation of the front over the twice-swept
zone occurs with a lower stress level compared to the original transfor-
mation plateau. Upon entering the pristine zone (at point A), which is
virtually free of transformation-induced defects, the front experiences
the transformation-onset stress characteristic to the initial material
state. This causes the stress to catch up with the original plateau by
passing through the subloop unloading point. This trait is known as the
return-point memory. The process repeats in the subsequent subloops
and culminates in an intriguing hierarchical return-point memory.

Motivated by the experimental results, numerous attempts have
been made to develop SMA models capable of capturing the phe-
nomenon of return-point memory during the subloop deformation,
either through incorporating the permanent strain contribution and
degradation of functional properties [29–32] or by merely refining the
constitutive equations of (non-cyclic) model of pseudoelasticity [25,33,
34]. In fact, a physically-relevant approach for modeling the return-
point memory should hinge on the interaction between the propagating
instabilities (structural inhomogeneities) and the functional degrada-
tion of the material. Nevertheless, most of the existing models (in-
cluding those referenced above) postulate a homogeneous martensitic
phase transformation, while addressing a problem with a transfor-
mation of localized nature. Albeit this simplifies the computations
significantly, it is not a plausible assumption in the present context.
To the best of our knowledge, the only related modeling study that
has accounted for this structure–material interaction is the 1D model
of Bartel et al. [32]. In their model, however, instabilities do not
2

originate from a softening-type intrinsic material response but are
rather treated as weak displacement discontinuities that separate the
transformed and untransformed material points (indeed, experiments,
e.g., [35,36], have confirmed that the true intrinsic response of NiTi is
characterized by a significant softening branch). It should be remarked
that recently Xiao and Jiang [37,38] have acknowledged this structure–
material interaction in their simulations, however, their applications
did not specifically pertain to the subloop deformation and return-point
memory.

In light of the above premise, this work aims to provide a detailed
analysis of the phenomenon of return-point memory by accounting
for the interaction between propagating instabilities and the degra-
dation of the functional properties of the material. To achieve this,
a gradient-enhanced model of pseudoelasticity with functional degra-
dation is developed in this work. The model is formulated within
the small-strain theory. The basic structure of the model follows the
non-gradient model of pseudoelasticity developed by Stupkiewicz and
Petryk [39] and is based on the energy minimization principle. The
gradient-enhancement, micromorphic regularization, and thermome-
chanical coupling are adopted from our previously-developed gradient-
enhanced model [40,41]. This previous model has demonstrated its
capability in reproducing the complex patterns of phase transformation
in pseudoelastic NiTi specimens under uniaxial tension [41], including
the effect of loading rate and latent heat of transformation on marten-
site domain formation, and in pseudoelastic NiTi tubes under combined
tension–torsion [42,43]. The main advancement of the model in the
present work compared to the previous version lies in the incorporation
of permanent inelastic strain and the enrichment of the constitutive
equations with functional degradation effects. Consequently, given its
ability to treat localization effects via gradient-enhancement and mi-
cromorphic regularization, the model can be considered a suitable tool
for addressing problems where both cyclic loading and transformation
localization are at play.

In what follows, we introduce the model in Section 2. The model
is employed to analyze the problem of subloop deformation in NiTi
wire and strip under uniaxial tension. The corresponding results are
presented and discussed in Section 3. Concluding remarks are given in
Section 4. In addition, a simplified version of the model is provided
in Appendix.

2. A small-strain model of pseudoelasticity with functional degra-
dation

The present model falls in the category of phenomenological mod-
els. Accordingly, the constitutive relations are tailored, in a simple



International Journal of Mechanical Sciences 282 (2024) 109569M. Rezaee-Hajidehi and M. Ryś

𝜂

p

𝜺

u

T
c
f

𝑔

I
t
d

𝐼

a

𝑎

a
d

phenomenological manner, to mimic the pseudoelasticity degradation
effects. Since the focus of this study is on the analysis of the return-point
memory, which is relevant at the macroscopic scale, a phenomeno-
logical description seems to adequately fulfill the intended purpose.
In Section 2.1, we introduce the constitutive model in an isother-
mal format. Subsequently, in Section 2.2, micromorphic regularization,
thermomechanical coupling, and finite-element implementation are
briefly discussed.

2.1. Constitutive model

We begin the model description by noting that functional fatigue
in SMAs is typically attributed to a number of mechanisms. Among
them, generation of dislocation slip [4,44], formation of stabilized
martensite [21,45] and non-transforming austenite [45,46] are the
most likely involved mechanisms. In the present model, a subdivision
into the possible mechanisms and their mutual interaction is not at-
tempted, instead, they are unitedly represented by phenomenological
evolution equations, and are directly linked to the martensitic phase
transformation through the accumulated martensite volume fraction
𝜂acc. In line with this notion, the inelastic mechanism responsible for
functional degradation is herein denoted as transformation-induced
plasticity (TRIP).

The material state at each point is characterized by two quantities,
namely the total strain 𝜺 = 1

2

(

∇𝒖 + (∇𝒖)T
)

, with 𝒖 as the displace-
ment vector, and the martensite volume fraction 𝜂. The total strain is
additively decomposed into

𝜺 = 𝜺e + 𝜺t + 𝜺p, (1)

where 𝜺e denotes the elastic contribution, 𝜺t denotes the martensitic
transformation contribution and 𝜺p is the permanent strain associated
with TRIP. At the same time, it is assumed that a fraction of martensite
stabilizes during the martensitic transformation and does not transform
back to austenite. Hence, the martensite volume fraction 𝜂 is split into
the reversible part 𝜂rev and irreversible part 𝜂ir, viz.,

𝜂 = 𝜂rev + 𝜂ir, (2)

and the following inequality constraints hold,

0 ≤ 𝜂ir ≤ 𝜂 ≤ 1 ⟹ 0 ≤ 𝜂rev ≤ 1 − 𝜂ir. (3)

The material is in the fully austenitic state when 𝜂 = 𝜂rev = 0 and is in
the fully martensitic state when 𝜂 = 1. Nevertheless, once the material
starts transforming to martensite from a pristine austenitic state, 𝜂ir

becomes immediately nonzero, as indicated by Eqs. (4)–(6) below, and
thereby, a fully austenitic state will not be recoverable.

It has been repeatedly observed in the experiments that the degrada-
tion of pseudoelasticity in conventional polycrystalline NiTi are mostly
pronounced during the first tens of cycles, gradually diminishing and
eventually reaching saturation as the material passes the so-called
shakedown stage, e.g., [22,47,48]. In view of this general consensus,
we adopt the assumption that both the irreversible volume fraction 𝜂ir

and the permanent strain 𝜺p follow exponential-type evolution laws.
Note that this assumption is not unique to the present model and
has been exploited in various SMA models that account for functional
degradation, e.g., [37,49–51]. With this assumption in place, we first
introduce the accumulated volume fraction 𝜂acc as

�̇�acc = |�̇�rev
| ⟹ 𝜂acc = ∫

𝑡

0
|�̇�rev

| d𝜏, (4)

where the overdot denotes the rate of change of the variable and 𝑡
denotes the time. The evolution equation for the irreversible volume
fraction 𝜂ir is then explicitly postulated as

𝜂ir = ℎsat(1 − exp(−𝐶 𝜂acc)), (5)
3

ir p t
which results from the time-integration of the following rate equation
(with 𝜂acc|

|

|𝑡=0
= 0 and 𝜂ir|

|

|𝑡=0
= 0, as for the initial conditions),

̇ ir = ℎsat
ir 𝐶p exp(−𝐶p𝜂

acc)�̇�acc. (6)

Analogously, the evolution equation for the permanent strain 𝜺p is
ostulated as

̇ p = 𝜖sat
p 𝐶p exp(−𝐶p𝜂

acc)�̇�acc𝑵p. (7)

In Eqs. (5)–(7), ℎsat
ir and 𝜖sat

p represent the respective saturation val-
es for irreversible volume fraction and permanent strain, 𝐶p is the

degradation rate, and 𝑵p is the direction tensor which is defined such
that the rate of the permanent strain �̇�p is aligned with the martensitic
transformation strain 𝜺t, i.e.,

𝑵p = 𝜺t

‖𝜺t
‖

, ‖𝜺t
‖ =

√

tr(𝜺t)2. (8)

Note that, in view of the definition of the accumulated volume fraction
𝜂acc, the variables 𝜂ir and 𝜺p evolve continuously during both the
forward and backward transformations.

Martensitic transformation in SMAs usually exhibits negligible vol-
umetric change [1]. The transformation strain 𝜺t is therefore assumed
to be deviatoric (i.e., tr𝜺t = 0). Moreover, since the stress-induced
transformation renders the martensite variants to be oriented in the
direction of the applied stress, martensite is here considered to appear
in a fully-oriented state so that the transformation strain 𝜺t is defined as
a function of the reversible volume fraction 𝜂rev and the transformation
strain of fully-oriented martensite �̄�t,

𝜺t = 𝜂rev�̄�t, �̄�t ∈ ̄ = { �̄�t ∶ 𝑔(�̄�t) = 0 }. (9)

he set ̄ defines the admissible limit transformation strain tensors
haracterized by the surface 𝑔(�̄�t) = 0 which is expressed in the
ollowing form [52],

(�̄�t) =
[

(−𝐼2)3∕2 − 𝑏𝐼3 − 𝑐𝐼34
]1∕3 − 𝑎. (10)

n Eq. (10), 𝐼2 and 𝐼3 denote the principal invariants of the limit
ransformation strain tensor �̄�t while 𝐼4 denotes a mixed invariant,
efined as

2 = −1
2

tr(�̄�t)2, 𝐼3 = det �̄�t, 𝐼4 = 𝒎 ⋅ �̄�t 𝒎, (11)

where 𝒎 is the axis of the transverse isotropy. The parameters 𝑎, 𝑏 and 𝑐
characterize the shape and size of the surface 𝑔(�̄�t) = 0 and are specified
s

= 𝜖T

[ 3
√

3
4(1 + 𝛼3)

]1∕3
, 𝑏 =

√

3
6

9𝛼3𝛽3 − 7𝛼3 + 7𝛽3 − 9
(1 + 𝛼3)(1 + 𝛽3)

,

𝑐 =
2
√

3
3

𝛼3 − 𝛽3

(1 + 𝛼3)(1 + 𝛽3)
, (12)

with 𝜖T as the maximum transformation strain in tension, 𝛼 as the
tension–compression asymmetry ratio in the direction along the axis
of transverse isotropy (i.e., parallel to 𝒎), and 𝛽 as the tension–
compression asymmetry ratio in the direction perpendicular to the axis
of transverse isotropy (i.e., perpendicular to 𝒎).

It is noteworthy that the deviatoric nature of the transformation
strain 𝜺t dictates, in accordance with the definition of the direction
tensor 𝑵p, see Eq. (8), that the permanent strain 𝜺p is also deviatoric.
Models within the present context often postulate that the permanent
inelastic strain evolves in the direction of stress deviator, e.g., [37,49,
50]. In the present formulation, it can be easily shown that the stress
deviator is perpendicular to the surface 𝑔(�̄�t) = 0, see [39], and thereby,
the transformation strain 𝜺t depends on the direction of stress deviator.
This, however, does not imply that the transformation strain 𝜺t, and
ccordingly the permanent strain rate �̇�p, are colinear with the stress
eviator.

Another important aspect to highlight is that the accumulation of
ir
he irreversible volume fraction 𝜂 and its impact on the reversible
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volume fraction 𝜂rev cause the magnitude of the transformation strain
𝜺t, which serves as the actual transformation strain measure in the
present model, to decrease. However, the surface 𝑔(�̄�t) = 0 and so
the limit transformation strain �̄�t remain intact throughout the cyclic
transformation. This represents an underlying modeling assumption
in the present framework regarding the interaction between phase
transformation and cyclic degradation. It reflects the notion that the
inherent characteristics of the transformation strain are not affected
during the cyclic degradation. Instead, it is the accumulation of TRIP
and the decrease in the amount of transformable (reversible) martensite
that lead to the contraction of the maximum attainable transformation
strain.

We now elaborate on the Helmholtz free energy function and the
dissipation potential, both customized to incorporate the degradation
effects. Assuming an isothermal process, the Helmholtz free energy
𝜙 is composed of the following contributions: the chemical energy
𝜙chem, the elastic strain energy 𝜙el, the austenite–martensite interaction
energy 𝜙int, the energy of the diffuse interface 𝜙grad, and the energy
contribution 𝜙deg related to the pseudoelasticity degradation, i.e.,

𝜙(𝜺, �̄�t, 𝜺p, 𝜂rev,∇𝜂rev, 𝜂ir) = 𝜙chem(𝜂rev, 𝜂ir) + 𝜙el(𝜺, �̄�t, 𝜺p, 𝜂rev)

+𝜙int(𝜂rev) + 𝜙grad(∇𝜂rev) + 𝜙deg(𝜂rev, 𝜂ir). (13)

Among the contributions to the Helmholtz free energy 𝜙, only 𝜙deg is
specific to the present model. The remaining contributions are rather
standard and adhere to the non-cyclic model of pseudoelasticity [39–
41] and are formulated as

𝜙chem(𝜂rev, 𝜂ir) = (1 − 𝜂)𝜙a
0 + 𝜂𝜙m

0 = 𝜙a
0 + 𝛥𝜙0𝜂, (14)

𝜙el(𝜺, �̄�t, 𝜺p, 𝜂rev) = 𝜇tr(𝜺e
dev)

2 + 1
2
𝜅(tr𝜺e)2, 𝜺e = 𝜺 − 𝜂rev�̄�t − 𝜺p, (15)

𝜙int(𝜂rev) = 1
2
𝐻int(𝜂rev)2, (16)

𝜙grad(∇𝜂rev) = 1
2
𝐺∇𝜂rev ⋅ ∇𝜂rev. (17)

ere, 𝛥𝜙0 = 𝜙m
0 − 𝜙a

0 is the phase transformation chemical energy, 𝜇
s the elastic shear modulus and is calculated via applying the Reuss
veraging scheme based on the total volume fraction 𝜂 to the shear
oduli of austenite 𝜇a and martensite 𝜇m (i.e., 1∕𝜇 = (1−𝜂)∕𝜇a+𝜂∕𝜇m),
is the elastic bulk modulus (assumed constant), 𝐻int is the parame-

er that characterizes the material response within the transformation
egime (softening- or hardening-type), and 𝐺 > 0 is the gradient energy
oefficient. Note that the parameter 𝐻int can be adapted such that it
eflects a loading-dependent material response (typically, a softening-
ype response in tension and hardening-type response in compression),
.g., [42]. However, for simplicity, 𝐻int is here considered as a constant
arameter. Given that the simulations in this study involve predomi-
antly tensile loading, see Section 3, this simplification does not pose
serious limitation. Note also that the interaction energy 𝜙int is a

uadratic function of the volume fraction 𝜂rev, resulting in a tri-linear
ntrinsic stress–strain response, as illustrated in Fig. 2. This choice is
lso made for simplicity and can be readily adapted to more complex
unctions to achieve a more realistic response [43].

On the other hand, the degradation contribution 𝜙deg takes the
ollowing form

deg(𝜂rev, 𝜂ir) = 𝐴deg𝜂
ir𝜂rev + 1

2
𝐻deg𝜂

ir(𝜂rev)2, (18)

where 𝐴deg and 𝐻deg represent the degradation parameters. The con-
tribution 𝜙deg is specifically tailored to address two primary effects
of pseudoelasticity degradation: it accounts for the reduction of the
transformation-onset stress (described by the term 𝐴deg𝜂ir𝜂rev) and
he conversion of the mechanical response towards a hardening-type
esponse (described by the term 1

2𝐻deg𝜂ir(𝜂rev)2). In line with the
evolution of 𝜂ir, Eq. (5), both effects progress exponentially. Note that
the approach of incorporating the cyclic degradation effects into the
4

free energy function has been also used in other SMA models in the
literature, e.g., [53,54].

Finally, a rate-independent dissipation potential is adopted in the
following form

𝐷(�̇�rev, 𝜂acc) = 𝑓c(𝜂acc)|�̇�rev
|, (19)

where 𝑓c(𝜂acc), which is called the critical thermodynamic driving
orce, controls the width of the hysteresis loop in the stress–strain
esponse. To capture the decrease in the hysteresis loop area (i.e., the
issipated energy) during the cyclic transformation, the parameter 𝑓c

is defined in relation to the accumulated volume fraction 𝜂acc. Similar
to the permanent strain 𝜺p and the irreversible volume fraction 𝜂ir,
Eqs. (5)–(7), 𝑓c evolves exponentially as follows

𝑓c(𝜂acc) = 𝑓 fin
c + (𝑓 ini

c − 𝑓 fin
c ) exp(−𝐶f 𝜂

acc), (20)

where 𝑓 ini
c and 𝑓 fin

c represent, respectively, the initial and final values
of 𝑓c, and 𝐶f denotes the corresponding evolution rate.

To formulate the incremental energy minimization problem, we
derive the time-discrete version of the constitutive equations by em-
ploying the backward Euler scheme. Having known the variables re-
lated to the previous time step 𝑡𝑛, the variables related to the current
time step 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡 are sought. We begin by approximating the
incremental evolution equation for the irreversible volume fraction 𝜂ir

and the permanent strain 𝜺p,

𝛥𝑡 �̇�ir ≈ 𝛥𝜂ir = ℎsat
ir 𝐶p exp(−𝐶p𝜂

acc)𝛥𝜂acc,

𝑡 �̇�p ≈ 𝛥𝜺p = 𝜖sat
p 𝐶p exp(−𝐶p𝜂

acc)𝛥𝜂acc𝑵p, (21)

here

acc = ∫

𝑡𝑛+1

0
𝛥𝜂acc d𝜏, 𝛥𝜂acc = |𝛥𝜂rev

|, 𝛥𝜂rev = 𝜂rev − 𝜂rev
𝑛 , (22)

ith 𝜂rev
𝑛 as the value of the reversible volume fraction from the

revious time step 𝑡𝑛. At the same time, the incremental form of the
ate-independent dissipation potential is obtained as

𝐷(𝛥𝜂rev, 𝜂acc) = 𝑓c(𝜂acc)|𝛥𝜂rev
|. (23)

The solution of the problem is determined via the incremental en-
rgy minimization principle [39,41,55]. A global incremental potential

is defined by summing up the increment of the total Helmholtz free
nergy 𝛥𝛷 (where 𝛷 = ∫𝐵 𝜙d𝑉 ), the global dissipation potential 𝛥
where 𝛥 = ∫𝐵 𝛥𝐷d𝑉 ) and the potential of the external loads 𝛥𝛺, and
s subsequently minimized with respect to the unknowns 𝒖, �̄�t and 𝜂rev,
.e.,

= 𝛥𝛷 + 𝛥 + 𝛥𝛺 → min
𝒖,�̄�t ,𝜂rev

(24)

hich is subject to the inequality constraints on the reversible vol-
me fraction 𝜂rev, Eq. (3), and to the constraint related to the limit
ransformation strain surface, Eq. (9). At the same time, 𝜂ir and 𝜺p,
hich contribute directly to the minimization problem, are explicitly
valuated from Eq. (21). To provide a clearer idea of the structure of the
inimization problem and the underlying constitutive behavior of the
odel, a simplified 1D version of the model is elaborated in Appendix.

Fig. 2 showcases the intrinsic stress–strain response predicted by
he model under cyclic tensile loading. Two cases are highlighted:
he pseudoelasticity degradation effects within the first three cycles,
elevant to the problem of subloop deformation investigated in this
tudy, and the degradation effects within 50 cycles, which provides

more holistic view of the model behavior. Note that the material
arameters adopted to generate the intrinsic response in Fig. 2 are the
ame as those adopted in the main simulations in Section 3.
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2.2. Further extensions and finite-element implementation

The model presented in Section 2.1 is now enriched with micro-
morphic regularization and is made thermomechanically coupled. Both
extensions have been thoroughly discussed in our previous works [40,
41]. Hence, we only briefly discuss them here.

The purpose of adopting the micromorphic regularization is to
facilitate the finite-element implementation of the gradient-enhanced
model by restructuring the minimization problem in a way that the
constitutive complexities are transferred to the local level (for instance,
the Gauss points) where they can be treated in a more efficient way.
To do so, a new degree of freedom �̆� is introduced and is coupled with
he volume fraction 𝜂rev through the following penalization term 𝜙pen
hich is added into the Helmholtz free energy function 𝜙, see Eq. (13),

pen(𝜂rev, �̆�) = 1
2
𝜒(𝜂rev − �̆�)2, (25)

with 𝜒 as the penalty parameter. The gradient energy 𝜙grad, see
q. (17), is then redefined in terms of the gradient of the new variable
̆, i.e.,

grad(∇�̆�) =
1
2
𝐺∇�̆� ⋅ ∇�̆�. (26)

Following this modification, the volume fraction 𝜂rev can be considered
as a local quantity and the respective evolution equation can be solved
(together with that of �̄�t) at the local level. For further details regarding
the micromorphic regularization, interested readers are referred to [56,
57].

To arrive at a thermomechanically-coupled model, two most impor-
tant couplings are taken into consideration. First, the chemical energy
𝜙chem, Eq. (14), is extended to reflect the effect of temperature on the
mechanical response (the Clausius–Clapeyron relation), i.e.,

𝜙0(𝜂rev, 𝜂ir, 𝑇 ) = 𝜙a
0(𝑇 ) + 𝛥𝜙0(𝑇 )𝜂, 𝛥𝜙0(𝑇 ) = 𝛥𝑠∗(𝑇 − 𝑇t), (27)

where 𝛥𝑠∗ represents the transformation entropy change, 𝑇 is the
temperature, and 𝑇t is the transformation equilibrium temperature.
Next, the internal heat source �̇� is defined to encompass the latent heat
of transformation and the heat release by mechanical dissipation, viz.,

�̇� = 𝛥𝑠∗𝑇 �̇�rev + 𝑓c(𝜂acc)|�̇�rev
|. (28)

Eq. (28) is then introduced into the (isotropic) heat conduction equa-
tion

𝜚 𝑐�̇� + ∇ ⋅𝑸 = �̇�, 𝑸 = −𝐾∇𝑇 , (29)
5

0

here 𝑸 is the heat flux, 𝜚0𝑐 is the specific heat, and the scalar 𝐾 is the
eat conduction coefficient. It follows from Eq. (28) that the internal
eat generation is influenced during the cyclic phase transformation.
his influence is manifested by both the latent heat of transformation
nd the mechanical dissipation and operates through the reversible
olume fraction 𝜂rev and the hysteresis parameter 𝑓c, cf. Eqs. (3) and
20).

The full thermomechanically-coupled model comprises three global
nknown fields: the displacement 𝒖, the micromorphic variable �̆� and

the temperature 𝑇 ; and two local unknown variables: the reversible
volume fraction 𝜂rev and the limit transformation strain �̄�t. Recall that
he irreversible volume fraction 𝜂ir and the permanent strain 𝜺p are

explicitly integrated by using Eq. (21). The finite-element discretization
of the displacement field 𝒖 is performed by using 20-noded quadratic
hexahedral (Serendipity) elements with reduced Gauss integration rule
(2 × 2 × 2). On the other hand, 8-noded linear hexahedral elements
with standard Gauss integration rule (2 × 2 × 2) are used for �̆� and 𝑇 .
For the 2D axisymmetric wire problem discussed in Section 3.2, the
respective discretizations have been done by 8-noded quadratic ele-
ments and 4-noded linear elements. The resulting global–local problem
is structured as a nested iterative–subiterative scheme and is solved at
both the global and local levels by using the Newton method. Notably,
a fully-coupled monolithic scheme is adopted so that the problem is
solved simultaneously with respect to all unknowns.

It is worth noting that the local minimization problem of 𝜂rev is
on-smooth, in view of the rate-independent dissipation potential, see
qs. (19) and (23). To address this issue, the augmented Lagrangian
ethod is utilized, which handles adeptly both the non-smoothness

f the rate-independent dissipation potential and the inequality con-
traints on the reversible volume fraction 𝜂rev, i.e., 0 ≤ 𝜂rev ≤ 1 −
ir, see Eq. (3). The local problem has an additional constraint to be
atisfied, namely the equality constraint of the limit transformation
train surface, 𝑔(�̄�t) = 0, see Eq. (9). The latter is addressed by using a
tandard Lagrange multiplier method. For brevity, the related technical
etails are not discussed here, see [39].

The model is transformed into a finite-element code using the auto-
atic differentiation tool AceGen [58,59], thanks to which the residual

ector and the tangent matrix are derived automatically, and thereby,
he quadratic convergence of the Newton method is ensured. The
imulations are carried out in the finite-element environment AceFEM.
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Fig. 3. The loading programs used in the simulations. All loading programs represent displacement-control uniaxial tension (with a low strain rate of 1.67×10−4 s−1) and incorporate
hree subloops. Loading program 1 consists of three nested subloops with increasing strain amplitudes. Loading program 2 employs subloops in a reverse order compared to loading
rogram 1. Loading program 3 consists of three equally-spaced subloops with a constant strain amplitude.
i

. Simulations

This section is devoted to the analysis of the simulation results.
ection 3.1 begins with a presentation of the simulation setup and cali-
ration of the model parameters, and concludes with a brief discussion
n the results for NiTi wire under full loading–unloading cycles. Our
ain modeling study concerns a NiTi specimen subjected to uniaxial

ension with subloop loading paths. Two scenarios are explored. First,
n line with the experimental study of Tobushi et al. [24], the subloop
eformation behavior of a NiTi wire is analyzed, see Section 3.2. The
oading program in this scenario encompasses three nested subloops
ith increasing strain amplitudes, as depicted in Fig. 3(a). As shown

ater, this setup enables us to reproduce neatly the hierarchical return-
oint memory. Section 3.2 concludes with a supplementary analysis
f the TRIP evolution under a large number of subloops. Next, in
ection 3.3, we extend our analysis to a NiTi strip, where we elucidate
ow the subloop behavior is influenced by the complexity of the pattern
f propagating instabilities. This scenario is then examined under two
dditional loading programs, see Fig. 3(b,c).

.1. Preliminaries

In all simulations, the loading is exerted in a displacement-control
ode at a (constant) low strain rate of 1.67×10−4 s−1. The NiTi wire has
diameter of 0.75 mm and a total length of 𝐿0 = 20 mm. To facilitate

his analysis, the wire is justifiably reduced to a 2D axisymmetric ge-
metry. The corresponding 2D problem is then discretized by a uniform
inite-element mesh consisting of equiaxed elements with an edge size
f 0.01 mm. This results in 76 000 elements and approximately 620 000
egrees of freedom. Meanwhile, the NiTi strip is treated as a full 3D
roblem. The strip has a thickness of 0.4 mm, a width of 10 mm
nd a total length of 𝐿0 = 100 mm. It is discretized by a uniform
esh consisting of elements with an in-plane edge size of 0.2 mm

nd a through-thickness size of 0.4 mm (i.e., only one element is used
hrough the thickness). This mesh leads to 25 000 elements and nearly
40 000 degrees of freedom. In both problems, the following boundary
onditions are imposed. The displacements at the bottom edge of the
pecimen are fully constrained. At the top edge, the axial displacement
is prescribed and the lateral displacements are constrained. At the

ame time, the temperature at both top and bottom edges is set equal
o the ambient temperature, i.e., 𝑇 = 𝑇0 = 353 K, which is the actual
mbient temperature maintained during the experiment of Tobushi
6

t al. [24]. Finally, the heat convection effect is neglected.
The model parameters adopted in the simulations are summarized
n Table 1. Except for the gradient energy parameter 𝐺, all the model

parameters are identical in the wire and strip problems. The param-
eter 𝐺 sets the length-scale associated with the phase transformation
front and can be linked to the geometry and micromechanical char-
acteristics [60,61]. Thus, 𝐺 takes different values in each problem.
To calibrate 𝐺, first, an assumption ought to be made regarding the
theoretical thickness of the macroscopic interface, 𝜆. Subsequently,
𝐺 is determined through the analytical relation 𝐺 = −𝐻int𝜆2∕𝜋2,
which is derived from the solution of the 1D small-strain model of
pseudoelasticity [40]. The identification procedure for the remaining
model parameters which are unrelated to TRIP has been thoroughly
discussed in our recent study [43], see Section 2.3 and Appendix E
therein, and is not repeated here.

Identification of some TRIP-related parameters is guided by the
indications obtained from the structural stress–strain response from the
experiment, see Fig. 1(a). These include the significant decrease in
the level of the upper stress plateau during the hierarchical subloop
deformation and the value of the residual strain at the end of the
experiment. Accordingly, the parameters 𝐴deg = −45 MPa, 𝜖sat

r =
0.4𝜖T = 2.4% (recall that 𝜖T denotes the maximum transformation strain,
Eq. (12)) and 𝐶p = 0.05 have been calibrated to produce similar effects.
We, however, acknowledge that there exists a degree of uncertainty
in the identification of the remaining parameters, for which we lack
definitive experimental evidence. With this in mind, the parameters
𝐻deg = 40 MPa, 𝑓 fin

c = 2 MPa, 𝐶f = 𝐶p = 0.05 and ℎsat
ir = 0.4

are selected such that the changes in the stress–strain response under
a large number of loading cycles (in particular, as it concerns the
transition to a hardening-type response, decrease in the hysteresis loop
area and decrease in the extent of the transformation strain) align with
the trends observed in the experiments, e.g., [47,62–64], see also the
discussion below. The intrinsic response of the model resulting from
the adopted parameters is illustrated in Fig. 2.

It is worth noting that in all the simulations, as a way to trigger the
phase transformation instability, a geometric imperfection in the form
of a slight indent is applied to the specimen. The indent is located at a
distance equal to the diameter/width of the wire/strip from its lower
end.

Before entering into the main analysis of subloop deformation, a
simulation is performed for the NiTi wire subjected to 50 loading–
unloading cycles of uniaxial tension. Fig. 4 illustrates the structural
response of the wire. Here, as well as in the figures in the following sub-
sections, the structural response is represented in terms of the average
axial stress �̄� = 𝑃∕𝐴 versus average elongation (engineering strain)
0
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Table 1
Model parameters adopted in the simulations. Note that the axis of tranverse isotropy 𝒎 aligns with the longitudinal axis of
the specimen.

Category Parameter Value

Elasticity 𝜅 Bulk modulus 130 GPa
𝜇a Shear modulus for austenite 21 GPa
𝜇m Shear modulus for martensite 9 GPa

Martensitic phase transformation 𝛥𝑠∗ Specific entropy difference 0.24 MPa/K
𝑇t Transformation equilibrium temperature 222 K
𝑓 ini

c Hysteresis loop parameter (initial) 10 MPa
𝐻int Austenite–martensite interaction parameter −10.5 MPa
𝜖T Maximum tensile transformation strain 6%
𝛼 Tension–compression asymmetry ratio 1.4
𝛽 Transverse isotropy parameter 1.0

Macroscopic transformation front 𝐺 Gradient energy parameter (wire problem) 0.04 MPa mm2

𝐺 Gradient energy parameter (strip problem) 0.4 MPa mm2

𝜒 Micromorphic regularization parameter 100 MPa
Heat transfer 𝜚0𝑐 Specific heat 2.86 MJ/(m3 K)

𝐾 Heat conductivity 18 W/(m K)
TRIP 𝐴deg Pseudoelasticity degradation parameter −45 MPa

𝐻deg Pseudoelasticity degradation parameter 40 MPa
𝜖sat

p Saturated permanent strain 0.4 𝜖T = 2.4%

ℎsat
ir Saturated irreversible volume fraction 0.4

𝑓 fin
c Hysteresis loop parameter (final) 2 MPa

𝐶p Degradation rate 0.05
𝐶f Hysteresis loop degradation rate 0.05
Fig. 4. (a) NiTi wire subjected to 50 loading–unloading cycles of uniaxial tension: structural stress–elongation (�̄�–�̄�) response. The average axial stress �̄� and the average elongation
�̄� are calculated, respectively, as the reaction force 𝑃 divided by the initial cross-section area 𝐴0, and the axial displacement 𝛿 divided by the initial length 𝐿0. The intrinsic
esponse associated with this structural response is illustrated in Fig. 2. (b)–(e) Typical cyclic responses of NiTi specimens observed in the experiments, taken from (b) Wang et al.
47], (c) Morin et al. [62], (d) Kan et al. [63], and (e) Šittner et al. [64].
b
i
s
r

3

a

�̄� = 𝛿∕𝐿0, where 𝑃 denotes the reaction force and 𝐴0 denotes the initial
ross-section area. Recall that 𝛿 and 𝐿0 are the axial displacement
nd the initial length, respectively. As it is evident in the structural
esponse, the wire undergoes a complete phase transformation within
ach cycle. Initially, the wire exhibits a localized phase transforma-
ion, characterized by a stress drop at the transformation onset and

subsequent stress plateau. The localized transformation persists for
bout 15 cycles. Thereafter, the transformation proceeds in a more
omogeneous manner, and the structural response displays a mild
7

ardening. As the number of cycles increases, the slope of the hardening F
ranch also increases. The cyclic behavior captured in the simulation
s in a qualitative agreement with the typical cyclic behavior of NiTi
pecimens observed in experiments [47,62–64], which underscores the
eliability of the simulation results.

.2. NiTi wire subjected to subloop deformation

The results pertaining to the subloop behavior of the NiTi wire
re presented in Figs. 5 and 6. The phase transformation evolution in
ig. 5(a) and TRIP evolution in Fig. 5(b) are displayed via, respectively,
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Fig. 5. NiTi wire subjected to loading program 1: (a) snapshots of reversible volume fraction 𝜂rev illustrating the phase transformation evolution, and (b) snapshots of irreversible
volume fraction 𝜂ir illustrating the TRIP evolution. For a natural visualization, the axisymmetric wire is presented in full 3D configuration.
the distribution of the reversible volume fraction 𝜂rev and irreversible
volume fraction 𝜂ir. Note that, for a more natural visualization, the
results of the 2D axisymmetric wire are post-processed and presented
in a 3D configuration. As anticipated, the transformation initiates at
the position of the geometric imperfection. Throughout the entire
loading stage of the global cycle (hereinafter, to avoid confusion with
the subloops, we use the term ‘global’), the transformation maintains
a single propagating front. Interestingly, while the front appears to
be a flat (and visibly diffuse) interface in the 3D-wire configuration,
e.g., [65], it takes on a spherical-shaped appearance (or ‘cone-shaped’
as described in [60,66]), as can be conceived from the correspond-
ing pattern in the axisymmetric planes (not shown here). During the
8

global unloading, the backward transformation commences from the
wire’s central part. As shown in Fig. 5(b) and discussed below, the
highest amount of irreversible volume fraction 𝜂ir, thus the highest
TRIP, is accumulated within the central part, making it a favorable
site for the nucleation of the austenitic band. At the same time, due
to a slight asymmetry in the distribution of 𝜂ir with respect to the
wire’s midpoint, the two evolved fronts do not propagate concurrently.
More specifically, the top front reaches the boundary first and an-
nihilates, which manifests as an abrupt stress rise in the structural
stress–elongation (�̄�–�̄�) response, occurring at an average elongation
of about �̄� = 4% (see Fig. 6). Subsequently, the bottom front follows
suit.
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Fig. 6. NiTi wire subjected to loading program 1: structural stress–elongation (�̄�–�̄�) response.
r
t
p
s
b
d
a
a
o
c
t
a
s
t
r

3

p
a
l
h
F
r
t
i
p
I
f
t
a
e

m
i
i
a
a
a
p

Within each subloop path, the front retreats downward during un-
oading and advances upward during reloading. This cyclic movement
rompts the material points inside the front’s sweeping zone to undergo
ackward-then-forward transformation, and thereby, gives rise to the
ccumulation of TRIP within the sweeping zone, while the material
oints beyond it remain unaffected. Note that the loading program
dheres to a fixed nominal mean strain (set at �̄� = 4.5%, which
orresponds to the front’s proximity to the wire’s midpoint) but an
ncreasing strain amplitude, see Fig. 3(a). Thus, the sweeping zone
xpands successively from subloop 1 to subloop 3, and at the same time,
he sweeping zone of each subloop encompasses that of the previous
ne. This therefore results in the highest concentration of TRIP within
he central part of the wire and its step-wise decreasing trend as it
oves away from it, as can be clearly seen in Fig. 5(b).

The hierarchical return-point memory, which is an outcome of the
yclic traversal of the front across the boundaries of the sweeping
ones, is correctly reproduced in the structural stress–elongation re-
ponse in Fig. 6. The reproduced feature is in a reasonable agreement
ith the experimental result of Tobushi et al. [24], see Fig. 1 and

he accompanying discussion. In view of the exponential nature of the
seudoelasticity degradation effects, the reduction in the level of the
pper stress plateau is at the highest within the first level of hierarchy
of about 𝛥�̄� = 21 MPa) and diminishes to its lowest within the last level
f hierarchy (of about 𝛥�̄� = 17 MPa). It is worth noting that in this sce-
ario, where the strain rate corresponds to nearly isothermal conditions
i.e., the temperature variation lies within the range of −2 K to 2 K),
he stress, upon reaching the return-point, appears to catch up closely
ith the corresponding stress plateau before applying the subloop. As

hown in Section 3.3 and also observed in the experiments [25,26],
uch a close catching up does not occur when thermal effects are at
lay.

A notable observation from the experimental curve in Fig. 1(a) is
he absence of the return-point memory during the unloading stages
f the subloops. Instead, the lower stress plateau seems to shift slightly
ownward from one subloop to the next. Anyway, no attempt was made
o adjust the material parameters to replicate the observed behavior,
hich is, however, present in the results of NiTi strip reported in
ection 3.3.

In concluding the discussion in this section, we present the results
f a supplementary analysis on the NiTi wire subjected to 12 subloops.
he aim of this analysis is to illustrate the evolution of TRIP and
9

ubloop deformation behavior over a large number of subloops. The h
esults, as depicted in Fig. 7, follow an expected trend. However,
wo specific observations deserve further comment. Firstly, the stress
lateau in a number of subloops exhibits irregularities, specifically a
econd stress drop appears ahead of the return-point memory. This is
ecause in these subloops the transformation during subloop reloading
oes not proceed by the propagation of the existing front. Instead,
second front emerges at the opposite end of the sweeping zone

nd eventually merges with the original front, thereby, leading to the
bserved effects. Secondly, as shown in Fig. 7(b), the sweeping zone
ontinuously expands from one subloop to the next. This is explained by
he accumulation of TRIP within the sweeping zone, which reduces the
mount of transformable martensite. Consequently, since the applied
train amplitude of the subloops is held fixed, the front gradually moves
owards the untransformed segments of the wire to compensate for the
educed transformation.

.3. NiTi strip subjected to subloop deformation

We begin this section by analyzing the NiTi strip under loading
rogram 1. The primary aim is to examine the subloop behavior in
notably more involved scenario than the NiTi wire discussed ear-

ier, arising mainly from a more complex transformation pattern and
eightened thermal effects. The simulation results are presented in
igs. 8 and 9. A quick look at Fig. 9 immediately indicates that the
eturn-point memory is only observable in the trajectories that lead to
he global stress plateau, while the hierarchical return-point memory
s lost. This is undoubtedly an outcome of the nontrivial pattern of
hase transformation and resulting TRIP distribution within the strip.
n contrast to the NiTi wire, where a single phase transformation
ront remained active during all subloops, the strip features multiple
ransformation fronts, each presenting a less predictable pattern of
ctivation. Below, we provide a more detailed account of the unfolding
vents.

The phase transformation initiates with the nucleation of a single
artensite band at the location of the geometric imperfection. The band

s oriented at approximately 54◦ with respect to the longitudinal axis,
n agreement with the experimental observations [14] and theoretical
nalysis [67], and somewhat changes as loading progresses. At an
verage elongation of about �̄� = 3%, another martensite band emerges
t the opposite end, and henceforth, the two transformation fronts
ropagate towards each other. This non-synchronous double nucleation

as been commonly observed in the experiment of NiTi specimens at
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Fig. 7. NiTi wire subjected to uniaxial tension with 12 subloop paths: (a) structural stress–elongation (�̄�–�̄�) response, and (b) snapshots of irreversible volume fraction 𝜂ir illustrating
the TRIP evolution at the end of each subloop. The inset in panel (a) represents the loading program used for this simulation. The applied subloops have the same mean strain
and the same strain amplitude, i.e., �̄�max = 5.75% and �̄�min = 2.75%.
relatively low strain rates, e.g., [14,68,69]. Within subloop 1, the two
fronts exhibit a short back-and-forth movement, manifesting a clear
return-point memory in the structural stress–elongation response in
Fig. 9(a). During subloop 2, not only the hitherto active fronts but
also the fronts near the boundaries become engaged in the transfor-
mation evolution. As a consequence, TRIP is induced via all fronts.
This behavior is reflected in the structural response which takes on
an irregular appearance characterized by few sudden stress changes,
thus spoiling the return-point memory in the inner part (Fig. 9(b)). A
similar process recurs within subloop 3, albeit with a more complex
phase transformation evolution during the reloading stage and also
more distinct stress events in the structural response. During the global
unloading, the backward transformation proceeds predominantly in a
criss-cross mode, which persists until an average elongation of about
�̄� = 3%. Subsequently, the fronts reconfigure into sharp inclined
interfaces that move towards each other until the complete annihilation
of the (reversible) martensite domain. The reconfiguration of the fronts
between criss-cross mode and sharp interfaces has been also observed
in experimental and previous modeling studies, e.g., [36,70,71]. It
is worth remarking that the distribution of the irreversible volume
fraction 𝜂ir within the entire strip at the end of the global unloading
remains consistent with that at the end of the global loading, while its
magnitude increases uniformly.

Upon inspecting the return-point memory in Fig. 9, a slight differ-
ence can be noticed concerning the level of the global stress plateau
before and after a subloop path. This difference stems from the thermal
effects. Specifically, compared to the NiTi wire, a more pronounced
temperature variation is produced across the specimen during the
forward transformation (for instance, of about 10 K immediately before
subloop 1), resulting in a more visible thermal hardening that sustains
a higher stress for the propagation of the front. Within the subloop
path, the transformation latent heat is initially absorbed during the
backward transformation (self-cooling) and is subsequently released
when the forward transformation resumes (self-heating). Accordingly,
as the front reaches the pristine material, the temperature variation
across the specimen is reduced compared to the state before the subloop
(for instance, of about 5 K immediately after subloop 1). Thereby,
10
thermal hardening diminishes, necessitating a lower stress for interface
propagation. Note also that as a result of the cyclic transformation of
the material points, and thus the accumulation of irreversible marten-
site, a smaller martensite volume fraction is transformed during the
subloop reloading compared to the state before the subloop, and this
contributes to the reduction of the latent heat generation [20], see
Eq. (28).

We now proceed with the analysis of the NiTi strip under two
additional loading programs, one consisting of nested subloops with
decreasing strain amplitudes, i.e., subloops are applied in a reverse
order compared to loading program 1, and the other consisting of
three equally-spaced distinct subloops with a constant strain amplitude,
see Fig. 3(b,c). The corresponding results are shown in Figs. 10, 11
and 12. The comparison of the snapshots of the reversible volume
fraction 𝜂rev in the two additional cases to those of loading program
1 reveals noticeable morphological differences, which are beyond the
differences arising solely from the loading-dependent transformation
evolution pathways. The differences mainly concern the varying num-
ber of martensite domains formed during the global loading stage and
the activation pattern of the fronts within the subloops. More specifi-
cally, unlike loading program 1, loading programs 2 and 3 exhibit only
two martensite domains during the global loading. In loading program
2, all four fronts remain consistently active within all subloops, result-
ing in a clear demonstration of the hierarchical return-point memory
in the stress–elongation response, as shown in Fig. 12(a). In loading
program 3, however, while the involvement of the fronts near the
boundaries is eye-catching within subloop 1, overall, the interior fronts
are prominently active. In this case, the front sweeping zones in the
subloops do not interact with each other (as can be also recognized
from the snapshots of 𝜂ir in Fig. 11), and the resulting subloops are
independent, see Fig. 12(b). During the global unloading, all cases show
a similar transformation evolution pattern characterized by two active
fronts retracting in a criss-cross manner.

We conclude this discussion by addressing TRIP accumulation with-
in the strip in relation to the loading program. Similar to the martensitic
transformation, TRIP exhibits characteristics that are specific to the

applied loading program. Given that loading programs 1 and 2 have
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Fig. 8. NiTi strip subjected to loading program 1: (a) snapshots of reversible volume fraction 𝜂rev illustrating the phase transformation evolution, and (b) snapshots of irreversible
volume fraction 𝜂ir illustrating the TRIP evolution.

Fig. 9. NiTi strip subjected to loading program 1: structural stress–elongation (�̄�–�̄�) response.
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Fig. 10. NiTi strip subjected to loading program 2: (a) snapshots of reversible volume fraction 𝜂rev illustrating the phase transformation evolution, and (b) snapshots of irreversible
volume fraction 𝜂ir illustrating the TRIP evolution.
a reverse arrangement of the subloops but are otherwise identical,
one would intuitively expect that the resulting TRIP accumulations, in
terms of both the pattern and the intensity, would be the same after
applying all the three subloops. A comparison of the snapshots of the
irreversible volume fraction 𝜂ir (Figs. 8 and 10) indeed confirms that
TRIP hotspots in these two cases are located in nearly the same regions,
with two hotspots near the boundaries and two within the interior of
the strip, corresponding to the regions with the highest activity of the
fronts. Yet, minor discrepancies can be observed, particularly concern-
ing the intensity of TRIP within the hotspot regions. On the other hand,
loading program 3 demonstrates a rather distinct TRIP accumulation
characterized by several regions with mild intensity within the interior
and localized hotspots near the boundaries. As previously noted, this
particular TRIP distribution results from the lack of interaction among
the fronts sweeping zones of the independent subloops. As a summary
of this discussion, Fig. 13 compares the distribution of 𝜂ir along the
entire length of the strip for various loading programs.

4. Conclusions

The phenomenon of return-point memory that appears during the
subloop deformation of pseudoelastic SMA is an outcome of the interac-
tion between the structural instabilities of phase transformation and the
degradation of functional properties. It seems that this crucial aspect
has been generally overlooked in existing modeling approaches. The
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goal of our study is to demonstrate this structure–material interaction
by modeling the phenomenon of return-point memory. To achieve
this, we have developed a gradient-enhanced model of pseudoelastic-
ity. The developed model represents an advancement over previous
versions [39–41], extending the constitutive description to incorporate
pseudoelasticity degradation. The capabilities of the model in repro-
ducing the essential aspects of pseudoelasticity degradation have been
shown for NiTi under cyclic uniaxial tension.

We examine an illustrative example of a NiTi wire subjected to
nearly isothermal uniaxial tension with nested subloops. The obtained
results clearly correlate with the experimental observations of Tobushi
et al. [24], especially regarding the hierarchical return-point memory.
The accumulation of TRIP and its distribution during subloop defor-
mation underline the intertwined evolution of inhomogeneous phase
transformation and cyclic degradation.

The study is then extended to a more involved scenario of a NiTi
strip, where a detailed analysis is performed by examining three differ-
ent loading programs. The impact of the loading program on the evolu-
tion of phase transformation and TRIP has been highlighted through the
activation pattern of phase transformation fronts within the subloops,
and its implications on the phenomenon of return-point memory have
been pointed out. In addition, the results hint at the visible contri-
bution of the thermomechanical coupling effects within the subloops,
stemming from the self-cooling/heating process of the transforming
material.
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Fig. 11. NiTi strip subjected to loading program 3: (a) snapshots of reversible volume fraction 𝜂rev illustrating the phase transformation evolution, and (b) snapshots of irreversible
volume fraction 𝜂ir illustrating the TRIP evolution.

Fig. 12. Structural stress–elongation (�̄�–�̄�) response of NiTi strip subjected to (a) loading program 2 and (b) loading program 3.
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Fig. 13. Distribution of the irreversible volume fraction 𝜂ir along the entire length of the strip (taken in the reference configuration) at the end of the global loading stage. The
graphs correspond to the midsection of the strip, as indicated by the white dashed curve overlaid on the snapshot.
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Appendix. A simplified 1D demonstration of the model

In this appendix, we derive the governing equation of the trans-
formation stress for a simplified isothermal 1D model. In 1D setting,
the model features four variables, namely the total strain 𝜀 = ∇𝑢, the
reversible volume fraction 𝜂rev, the irreversible volume fraction 𝜂ir and
the permanent strain 𝜀p. The Helmholtz free energy is thus expressed
as follows

𝜙(𝜀, 𝜀p, 𝜂rev, 𝜂ir) = 𝜙chem(𝜂rev, 𝜂ir) + 𝜙el(𝜀, 𝜀p, 𝜂rev)

+ 𝜙int(𝜂rev) + 𝜙deg(𝜂rev, 𝜂ir) + 𝐼(𝜂rev), (A.1)
14
where the indicator function 𝐼 pertains to the inequality constraints on
the reversible volume fraction 𝜂rev (𝐼 = 0 if 0 ≤ 𝜂rev ≤ 1 − 𝜂ir and
𝐼 = ∞ otherwise). Note that the gradient energy associated with the
austenite–martensite diffuse interface, 𝜙grad, is disregarded here.

The elastic strain energy 𝜙el is formulated as

𝜙el(𝜀, 𝜀p, 𝜂rev) = 1
2
𝐸(𝜀 − 𝜀t − 𝜀p)2, 𝜀t = 𝜂rev𝜖T, (A.2)

where 𝐸 is the Young’s modulus (for simplicity, 𝐸 is assumed constant
and independent of 𝜂) and the constant 𝜖T is the maximum transforma-
tion strain. The remaining components of the free energy, as well as the
dissipation potential, are identical to those of the general 3D model, see
Eqs. (14), (16), (18) and Eq. (23). Moreover, the evolution equations
for the permanent strain 𝜀p and the irreversible volume fraction 𝜂ir are
postulated as (cf. Eqs. (5)–(7))

𝜂ir = ℎsat
ir (1 − exp(−𝐶p𝜂

acc)), 𝜀p = 𝜖sat
p (1 − exp(−𝐶p𝜂

acc)). (A.3)

For a given total strain 𝜀, the volume fraction 𝜂rev can be determined
by minimizing the local potential 𝜋 = 𝛥𝜙 + 𝛥𝐷, cf. Eq. (24). It is
immediate to see that the local potential 𝜋 is non-smooth, due to
the presence of the rate-independent dissipation 𝛥𝐷 and the indicator
function 𝐼 . In line with [40], the minimization of 𝜋 with respect to 𝜂rev

is written as a differential inclusion, given by

𝑓𝜂rev ∈ 𝜕𝜂rev �̄�(𝜂rev, 𝜂acc) (A.4)

where �̄� = 𝛥𝐷 + 𝐼 encompasses the non-smooth components of 𝜋 and
𝑓𝜂rev is the thermodynamic driving force associated with 𝜂rev and is
expressed as

𝑓𝜂rev = −
(

𝜕𝜙
𝜕𝜂rev +

𝜕𝜙
𝜕𝜀p

𝜕𝜀p

𝜕𝜂rev +
𝜕𝜙
𝜕𝜂ir

𝜕𝜂ir

𝜕𝜂rev

)

. (A.5)

During the forward/backward transformation, i.e., when the bound
constraints are inactive, the inclusion (A.4) yields

𝑓𝜂rev = ±𝑓c, (A.6)

and gives the following equation for the transformation stress 𝜎t
± (𝜎t

+ for
the forward transformation and 𝜎t

− for the backward transformation),

𝜎t
± =

𝛥𝜙0𝑘1 ± 𝑓c +𝐻int𝜂rev + 𝐴deg𝑘2 +𝐻deg𝜂rev𝑘3
𝑘4

, (A.7)

where 𝑓c is defined in Eq. (20) and 𝑘𝑖 are expressed as

𝑘1 = 1+
𝜕𝜂ir

𝜕𝜂rev , 𝑘2 = 𝜂ir + 𝜂rev 𝜕𝜂ir

𝜕𝜂rev , 𝑘3 = 𝜂ir + 1
2
𝜂rev 𝜕𝜂ir

𝜕𝜂rev , 𝑘4 = 𝜖T +
𝜕𝜀p

𝜕𝜂rev .

(A.8)

It is important to highlight that the necessary condition for the
minimum of 𝜋 with respect to 𝜂rev, which leads to the transformation
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criteria (A.7), is not computed in a standard manner. This stems from
the state-dependence of the dissipation potential 𝐷, i.e., the depen-
dence of 𝑓c on the accumulated volume fraction 𝜂acc, see Eq. (20).
Having the minimization problem formulated in rates (not shown here),
it becomes apparent that 𝑓c is treated as a constant when evaluating
the necessary condition for the rate �̇�rev. In the incremental setting,
to maintain consistency with the rate-problem, the increment of the
martensite volume fraction, 𝛥𝜂rev, present in the current unknown
𝜂rev = 𝛥𝜂rev + 𝜂rev

𝑛 is distinguished from the increment upon which the
evolution equation for 𝑓c rely. Despite the two increments coincide, the
latter is considered constant when evaluating the necessary condition.
Accordingly, the minimization problem does possess the structure of a
quasi-optimization problem and not a genuine optimization problem.
To avoid the complexity in the model presentation, this issue is not
elaborated here. It should be remarked that upon assuming the same in-
crement 𝛥𝜂rev for the current unknown 𝜂rev and the evolving parameter
𝑓c, extra differentiation terms arise in the transformation criteria (A.7).
However, our auxiliary simulations showed that these extra terms only
marginally contribute to the results.
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