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This study presents a general computational framework for topology optimization under constraints related to 
various engineering design problems, including: reliability analysis, low-cycle fatigue assessment, and stress 
limited analysis. Such a framework aims to facilitate comprehensive engineering design considerations by 
incorporating traditional constraints such as displacement and stress alongside probabilistic assessments of fatigue 
failure and the complex behaviors exhibited by structures made of elastoplastic material. The framework’s 
amalgamation of diverse analytical components offers engineers a versatile toolkit to address intricate design 
challenges. Notably, the inclusion of reliability analysis introduces a probabilistic perspective, transforming 
conventional design constraints into random parameters, thereby enhancing the robustness of the design process.

Key to the framework’s efficacy is its implementation using MATLAB mathematical computing software, 
leveraging the platform’s efficient code execution and object-oriented programming paradigm. This choice 
ensures an intuitive and potent environment for designers and researchers, facilitating seamless adaptation across 
various engineering applications. Additionally, the proposed previously by the Authors algorithm for the topology 
optimization is extended by adaptive strategy allowing for efficient adjustment of an amount of material removed 
at individual optimization step.

The presented framework is offering a comprehensive and integrated approach to address multifaceted design 
challenges while enhancing design robustness and efficiency.
1. Introduction

Topology optimization is a pivotal technique in structural design, as 
it optimizes material distribution within a designated space to meet spe-

cific performance objectives. Recent research has extensively explored 
enhancing the fatigue resistance of structural components through 
topology optimization methodologies. This literature review aims to 
delineate the latest advancements in this field however the significant 
and almost forgotten achievements also presented.

In the realm of engineering optimization, numerous methodologies 
have been devised to tackle intricate design challenges. This review 
delves into recent progressions in optimization techniques and their 
applications in engineering design, particularly in addressing plastic-

ity based fatigue-constrained topology optimization to refine the design 
process for structural components. The computational framework is very 
important when a research field has reached the stage of application in 
industrial software.

* Corresponding author.

Reviewing the historical milestones of topology optimization, which 
includes discussions on the non-uniqueness of optimal topologies and 
analytical solutions dating back to the 1950-s, Lógó and Ismail provide 
valuable insights [26]. Wu et al. [60] furnish a comprehensive review 
of topology optimization for designing multi-scale structures. Zhou and 
Rozvany [69] applied the Continuum-based Optimality Criteria (COC) 
algorithm to simultaneously optimize topology and geometry. Arora et 
al. [43] introduced a new class of structural design problems focused 
on ensuring the safety of structures under damage conditions. In 1995, 
Patnaik et al. [38] explored the merits and limitations of the Optimal-

ity Criteria (OC) method for structural optimization. Topping provided 
a review of mathematical programming methods used in the design of 
skeletal elastic structures, which includes considerations for altering the 
shape, position, or layout of members [51]. Rozvany offered a critical 
review of general solution techniques for topology optimization in 2009 
[41], with statements still relevant today, offering guidance for future 
research directions. Furthermore, a new category of methods for im-
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plementing and solving structural optimization problems, referred to as 
feature-mapping methods, has emerged over the last 20 years, as out-

lined in the review paper by Wein et al. [59].

Nguyen and Lee presented several papers [32],[31],[30] recently in 
the field of stress, stability, and vibration constrained multi-scale, multi-

material topology optimization. The compliance minimization objective 
function of the multi-scale structures constrained by the global stress 
constraints, critical buckling load factor, and natural frequencies. The 
algorithm is based on the modification of the modified solid isotropic 
material with penalization algorithm. The maximum stress is measured 
using the global p-norm stress aggregation. They extend the dynamic 
constrained optimization to solve thermoelastic problems [34],[33].

The proposed herein study covers the stress-limited topology opti-

mization, which includes considerations for plasticity-based fatigue and 
reliability. Therefore, it is necessary to present the fundamental theo-

ries underlying stress-limited topology optimization. One of the seminal 
principles in this field was put forth by Sved [45], later elaborated upon 
by Sved and Ginos [46]. Their findings state:

“In the case of minimum-weight design of a stress-limited truss, the opti-

mal structure cannot be less stiff in the elastic range or in stationary creep 
than any other truss using the same amount of material and adhering to the 
same allowable range of axial stress. It is shown that a truss of minimum 
weight supporting given point masses from a given rigid foundation and pos-

sessing a given fundamental natural frequency has the same layout as the 
truss designed for minimum-weight under stress limitations, but may have 
different cross-sectional areas.”

The theorem established by Hegemier and Prager [19] provided a 
generalization for minimum compliance design, showing that stress-

constrained minimum weight design and stress-limited compliance min-

imization can lead to the same optimal topology. These theorems serve 
as invaluable tools for guiding the optimal layout of truss-like structures 
under stress constraints.

It is widely acknowledged that topology optimization frequently re-

sults in non-unique optimal solutions, a topic thoroughly discussed in 
[26]. Additionally, the existence of singular topologies in optimum de-

sign has been investigated by Kirsch [24]. These singular solutions hold 
significant importance in verifying the practical applications and effi-

cacy of topology optimization methodologies.

Over the past three decades, significant advancements have been 
made in the field of stress-limited topology optimization. Bojczuk and 
Mróz [3] introduced a heuristic algorithm for optimal truss design, us-

ing volume generalized cost as the objective function while considering 
stress and buckling constraints. Their approach treated design variables 
such as cross-sectional areas, node configurations, and the number of 
nodes and bars, akin to biological growth models. They observed that 
the structure evolves based on a characteristic size parameter, with 
topology bifurcation occurring through the generation of new nodes and 
bars to minimize the cost function.

Le et al. [25] proposed an algorithm to address stress-constrained 
topology optimization, employing a combination of density filtering 
for length scale control, the solid isotropic material with penaliza-

tion (SIMP) method to generate black-and-white designs, and a SIMP-

motivated stress definition to resolve stress singularities. They also 
incorporated a global/regional stress measure with an adaptive nor-

malization scheme to control local stress levels. The Drucker–Prager 
failure criterion was utilized to handle materials with different behav-

ior under tension and compression, as demonstrated in the work of 
Bruggi and Duysinx [4]. They implemented a suitable relaxation of 
the equivalent stress measure to address singularity-related challenges. 
Subsequently, these authors, along with Collet [9], extended their opti-

mization problem to include fatigue constraints, overcoming singularity 
issues through qp-relaxation of the equivalent stress measures.

Coelho et al. [8] presented stress-constrained topology optimization 
of cellular materials with periodic microstructures. They utilized par-
2

allel computing to mitigate the computational cost associated with the 
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local nature of stress constraints and finite difference design sensitivi-

ties, particularly in cellular materials with periodic microstructures.

Recently, the aspect of manufacturability has gained importance in 
stress-limited optimization. Mishra et al. [29] proposed a methodology 
to address the issue of slender intersections in topology optimization. 
Norato et al. [35] developed a method for stress-constrained topology 
optimization, where the stress constraint is represented by a differen-

tiable approximation of the maximum element stress violation within 
the structure. They introduced a differentiable rectifier function to quan-

tify the element stress violation, enabling the generation of designs that 
satisfy stress limits without the need for constraint renormalization.

Wang and Wu [54] focused on shell-infill structures in their re-

search. They formulated the topology optimization problem as a Ro-

bust Minimum Compliance problem with Volume and Stress constraints 
(RMCVS), utilizing robust methods to eliminate undesired topological 
characteristics.

While the aforementioned papers primarily assumed elastic materi-

als with stress limits, there has been consideration for plasticity-based 
topology optimization as well. Blachowski et al. [2] presented a method-

ology for the topology optimization of elastoplastic structures under 
stress constraints, expanding the scope of stress-limited optimization to 
include materials exhibiting plastic behavior. The Authors of this paper 
presented an effective computational method to solve plasticity based 
stress constrained topology optimization problems, however this algo-

rithm is limited for single performance constraint reliability optimiza-

tion [48]. The paper describing the IT aspects of topology optimization 
computational environment, including the code architecture, has been 
published by the authors here [49].

To further advance the understanding of stress-limited topology op-

timization problems from a probabilistic and reliability perspective, sev-

eral researchers have conducted investigations. However, fundamental 
questions, such as those related to convexity, also require thorough ex-

amination.

Wang et al. [58] explored the interrelation between classical prob-

abilistic methods and convex modeling approaches. Their study illus-

trated that concepts of probability and convexity are compatible, shed-

ding light on potential synergies between these two frameworks in ad-

dressing stress-limited topology optimization problems. In 2004, Du and 
Chen [13] introduced the Sequential Optimization and Reliability As-

sessment (SORA) algorithm for reliability analysis in topological design. 
Honarmandi et al. [21] proposed a reliability-based design optimization 
methodology specifically for cantilever beams. Kharmanda et al. [23]

introduced reliability-based topology optimization (RBTO). Valdeben-

ito and Schuëller [52] provided a survey of approaches for conducting 
reliability-based optimization. Da Silva and Beck [10] elaborated on a 
methodology for solving reliability-based topology optimization prob-

lems in continuum domains with stress constraints and uncertainties in 
the magnitude of applied loads. They addressed the entire set of local 
stress constraints without resorting to aggregation techniques. Zhang et 
al. [65] proposed a Moving Morphable Void (MMV)-based approach. 
Huang and Xie [22] proposed a bi-directional evolutionary topology 
optimization method with material interpolation. Senhora et al. [42]

presented a consistent topology optimization formulation for mass min-

imization with local stress constraints. Fin et al. [16] explored structural 
topology optimization under limit analysis. Pastore et al. [37] intro-

duced a risk factor-based formulation of stress constraints to handle 
non-isoresistant materials, such as concrete, in stress-based topology 
optimization problems. Xia et al. [62] presented an interval reliability-

based topology optimization (IRBTO) framework for interval parametric 
structures. Wang et al. [55] proposed an uncertainty-oriented cross-scale 
topology optimization model with global stress reliability constraint, lo-

cal displacement constraint, and micro-manufacturing control based on 
evidence theory. Xia and Qiu [61] presented a sequential strategy for 
non-probabilistic reliability-based topology optimization (NRBTO) of 
continuum structures with stress constraints. Bo et al. [63] elaborated on 

a surrogate model-based method for reliability-oriented buckling topol-
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ogy optimization under random field load uncertainty. Freitag et al. 
[17] addressed aleatory and epistemic uncertainties within topology 
optimization using polymorphic uncertainty models. Cheng et al. [6]

proposed a response-surface-based reliability design approach for solv-

ing stress-constrained optimization problems with loading uncertainty. 
De et al. [11] presented a topology optimization approach that optimizes 
the structural shape and topology at the macroscale while considering 
design-independent uncertain microstructures.

A hybrid reliability-based topology optimization method for han-

dling epistemic and aleatory uncertainties was presented by Meng et 
al. [28] They elaborated a new triple-nested RBTO model based on fuzzy 
and probabilistic theory for describing the multi-source uncertainties. 
To make the algorithm more effective, an efficient single-loop opti-

mization method is proposed to degrade the triple-nested optimization 
problem into a deterministic optimization problem using the Karush–

Kuhn–Tucker optimality condition. These derived optimality condition 
(the hybrid reliability constraint with respect to the random probabilis-

tic variables, fuzzy variables, and deterministic design variables) based 
on the adjoin variable method.

In the realm of frameworks, Wang et al. [56] introduced a non-

probabilistic reliability-based topology optimization (NRBTO) frame-

work for continuum structures under multi-dimensional convex uncer-

tainties. They combined the SIMP model with set-theoretical convex 
methods to derive mathematical approximations and boundary laws for 
displacement responses. The non-probabilistic reliability was quantified 
using the principle of hyper-volume ratio. Ortigosa et al. [36] developed 
an additional framework for designing flexoelectric energy harvesters 
at finite strains using topology optimization. Caasenbrood et al. [5] pre-

sented a pioneering framework for designing pressure-driven soft robots, 
employing topology optimization techniques.

Fatigue is a critical phenomenon in engineering design, often catego-

rized into high cycle (elasticity-based) and low cycle (plasticity-based) 
fatigue. Lemaître and Desmorat [12] offered a comprehensive overview 
of Continuum Damage Mechanics applied to mechanical and civil en-

gineering, focusing on failures and fatigue. Figel and Kamiński [15]

presented a sensitivity based probabilistic approach for fatigue problem. 
They studied the effects of composite parameters in a fatigue delamina-

tion problem of a two-layer composite. This approach combines together 
a fatigue delamination model, Monte Carlo simulations and the finite el-

ement method.

Tauzowski et al. [50] introduced a novel method for stress-constrained

topology optimization considering reliability analysis with a perfor-

mance function based on low-cycle fatigue. Chen et al. [7] proposed 
a methodology for fatigue-constrained topology optimization by pe-

nalizing cumulative fatigue damage. Suresh et al. [44] presented an 
efficiency-enhanced procedure for addressing high-cycle fatigue con-

straints in topology optimization. Zhao et al. [68] proposed an efficient 
fail-safe approach for topology optimization considering fatigue con-

siderations. Verbart et al. [53] proposed a damage-based method for 
topology optimization with local stress constraints. Desmorat [12] intro-

duced a topology optimization approach to maximize fatigue lifetime. 
Holmberg et al. [20] proposed a methodology for fatigue-constrained 
topology optimization. As it was mentioned earlier Collet et al. [9] in-

vestigated a simplified approach for optimizing structures under fatigue 
and compliance constraints. Zhang et al. [64] presented a method for the 
topology optimization of structures subject to non-proportional cyclic 
loading with regard to fatigue criteria.

Generally, the topology optimization problem is computed by ob-

ject oriented programming but Tauzowski et al. [47] proposed a novel 
approach using functor-based programming for topology optimization 
of elasto-plastic structures. The Authors in the paper [48] presented 
also an effective computational method to solve plasticity based stress 
constrainted topology optimization problems, however this algorithm 
is limited for single performance constraint reliability optimization. 
Ma et al. [27] developed a fully automatic computational framework 
3

for beam structure design based on continuum structural topology op-
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timization. Rade et al. [40] proposed algorithmically-consistent deep 
learning frameworks for structural topology optimization. Zhang et 
al. [66] presented TopADD, a parallel-computing framework for inte-

grated topology optimization. Ortiogosa et al. [36] introduce a com-

putational framework for topology optimization of flexoelectric energy 
harvesters. Zhao et al. [67] present an application framework for de-

signing optimized self-supporting structures. Aage et al. [1] develop a 
parallel framework for topology optimization using the method of mov-

ing asymptotes. Wang et al. [57] introduced a framework for structural 
shape and topology optimization using a level-set method. Wang et al. 
[55] proposed a topology optimization formulation including a model of 
the layer-by-layer additive manufacturing process. Haverroth et al. [18]

developed a topology optimization formulation considering the layer-

by-layer additive manufacturing process.

The diverse methodologies and advancements showcased in the re-

viewed literature under- score the potential of topology optimization in 
addressing real-world engineering challenges. While existing computa-

tional frameworks often address individual aspects of design optimiza-

tion, such as topology or fatigue analysis, they lack a comprehensive and 
integrated approach. This study introduces a MATLAB framework that 
seamlessly integrates topology optimization with various constraints 
such as displacement, stress, low-cycle fatigue assessment, and elasto-

plastic analysis within a single user-friendly environment. Additionally, 
constraints can be based not only on specific values—such as displace-

ment, stress, or low-cycle fatigue assessment—but also on the probabil-

ity of exceeding these values. This probability assessment is achieved 
using various reliability analysis methods, such as FORM, SORM, and 
Monte Carlo. This unique combination sets our framework apart and 
empowers engineers to tackle complex design challenges with a more 
holistic and probabilistic perspective. A significant part of our novelty 
lies in incorporating the Sequential Optimization and Reliability Assess-

ment (SORA) algorithm for topology optimization within the reliability 
analysis. This allows for the inclusion of design constraints based on the 
probability of failure, representing a substantial advancement in achiev-

ing robust, reliable designs and relativelly fast results.

In this paper a novel framework is presented to solve complex, stress 
based (fatigue including) topology optimization problems. Section 1

provides an overview of structural topology optimization, aiming to elu-

cidate its fundamental principles, methodological variants, and practical 
applications. Section 2 delves into the detailed formulation of structural 
topology optimization, encompassing various algorithms and constraint 
types, including considerations for reliability, fatigue, and displacement 
based constraints. A series of illustrative examples is presented in Sec-

tion 3, demonstrating the application of these methodologies through 
numerical simulations of classic problems such as the L-shaped structure 
in both 2D and 3D, as well as the cantilever beam and corbel. Finally, 
Section 4 offers conclusions drawn from the analysis and suggests av-

enues for future research in this dynamic field.

2. Methods

2.1. General formulation of structural topology optimization

This study formulates topology optimization problem as a size opti-

mization under stress constraints. The derivation of the method starts 
with general formulation of structural optimization:

Find design vector 𝐱 = [𝑥1, 𝑥2, ...𝑥𝑛]𝑇 ,
which minimizes 𝑓 (𝐱)

subject to constraints 𝑔𝑖(𝐱,𝜽) ≤ 0, 𝑖 = 1,2, ...,𝑚
(1)

where 𝐱 is an 𝑛-dimensional vector called the design vector, 𝜽 is a ran-

dom variable vector, 𝑓 (𝐱) is termed the objective (cost) function, 𝑔𝑖(𝐱, 𝜽)
are known as inequality constraints.

In our approach, random variables may include values such as ma-
terial parameters, loads values, and geometric quantities, such as the 
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Ω o
Fig. 1. Design domain

location of forces. The nature of this randomness is described by proba-

bility distributions implemented in MATLAB. The randomness of model 
parameters implies the randomness of resulting values from the struc-

tural analysis, such as displacements, stresses, and other quantities like 
the number of fatigue cycles. Given these random results, we can calcu-

late the probability of these results meeting selected conditions, such as 
the probability of exceeding a certain threshold value (details of such 
threshold functions are presented later in the paper).

The methodology for determining such probabilities is called reli-

ability analysis. In the simplest Monte Carlo method, to calculate the 
probability of a result meeting a selected condition, it is sufficient to 
random N points from the probability distributions, determine the re-

sults using FEM, and then check what percentage meets the condition. 
Although this method is very simple and reliable, it is numerically ex-

pensive because it typically requires a large number of realization of 
random variables (at least 10,000) and an equal number of FEM anal-

yses. Therefore, there are several other methods for estimating such 
probabilities. Besides the Monte Carlo method, our framework also im-

plements the gradient-based, iterative First Order Reliability Method 
(FORM) and Hybrid Mean Value (HMV) method, allowing for much 
more efficient probability estimation. Iterative formulas of these meth-

ods are presented in eq. (11) (FORM), eqs (7)-(9) (HMV).

In the proposed approach the objective function 𝑓 (𝐱) represents 
overall volume of the structure, 𝑔𝑖(𝐱) are the inequality constraints de-

pending on the specific problem. Graphical representation of the initial 
and optimal topology is shown in Fig. 1.

Three particularly useful and frequently used types of inequality 
equations are:

1) 𝑔𝑖(𝐱, 𝜽) = |𝑢(𝐱)| − 𝑢𝑇 , in the case of displacement constrained op-

timization where 𝑢(𝐱) denotes displacement at the optimal solution and 
𝑢𝑇 is allowable displacement level

2) 𝑔𝑖(𝐱, 𝜽) = 𝜎𝐻𝑀 (𝐱) −𝜎𝑇 , in the case of stress constrained optimiza-

tion where 𝜎𝐻𝑀 (𝐱) denotes von Mises stress at the optimal topology 
and 𝜎𝑇 is a threshold value. The threshold value of stress constraints 
can be defined locally for each element or as a global measure using 
p-norms. These norms provide a way to combine stresses from various 
locations within the structure into a single value. When an elastoplastic 
material model is chosen, a natural limit on stress exists. This is because 
the material’s yield stress represents the maximum stress it can sustain 
before undergoing plastic deformation. The optimization process will 
inherently avoid exceeding this limit.

3) 𝑔𝑖(𝐱, 𝜽) =𝑁𝑐(𝐱) −𝑁𝑇 , in the case of low-cycle fatigue where 𝑁𝑐 (𝐱)
is number of cycles at optimal design and 𝑁𝑇 represents permissible 
value

The above constraints are related to various cases of deterministic 
topology optimization. In the case of reliability-based topology opti-

mization the above constraints take the probabilistic form:

𝑃𝑟(𝜎𝐻𝑀 (𝐱) ≥ 𝜎𝑇 ) − 𝑃𝑇 ≤ 0, (2)
4

where 𝑃𝑇 is the probability threshold value.
ptimal topology Ω𝑚𝑎𝑡 .

Next, based on the various constraints mentioned above in the next 
subsection we will describe algorithms used for proposed topology op-

timization driven by stress intensity.

2.2. Improved optimality criteria-based algorithm for topology optimization

In this section we will briefly describe our main algorithm for topol-

ogy optimization and propose its improvements towards reduction of 
computational time. Our main algorithm for topology optimization is 
based on elastoplastic analysis and allows to design structures subjected 
to both displacement and stress constraints. It was described in detail 
in our previous work [2], presented graphically in Fig. 2 and essentially 
consists of the following six steps:

• Step 1) Initialize design variables 𝜌e = 1,

• Step 2) Solve equilibrium equations from the FEM equation

𝐊
(
𝜌(𝑘)e

)
𝐮
(
𝜌(𝑘)e

)
− 𝐟 = 𝟎, (3)

• Step 3) Determine element stress intensity 𝑎𝑒 =
𝜎
(𝑘)
𝑖

𝜎𝑚𝑎𝑥
,

• Step 4) Apply sensitivity filter,

• Step 5) Update design variables corresponding to the finite elements 
according to iterative formula:

𝜌
(𝑘+1)
𝑖

= 𝜌(𝑘)
𝑖

[
𝜎
(𝑘)
𝑖

𝜎𝑚𝑎𝑥

]𝑝
, (4)

• Step 6) Remove 𝑛𝑠𝑒𝑙 least stressed finite elements

• Step 7 If end condition meet then STOP

• Step 8 Goto Step 2.

Where 𝜌(𝑘)e - is element density – design variable of topology optimiza-

tion, 𝜎(𝑘)
𝑖

average Huber-Mises stress at ith element, 𝜎𝑚𝑎𝑥 is maximal 
stress in the structure, 𝐊 

(
𝜌
(𝑘)
e

)
is global stiffness matrix, 𝐮 

(
𝜌
(𝑘)
e

)
is 

global displacement vector and 𝐟 is global load vector. Besides of stan-

dard parameters appearing in other topology optimization methods such 
as SIMP, in our method another free parameter appears. This parameter 
is denoted as 𝑛𝑠𝑒𝑙 and represents a number of finite element removed at 
subsequent iteration of the whole optimization procedure. As it was pre-

sented in paper [2] it is always possible to select this sufficiently small 
to achieve proper result. In general one can say, that the smaller the pa-

rameter the better the result. However, such an approach is obviously 
related to longer time of computations, therefore it is strongly recom-

mended to tune the parameter in such a way that optimal topology is 
obtained with required accuracy in reasonable time. We have now in-

troduced the capability for the cut threshold to vary as a function of the 
constraint value (see Fig. 4 for examples of variability functions). This 
allows for more efficient and more accurate topology optimization, par-

ticularly in the initial stages where different cut threshold than in final 

stages. This improvement not only enhances efficiency but also proves 
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Fig. 2. Computational framework for a family of topology optimization methods.
beneficial when coupled with reliability analysis, where the reliability 
index can exhibit rapid changes, and a dynamic cut threshold provides 
better time resolution during these critical iterations.

The proposed herein modification is related to adaptive adjustment 
of the number of elements selected at subsequent iterations. Optimal 
topologies of simple cantilever structures are shown in Fig. 3. In contrast 
Fig. 5 shows the optimal topologies for adjusted number of removed 
elements.

2.3. Algorithms for constraints evaluation

The main algorithm presented in previous section is targeted on 
solving reliability-based topology optimization (RBTO) problem under 
displacement, stress and fatigue constraints. For satisfying constraints 
in our topology optimization problem the following four algorithms are 
used, two of which are responsible for mechanical aspects and the re-

maining two for reliability evaluation. The above mentioned algorithms 
are:

1) elastoplastic analysis using return mapping approach,

2) fatigue analysis based on continuum damage mechanics,

3) decoupled optimization using sequential optimization and reliabil-

ity assessment, and

4) nested optimization using first order reliability analysis.

Algorithm 1 (Elastoplastic analysis).

Step 1. Initialize loop variable 𝑛 = 1, and assign the total applied load 
to the residual force vector 𝐫𝑛 = 𝐟 .

Step 2. Aggregate of tangent stiffness matrix

𝐊𝑛
𝑇
= ∫

Ω

𝐁𝑇𝐃𝑒𝑝(𝝈𝑛,Δ𝛾)𝐁𝑑Ω,

where B is matrix of strain derivatives, 𝐃𝑒𝑝 is elastoplastic material 
matrix dependent on stress and Δ𝛾 is stress corrector ratio.

Step 3. Calculate of displacement increment on the current iteration( )

5

Δ𝐮𝑛 = − 𝐊𝑛
𝑇

−1 𝐫𝑛
Step 4. Update strain vector and calculate trial strain

Δ𝜺𝑛 = 𝐁Δ𝐮𝑛, 𝜺
𝑡𝑟𝑖𝑎𝑙
𝑛+1 = 𝜺

𝑡𝑟𝑖𝑎𝑙
𝑛

+Δ𝜺𝑛.

Step 5. Update stress vector (return mapping 𝚿) to ensure that stresses 
do not exceed the plastic flow surface

𝝈𝑛+1 =𝚿(Δ𝜺𝑡𝑟𝑖𝑎𝑙
𝑛+1 ).

Step 6. Update residual forces

𝐫𝑛+1 = ∫
Ω

𝐁𝑇 𝝈𝑛+1 𝑑Ω.

Step 7. Check the convergence criterion

If
||𝐫𝑛+1||||𝐟 || > 𝜖𝑡𝑜𝑙 then go to Step 2.

Algorithm 2 (Number of cycles in low-cycle fatigue analysis).

Step 1. Computation of plastic deformation increment per cycle 𝛿𝑝
𝛿𝑁

𝛿𝑝

𝛿𝑁
= ∫

cycle

�̇� dt = 2Δ𝜖P,

where Δ𝜖P is plastic strain range at each cycle, �̇� is plastic strain 
rate.

Step 2. Number of cycles to damage initiation 𝑁D

𝑁D =
𝑝D

2Δ𝜖P
,

where 𝑝D is plastic strain at which damage initialization is ob-

served.

Step 3. Increment of damage per cycle 𝛿𝐷
𝛿𝑁

computation

𝛿𝐷

𝛿𝑁
= ∫

cycle

�̇� dt =
𝜎2𝑠max + (Δ𝜎 − 𝜎max)2𝑆

2(2𝐸𝑆)𝑠
𝛿𝑝

𝛿𝑁
,

where 𝐷 ∈ [0, 1] is damage factor (0 means undamaged material 

while 1 is related to fully broken one), Δ𝜎 is stress range at cycle, 
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Fig. 3. Optimal topology of cantilever for various numbers of removed elements.

Fig. 4. Functions of the cut threshold parameter variability.
𝜎max is maximal stress at cycle, 𝑆 and 𝑠 are temperature dependent 
material constants, 𝐸 is Young modulus.
6

Step 4. Final calculation of number of cycles to rupture
𝑁R =𝑁D +
𝐷𝐶

𝛿𝐷

𝛿𝑁

, (5)
where 𝐷𝐶 is damage factor where rupture occurs.
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Fig. 5. Adaptive adjustment of the number of elements.
SORA approach which is described below in step-by-step manner:

Algorithm 3 (Decoupled approach for RBTO).

Step 1. Initialize the loop variable 𝑛 = 1 and the random variables with 
their mean values

𝜽
(0) = �̄�. (6)

Step 2. For the values assigned to random variables in step 1 determine 
optimal topology as in a deterministic case.

Step 3. Find reliability index 𝛽𝑇 for topology obtained using determin-

istic optimization (step 2) and determine the most probable point 
(MPP) with corresponding failure scenario applying first order ap-

proximation in form of Hybrid Mean Value (HMV) where the local 
loop variable for this procedure is 𝑚.

𝐧(𝐲(0)HMV) = −
∇𝐺(𝐲(0)HMV)||∇𝐺(𝐲(0)HMV)|| (7)

𝐲(𝑚+1)HMV = 𝛽𝑇
𝐧(𝐲(𝑚)HMV) + 𝐧(𝐲(𝑚−1)HMV ) + 𝐧(𝐲(𝑚−2)HMV )

||𝐧(𝐲(𝑚)HMV) + 𝐧(𝐲(𝑚−1)HMV ) + 𝐧(𝐲(𝑚−2)HMV )|| (8)

if 𝑚 < 3 use AMV formula:

𝐧(𝐲(𝑚+1)HMV ) = 𝛽𝑇 𝐧(𝐲
(𝑚)
HMV), (9)

where 𝐲HMV are the random variables transformed into a standard 
probabilistic space in which family of first order algorithms are usu-

ally implemented.

Step 4. Update the random variables by assigning to them values of the 
7

most probable point (MPP) determined at Step 3, so
𝑷
(𝑛) = −1(𝐲HMV), (10)

where 𝑷 (𝑛) is structural load vector at the 𝑛th iteration (in general 
this vector can represent other random parameters such as material 
constants).  = Φ−1(𝐹𝜽(𝜽)) is transformation of random variables 
into standard normal space, where Φ−1 is reverse cumulative dis-

tribution and 𝐹𝜽 is cumulative density distribution, both functions 
of random variable 𝜃.

This update of random variable is crucial for adjusting the structural 
load vector, which is used in next step for deterministic optimiza-

tion process. Finally, return to Step 2 and repeat the following 
procedure until the difference between two consecutive update re-

sults is smaller than the required accuracy (see Fig. 6).

Algorithm 4 (Double loop approach for RBTO).

Step 1. Initialize the loop variable 𝑛 = 1 and the design variables the 
set the material densities 𝐱𝑛 = 1.

Step 2. Determine current reliability index 𝛽𝑇 and 𝑚th iteration using 
first order reliability approach according the Rackwitz-Fiessler [39]

iterative formula:

𝐲(𝑚+1)FORM = 1||∇𝐺(𝐲)||2 (∇𝐺(𝐲)𝑇 𝐲 −𝐺)∇𝐺(𝐲), (11)

where 𝐲 in this equation means 𝐲(𝑚)FORM for compactness.

Step 3. Check if current reliability index exceeds prescribed thresh-

old.

𝛽𝑛 > 𝛽T,

if yes, restore design form previous, safe iteration and finish the 

algorithm.
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Fig. 6. Flowchart of the decoupled loop RBTO.

the

1

2

3

4

Fig. 7. Flowchart of

Step 4. Update design variables according to particular topology opti-

mization algorithm (see Fig. 7).

Finally, it is worth mentioning a few remarks about the generality of 
our solution. The numerical implementation of probabilistic problems 
has been designed to accommodate any probability distribution avail-

able in the MATLAB environment. A ‘RandomVariable’ class was created 
with an attribute representing a probability distribution and three func-
8

tions necessary for reliability analyses: ‘random’ (used in Monte Carlo 5
double loop RBTO.

simulation methods to randomize a set of points from a given distribu-

tion), ‘toU’, and ‘fromU’ (used to transform variables to and from the 
standard normal space, used in gradient based methods such as FORM, 
SORM, HMV). These methods are defined as follows:

function u = toU(obj,x)
u = norminv(cdf(obj.pd, x));

end
function x = fromU(obj,u)
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Fig. 8. Cantilever structure with constraint on vertical displacement: a) scheme, b) deterministic solution with 𝑉 = 10%, 𝛽 = 0.8, c) probabilistic solution with 
𝑉 = 18%, 𝛽 = 2.0 and d) 𝑉 = 21%, 𝛽 = 3.0.

6

7

𝑇 𝑇

x = icdf(obj.pd, normcdf(u));
end

In this code: ‘obj.pd’ is an attribute of the ‘RandomVariable’ class, 
which is a MATLAB probability distribution object, ‘norminv’ is the 
normal inverse cumulative distribution function, ‘cdf’ is the cumula-

tive distribution function, ‘icdf’ is the inverse cumulative distribution 
function, ‘normcdf’ is the normal cumulative distribution function. As 
demonstrated in the code above, the methods are defined for any proba-

bility distribution. A drawback of this approach is the inability to solve 
problems with correlated random variables, which would require the 
implementation of more complex variable transformation algorithms, 
such as the Nataf transformation which is not implemented yet.

Each task in our system is implemented as a separate class, allow-

ing for convenient encapsulation of all task parameters. Such a class 
can contain methods that enable easy modification of any task pa-

rameters, including load parameters, material constants (multi-material 
model), geometric parameters, or force location parameters. This solu-

tion provides significant flexibility in selecting random parameters for 
reliability tasks. In the numerical methods used in this work, the ‘set-

Load(P1,P2,. . . ,Pn)’ method was implemented to modify the force val-

ues, specifically the vector of the right-hand sides of the FEM equation. 
Similar function is implemented for compute any necessary constraint 
values (in this example ‘computeDisplacements’ for obtain constraints 
values similar function was implemented for computation of ‘compute-

PenalizedStress’ for stress type constraint or ‘computeFatiguneNCycles’ 
for fatigue constraints.

3. Illustrative examples

In the following subsections numerical examples are presented 
demonstrating effectiveness of the proposed methodology. These ex-

amples are two- and three-dimensional cantilever, 2D corbel and 3D 
L-shape structure. In our numerical examples, we aimed to achieve a 
target value of the beta reliability coefficient ranging around from 3 to 
9

5. This range is supported by the Eurocode standard [14], which speci-
fies reliability indices from 3.3 to 5.2 (Table B2, page 45, depending on 
the structure class). This broader range justifies our selection of values 
for 𝛽𝑇 .

3.1. Example 1. Solid cantilever with constraints on displacement

The first numerical example will concern 3D solid cantilever struc-

ture (Fig. 8a). It employs a regular mesh of eight-node Lagrange ele-

ments, totaling 32,000 finite elements and 109,593 degrees of freedom. 
In this example, we solve the topological optimization problem with a 
probabilistic reliability constraint on horizontal displacement. The per-

formance function will be expressed by Eq. (12). The material constants 
are defined as follows: Young’s modulus 𝐸 = 210 GPa, Poisson’s ratio 
𝜈 = 0.3. The probabilistic parameters are: 𝑃𝑥 = (0, 10), 𝑃𝑦 = (0, 0.1), 
𝑃𝑧 = (100, 10). In this case, we see slight but noticeable differences in 
the structure of the truss between the beta2 and beta3 safety models. 
The safer design has a significantly thicker top band. The position of 
one node on the bottom node and the adjacent bars have also changed 
(Figs. 8c, 8d). However, there is a clear difference between a determin-

istic task and a reliability task where we have a more complex lattice. 
This is illustrated in Fig. 8a and Figs. 8c, 8d. It is important to highlight 
that when employing the SORA algorithm, achieving a safer structure 
does not necessarily entail significantly increasing the volume fraction. 
Throughout the optimization process, the structure is iteratively recon-

structed to achieve the desired level of structural safety. While there 
exists a correlation between the probability of failure and the volume 
fraction, the increase in volume fraction is generally modest. This is pri-

marily attributed to the safety improvements resulting from the design 
adjustments made during the SORA algorithm. This observation is sup-

ported by the findings of this study as well as other research [56].

3.2. Example 2. Corbel with constraints on displacement

In the first example, we illustrate a reliability analysis task, as de-
picted in Fig. 9a. The 2D Corbel model has too many finite elements to 
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Fig. 9. Optimization of Corbel with constraints on displacement (𝑢𝑇 = 8 cm): a) scheme, b) deterministic solution with volume fraction 𝑉 = 20% and resulting 
𝛽 = 1.23; and probabilistic solutions c) 𝑉 = 25% for 𝛽 = 2.0, 𝛽𝑀𝐶 = 2.008, d) 𝑉 = 34% for 𝛽 = 3.0, 𝛽𝑀𝐶 = 2.992, e) 𝑉 = 36% for 𝛽 = 4.0, 𝛽𝑀𝐶 = 4.018 and d) 𝑉 = 38%
for 𝛽 = 5.0, 𝛽 = 5.0012.
𝑀𝐶

fully display in the diagram due to its complexity. Therefore, a regular 
grid of four-node Lagrangian elements is symbolically represented on 
9a. The model consists of 25,488 finite elements and 51,890 degrees of 
freedom. The material constants are defined as follows: Young’s modu-

lus 𝐸 = 210 GPa and Poisson’s ratio 𝜈 = 0.3. The performance function 
represents the condition for the serviceability limit state, specifically, 
exceeding a specified permissible value of horizontal displacement 𝑢 at 
the point 𝑃1 (Fig. 9a). This function is given by the formula:

𝑔(𝐱) = |𝑢(𝑃1)𝑥 |− 𝑢𝑇 , (12)

Satisfying the above with a given probability is the topological opti-
10

mization constraint in this example (see eq. (2)). Four tasks were solved 
for different values of the threshold probability equal 𝛽𝑇 = 2, 𝛽𝑇 = 3, 
𝛽𝑇 = 4 and 𝛽𝑇 = 5. The probabilistic data of the task include two random 
variables with normal distributions, which are the horizontal and verti-

cal (Fig. 9a). The probabilistic parameters are: 𝑃𝑥 = (2.5, 0.25), 𝑃𝑦 = (3, 0.3). These two optimal topologies are presented below (Figs. 9c, 
9d, 9e, 9f). Notably, the showcased topologies demonstrate that enhanc-

ing the safety of the structure does not necessarily entail an increase in 
weight. The SORA algorithm m aims to reconfigure the structure in a 
manner that reduces the probability of failure, which we observe by 
comparing a deterministic solution (Fig. 9b with reliable ones (Figs. 9c, 
9d, 9e, 9f). These figures include also probabilities computed by Monte 

Carlo method to check corrected of SORA results. Verifying very small 
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Fig. 10. Comparison of deterministic solution a) paper [56], 𝑉 = 19%, b) presented solution, 𝑉 = 20%.

Fig. 11. Comparison of reliability based solution a) paper [56], 𝑉 = 36%, b) presented solution, 𝑉 = 38%.
failure probabilities can be challenging. In our Corbel example, we tar-

get a reliability index of beta=5. Such probabilities require an excep-

tionally large number of points for the Monte Carlo method. For this 
reason, we assume a large number 𝑁 = 109 (one billion) points. The 
feasibility of solving this task is due to the linear relationship between 
the applied load and displacement. Displacement can be determined 
without expensive FEM calculations, as it is a linear combination of dis-

placement values computed once with unit forces.

Figs. 10 and 11 compare the topologies obtained in this study with 
results from Wang 2018 [56]. Fig. 10 shows high level of consistency be-

tween the deterministic topologies, with very similar volume fractions. 
This reinforces the validity of our implementation.

Fig. 11 compares the topologies for a case with a reliability con-

straint. While Wang’s work uses a non-probabilistic approach, making 
quantitative comparisons challenging, a qualitative assessment reveals 
good agreement between the resulting topologies for the case with a 
threshold reliability index 𝛽𝑇 = 5.0. Both solutions exhibit similar vol-

ume fractions.

3.3. Example 3. L-shape 3D with constraints on displacement

The last numerical example solid L-shape structure is taken into con-
11

sideration (Fig. 8a). In this example, we solve the topological optimiza-
tion problem with a probabilistic reliability constraint on horizontal 
displacement, similarly to previous example. The performance function 
will be expressed by Eq. (12). The material constants are defined as fol-

lows: Young’s modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3. The proba-

bilistic parameters are: 𝑓𝑥 = (0, 10), 𝑓𝑦 = (0, 0.1), 𝑓𝑧 = (100, 10). 
The finite element model uses an eight-node Lagrangian element with 
linear interpolation. The number of finite elements in the model is 
23328, which makes up the total number of degrees of freedom of the 
model to 79059. Structures taking into account the reliability condi-

tion have wider support at four points, as opposed to only two for the 
deterministic analysis (Fig. 12b and Figs. 12c, 12d). The differences be-

tween the 𝛽𝑇 = 2.0 and 𝛽𝑇 = 3.0 safety indices (Figs. 12c, 12d) are small 
but noticeable. The results in this example clearly illustrate the opera-

tion of the SORA algorithm. Reliability improvement is achieved not 
only by increasing the volume fraction but also through significant de-

sign changes. The deterministic structure, representing the initial design 
without reliability constraints, appears somewhat flatter. The structures 
optimized with reliability constraints exhibit a clear change, charac-

terized by the creation of elements stiffening them in a perpendicular 
direction. There are no substantial differences between the individual 
reliability solutions in terms of overall safety. However, the design with 
the higher threshold safety index 𝛽𝑇 = 3.0 has a more rigid V-shaped 

back wall, while the solution with the lower threshold (𝛽 = 2.0) exhibits 
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Fig. 12. L-shape structure with constraint on vertical displacement at point 𝑃1: a) scheme, b) deterministic optimal topology 𝑉 = 10% and 𝛽 = 1.05 determined for 
comparison purposes, c) probabilistic optimal topology 𝑉 = 15% for 𝛽 = 2.0, and d) 𝑉 = 16% for 𝛽 = 3.0.
𝑇

a Y-shaped back wall, which can be seen as a transitional shape between 
the more secure one and the deterministic design.

4. Conclusions

In conclusion, this study introduces a unified computational frame-

work that integrates reliability-based topology optimization with di-

verse constraints, including considerations for displacements, stresses 
in both elastic and plastic materials, and the number of cycles in low-

cycle fatigue problems. Addressing inherent uncertainties, our MATLAB-

based framework utilizes stress intensity at the finite element level and 
showcases the benefits of the object-oriented programming paradigm. 
The proposed framework incorporates safety assessment into topology 
optimization, employing the Sequential Optimization and Reliability As-

sessment (SORA) method for safety control and the Hybrid Measure 
Approach (HMA) algorithm to handle design uncertainties. Numeri-

cal examples demonstrate the correlation between volume fraction and 
probability of failure. This comprehensive framework offers a versatile 
and robust approach for optimizing structures under diverse constraints 
and uncertainties, showcasing its applicability and effectiveness in prac-

tical scenarios.

The variable adjustment of the ‘cut threshold’ parameter introduced 
in our algorithm presents a significant advancement in topological opti-

mization methodologies. By allowing for more effective optimization 
and enhanced resolution over time, particularly in conjunction with 
reliability analysis, these enhancements pave the way for further ad-

vancements in structural engineering and related fields.

The integration of multiple advanced analyses within a transparent 
architecture, designed according to sound object-oriented programming 
practices, empowers users to seamlessly assemble even highly intricate 
tasks. These tasks may encompass a range of analyses, including re-
12

liability analysis and low-cycle fatigue analysis. Moreover, the clear 
𝑇

architecture facilitates relatively easy extension of the framework with 
new analyses, offering users flexibility and adaptability for future re-

search and practical applications.

It is worth emphasizing that when using the SORA algorithm, achiev-

ing a safer structure does not necessarily equate to a significant increase 
in volume fraction. The optimization process rebuilds the structure to 
attain the desired level of structural safety, as measured by the Hasofel-

Linde Reliability index. While there is naturally a correlation between 
the probability of failure and the volume fraction, the increase in volume 
fraction is often modest due to the significant improvement in safety 
achieved through the design changes occurring during the SORA algo-

rithm.
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