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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Mutagenesis is responsive to many environmental factors. Evolution therefore depends on

the environment not only for selection but also in determining the variation available in a

population. One such environmental dependency is the inverse relationship between muta-

tion rates and population density in many microbial species. Here, we determine the mecha-

nism responsible for this mutation rate plasticity. Using dynamical computational modelling

and in culture mutation rate estimation, we show that the negative relationship between

mutation rate and population density arises from the collective ability of microbial popula-

tions to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-

associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient

in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate

in denser populations is restored in peroxide degradation-deficient cells by the presence of

wild-type cells in a mixed population. Together, these model-guided experiments provide a

mechanistic explanation for DAMP, applicable across all domains of life, and frames muta-

tion rate as a dynamic trait shaped by microbial community composition.

Introduction

Uncovering the mechanisms behind environmentally responsive mutagenesis informs our

understanding of evolution, notably antimicrobial resistance, where mutation supply can be

critical [1,2]. Microbial mutation rates are responsive to a wide variety of environmental fac-

tors including population density [3], temperature [4], growth rate [5,6], stress [7,8], growth

phase [9], and nutritional state [10]. Such mutation rate plasticity inspires the idea of “anti-

evolution drugs,” able to slow the evolution of antimicrobial resistance during the treatment of

an infection [2,11–13]. Even small reductions in the mutation rate (2- to 5-fold) can have dra-

matic effects on the capacity of bacterial populations to adapt to antibiotic treatment, particu-

larly when evolution is limited by mutation supply, as is the case for small pathogen

populations [2].
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Microbial mutation rates have an inverse association with population density across all

domains of life; we have previously shown that 93% of otherwise unexplained variation in pub-

lished mutation rate estimates is explained by the final population density [3]. This density-

associated mutation rate plasticity (DAMP) is a distinct phenotype from stress-induced muta-

genesis, which acts via independent genetic mechanisms [14]. Population density alters not

only the rate but also the spectrum of mutations, with significantly higher rates of AT>GC

transitions seen in low-density populations [15]. Density effects are likely relevant to natural

populations given that population sizes and densities vary greatly, for example, Escherichia coli
populations in host faeces can range in density by 5 orders of magnitude [16], and infections

can be established by populations as small as 6 × 103 cells [17]. We therefore aim to mechanis-

tically describe the widespread phenotype of DAMP.

In order to test potential mechanisms generating DAMP, we developed and systematically

assessed a computational model connecting metabolism and mutagenesis in a growing E. coli
population. This model generates the hypothesis that the key determinants of DAMP are the

production and degradation rates of reactive oxygen species (ROS). Though molecular oxygen

is relatively stable, it can be reduced to superoxide (•O2
−), hydrogen peroxide (H2O2), and

hydroxyl radicals (HO•). These “reactive oxygen species” are strong oxidants able to damage

multiple biological molecules including nucleotides and DNA [18]. We tested the role of ROS

in controlling DAMP by estimating mutation rate plasticity under different conditions of envi-

ronmental oxygen and with genetic manipulations known to alter ROS dynamics. We find

that the reduction in mutation rate at increased population density results from the popula-

tion’s increased ability to degrade H2O2, resulting in reduced ROS-associated mutagenesis.

We show that this density effect is also experienced by cells deficient in H2O2 degradation

when cocultured with wild-type cells able to detoxify the environment. Cross-protection from

ROS has been previously demonstrated (e.g., [19]); however, the relevance of this cross-protec-

tion to mutation rates and in the absence of added H2O2 is novel. Mutation rates therefore

depend not only on the genotype of the individual but also on the community’s capacity to

degrade H2O2.

Results

Initial computational model of nucleotide metabolism in a growing

microbial population fails to reproduce mutation rate plasticity

To generate hypotheses for the mechanisms of DAMP, we constructed a system of ordinary

differential equations (ODEs) that recapitulates the dynamics of metabolism, growth, and

mutagenesis in a 1-ml batch culture of E. coli (Fig 1). The enzyme MutT, responsible for

degrading mutagenic oxidised deoxy GTP [20], is essential in DAMP [3]; the ODE model is

therefore focussed on guanine bases. In the model external glucose (eGlc) is taken up by a

small initial E. coli population (wtCell). Internal glucose (iGlc) is then metabolised to produce

dGTP, ROS [21–24] and, largely, “other” molecules (“Sink” in Fig 1). dGTP is then either inte-

grated into a newly synthesised DNA molecule (DNA) or it reacts with ROS to produce 8-oxo-

20-deoxyguanosine triphosphate (odGTP). In this model, non-oxidised dGTP always pairs cor-

rectly with cytosine, producing non-mutant DNA (DNA). In a second round of DNA replica-

tion, the guanine base is now on the template strand, cytosine is correctly inserted opposite

producing new chromosomes (wtCell). odGTP, if it is not dephosphorylated by MutT into

dGMP (Sink), can either pair correctly with cytosine (becoming DNA) or mis-pair with ade-

nine (becoming mDNA). When odGTP is inserted opposite adenine into DNA (mDNA), it

may be repaired by the MutS or MutY proteins, converting the mDNA back to DNA. As with

DNA, mDNA undergoes a second round of DNA replication to be fixed in the genome as
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mCell. Because these mutant base-pairs do not replicate, mCell measures the number of muta-

tional events, referred to as “m” in mutation rate estimation [25]. The key output of interest is

the mutation rate, which is defined as the number of mutant base pairs (mCell) divided by the

total number of base pairs (wtCell + mCell). The model comprises 10 ODEs, one for each sub-

stance variable in Fig 1 (excluding “Sink”), plus cytVol, the total population cytoplasmic vol-

ume within which all the reactions occur (Table 1, Eqs 1–10, Methods). These equations

require 14 parameters (some of them composite, Table 2); the structure and parameter values

are largely taken from the existing literature (for details, see Methods). Un-measurable param-

eters (notably the rate of dGTP oxidation to odGTP by ROS, “O2”) were set to give the

observed mutation rate (2 × 10-10 mutations per base pair per generation, [26]) at a final popu-

lation density of 3 × 108 CFU ml-1, typical of 250 mg L-1 glucose in minimal media. As with

Fig 1. Dynamical computational model of growth, metabolism, and mutagenesis in AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to4andTables1to3:Pleaseverifythatallentriesarecorrect:E. coli. (A) Model structure connecting variables. Red variables indicate

the pathway to mutagenesis; green numbered arrows indicate pathways targeted by model variants. This structure was represented in ODEs (Eqs 1–10,

Methods), parameterised from the literature (Table 2), and simulated from appropriate starting values (Table 1) to give output shown in B–E. (B) Kinetics of

eGlc, (C) molar concentration of ROS in the cytoplasm, (D) population density calculated as the number of genomes in the 1 ml culture (wtCell/GCperGen),

and (E) mutation rate calculated as the ratio of mutated to total base pairs therefore representing the chance of a single base-pair mutating in a single division

(generation); this is a cumulative measure of mutation rate in the sense that it considers all the mutations that have accumulated up to the given time, making it

directly comparable to experimental measures of mutation rate. Panels B–E are plotted for 5 initial glucose concentrations (range 55 – 1,100 mg L-1 as shown in

legend), initial glucose concentration indicated by line colour. Raw data for panels A–E can be found in S1 Data. eGlc, external glucose concentration; ODE,

ordinary differential equation; ROS reactive oxygen species.

https://doi.org/10.1371/journal.pbio.3002711.g001
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most experiments demonstrating DAMP [3,27], final population density is controlled by vary-

ing initial external glucose. We initiated approximately 28 h simulations of 1 ml cultures with

2,175 cells (a small number, typical of fluctuation assays estimating mutation rate, S1 Fig), no

internal metabolites and external glucose concentrations relevant to wet-lab experiments—

across a log scale from 55 to 1,100 mg L-1 (Table 1). The dynamics of external glucose, ROS,

population size, and mutation rate for these simulations are shown in Fig 1B–1E, dynamics of

all variables are included as Fig A2 in S1 Appendix.

This initial model (Fig 1, referred to as model A) creates an approximately linear log-log

slope of 0.09 ± 0.016 (95% CI, Regression 1 (SI)) between final population and mutation rate

(red line, Fig 2A, Regression 1 (SI)). We can compare the slope directly to in culture estimates

of mutation rates in E. coli, which show strong DAMP, with a slope of −0.83 ± 0.13 (95% CI,

grey dots and dashed line, Fig 2A, Regression 2 (SI)). Model A is therefore not describing the

processes causing DAMP—the structure and/or the parameters used are either incomplete or

fail to replicate biology for some other reason. To test whether inappropriate parameter values

could be responsible for the lack of DAMP in model A, we simulated 50,000 parameter sets

simultaneously varying all parameters randomly across 10% to 1,000% of their original value.

These results were filtered as described in Methods and are plotted in Fig 2B (far left). This

global sensitivity analysis showed the mutation rate plasticity, i.e., slope of model A to be very

robust, with an interquartile range of 0.02 to 0.13 as shown by error bars in Fig 2B. All tested

parameter sets gave a log-log linear slope of> - 0.06, suggesting that DAMP requires processes

not represented in this initial model.

ROS production and degradation are central to density-associated

mutation rate (DAMP) plasticity in silico

While there was only limited variation in the relationship between mutation rate and popula-

tion density, defining the slope of DAMP, in model A (Fig 2B), we can ask which model

parameters are associated either with this slope variation or with variation in mutation rate

itself across the set of models with all parameters simultaneously perturbed in the global sensi-

tivity analysis (S2 Fig). The affinity of importers for glucose (Ks, part of reaction 1 in Fig 1A)

had by far the closest association with the DAMP slope (Spearman’s Rho (DF = 3583) = 0.91,

P< 2.2 × 10-16, S2 Fig), whereas a group of parameters, including parameters controlling the

Table 1. Definitions and starting values for the 10 variables in ODE model A (Fig 1A). For variables measured as a concentration, the volume within which this is cal-

culated is given in the “region” column. wtCell and cytVol starting values equate to 2,175 cells (assuming 2357528 GC bp in the E. coli genome (strain MG1655, EBI Acces-

sion U00096.3)) and cell volume of 1.03 × 10-12 ml [83]).

Variable Definition Starting value Units Region

eGlc External glucose 3.1 × 10-4 to 6.2 × 10-3 (log spaced) M 1 ml culture

iGlc Internal glucose 0 M Cytoplasm

dGTP Deoxyguanosine triphosphate 0 M Cytoplasm

DNA Guanine nucleotides in the newly synthesised strand 0 M Cytoplasm

wtCell Guanine nucleotides in the template strand 8.5 × 10-12 M 1 ml culture

ROS Reactive oxygen species (H2O2) 0 M Cytoplasm

odGTP 8-oxo-20-deoxyguanosine triphosphate 0 M Cytoplasm

mDNA odGTP nucleotides in the newly synthesised DNA strand 0 M Cytoplasm

mCell odGTP nucleotides in the template DNA strand 0 M 1 ml culture

cytVol Total cytoplasmic volume 2.25 × 10-9 ml NA

ODE, ordinary differential equation; ROS reactive oxygen species.

https://doi.org/10.1371/journal.pbio.3002711.t001
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rates of both ROS production (r, reaction 2 in Fig 1A) and ROS degradation (parameters O2

and O3, corresponding to reaction 3 in Fig 1A) had the closest association with the mutation

rate (Spearman’s Rho (DF = 3583) = 0.22, 0.21, and −0.21, respectively, all P< 2.2 × 10-16, S2

Fig). The parameter representing MutT activity (parameter C1, reaction 4, Fig 1A), found to

be relevant in previous work on DAMP [3], was also in this group of parameters controlling

mutation rate and so was also considered as candidate processes for further exploration. We

hypothesise that the additional processes required to reproduce DAMP as observed in the lab

Table 2. Parameter values and descriptions for all parameters used in model A.

Parameter Value Units Description Source

U1 2.66E-

01

M-1s-1 Maximum uptake rate (Vmax) of eGlc Fitted from a known value of Ks [92] and data on E. coli growth

dynamics [93] (S13 Fig).

M1 2.69E-

04

s-1 Rate of dGTP synthesis from iGlc This value was fitted to published data on E. coli growth dynamics

[93] (S13 Fig).

Ks 3.97E-

05

M Michaelis Menten constant Ks: Concentration of glucose at

which glucose uptake rate of 1/2 Vmax is achieved

Ks measured as 7.16 μg/ml by [92].

I1 6.90E-

03

s-1 Rate of dGTP incorporation into DNA opposite C Fitted to give known cytoplasmic concentration dGTP in

exponential growth phase E. coli of 92 μm in 0.4% glucose [94].

D1 6.90E-

03

s-1 Rate of C pairing opposite incorporated G Given the same value as I1 as the synthesis of new DNA (DNA)

and new genomes (wtCell) should generally proceed at equal

rates (this is violated during rapid exponential growth [95] but

not included in this model).

O2 12.0 M-1s-1 Rate of dGTP oxidation to odGTP by ROS Selected to give a mutation rate of 1.94 × 10-10 base pair

substitutions per nucleotide in 0.2% glucose minimal media [26].

I2 2.53E-

04

s-1 Rate of odGTP incorporation into DNA opposite adenine The relative efficiency of odGTP binding to A (I2) compared to G

binding to C (I1) is 7.7 × 10-8: 2.1 × 10-6 (20), therefore, I2 = I1 *
(7.7 × 10-8/2.1 × 10-6).

D2 2.00E-

04

s-1 Rate of C pairing opposite incorporated oG causing an

AT>CG mutation

Rate of C pairing opposite an odGTP (D2) relative to CG (I1 and

D1) is 6 × 10-8: 2.1 × 10-6 (20).

C1 2.8 s-1 Rate of odGTP hydrolysis to odGMP by nudix hydrolase

enzyme MutT (NudA)

Value taken from Kcat of MutT measured in vitro [96].

C2 3.50E-

04

s-1 Rate of removal of adenine base incorporated opposite

8-oxodG in the genome by enzyme MutY

Value taken from Kcat of MutY measured in vitro as 0.021 min-1

= 3.5 × 10-4 sec-1 ([97]).

R1 2.00E-

04

s-1 Rate of oG insertion into DNA opposite cytosine Relative incorporation efficiency opposite C of odGTP:dGTP

(R1) is 0.029 (20)‚ therefore, R1 = I1 * 0.029.

S 2.58E-

02

s-1 Rate of removal of adenine base incorporated opposite

8-oxodG in the genome by enzyme MutS

Fitted to known rate of mutation in mutS knockout of 40× wild

type [98].

r 17.3 s-1 Rate of ROS production from iGlc relative to dGTP

production rate

Selected to give a known H2O2 production rate of 14 μm/second

in 0.2% glucose minimal media normalised to cell volume [32].

O3 5.60E

+01

s-1 Rate of ROS degradation through reactions other than dGTP

oxidation. Primarily AhpCF/KatEG enzyme activity.

Fitted to give a standing ROS concentration of 1.9 × 10-7 M,

midpoint of known 1.3 × 10-7 - 2.5 × 10-7 M in LB [23].

R2 2.53E-

04

s-1 Rate of adenine pairing opposite incorporated oG The relative efficiency of odGTP binding to A (R2) compared to

G binding to C (I1) is 7.7 × 10-8: 2.1 × 10-6 (20), therefore, R2 = I1

* (7.7 × 10-8/2.1 × 10-6).

Met1 1,545 s-1 Stoichiometry of glucose conversion to dGTP for genome

building (i.e., how many molecules of glucose are needed to

produce 1 molecule of dGTP)

Fitted to published data from [3] of cell density as a product of

glucose concentration (S14 Fig).

CellVol 1.03E-

12

ml Volume of one E. coli cell in minimal media growing in

exponential phase

Mean value of 4 estimates of cell volume in exponential phase

cells grown in minimal M9 media [83].

molML 6.02E

+20

molecules Number of molecules per mL in a 1 M solution One thousandth of Avogadro’s constant (NA).

GCperGen 2357528 GC

basepairs

Number of GC basepairs per genome E. coli Strain MG1655, EBI Accession U00096.3

eGlc, external glucose concentration; ROS reactive oxygen species.

https://doi.org/10.1371/journal.pbio.3002711.t002
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are associated with these reactions (numbered 1 to 4 in Fig 1A). We systematically tested each

of these processes using structural variants to the model, explicitly modifying density depen-

dence in biologically plausible ways. We thus use these models as a method of hypothesis gen-

eration, to determine which mechanisms may plausibly cause DAMP, with a view to testing

these candidate mechanisms in the lab.

The slight increase in mutation rates seen as density increases in model A (a reversal of the

negative association seen in the DAMP phenotype, therefore, referred to as “reverse DAMP”)

is the result of increased external glucose leading to increased internal glucose concentrations

(S3 Fig). Since ROS production in model A is linearly related to internal glucose (Eq 7), this

higher internal glucose results in higher mutation rates. It is therefore plausible that if glucose

importer proteins are more expressed under low external glucose conditions, increasing the

rate of reaction 1 (Fig 1A) at low glucose concentrations may increase mutation rates at low

density. Introducing this model variant (model B, using Eq 1B) does indeed remove model A’s

positive association between mutation rate and density but does not give the negative associa-

tion observed in culture (model B slope = −0.01 ± 0.016 (95% CI), Fig 2, Regression 1 (SI)).

In model A, ROS are produced only by cellular metabolism (at a rate linearly related, with

slope ‘r×M1’, to glucose metabolism); however, lab media also accumulates significant concen-

trations of H2O2 through photochemistry [28]. This is represented in model C by replacing

reaction 2 (Fig 1A) with a constant ROS concentration in the system (using Eq 8c rather than

Eq 8 and Eq 3c rather than Eq 3) and in model D by a constant rate of ROS production (using

Eqs 7DA and 7DB rather than Eq 7). Both models abolish model A’s positive slope. However,

while model C removes DAMP (slope = −0.001 ± 0.03 (95% CI), Regression 1 (SI)), model D

introduces a strong negative slope similar to the laboratory data (slope = −0.91 ± 0.016 (95%

Fig 2. Mutation rates in model variants. (A) Solid coloured lines show fitted log-log linear relationship between final population density and mutation rate for

models A to K (Regression 1 (SI)); numbers 1–4 in legend indicate the pathway targeted from Fig 1A. Black points and dashed line show lab data for E. coli
wild-type BW25113 in glucose minimal media with a log-log linear regression fitted (Regression 2 (SI)). (B) Global sensitivity analysis; coloured points show

slopes from baseline parameters (as in Fig 2A), and crosses and error bars show median and interquartile range of slope across 5 × 105 randomly perturbed

parameter sets, models are coloured as in Fig 2A. Dashed line shows slope of lab data in Fig 2A (Regression 2), and grey area shows 95% CI on this slope. Raw

data for panel A can be found in S2 Data, raw data for panel B (prior to filtering) can be found in S3 Data, and summary statistics as plotted can be found in S4

Data. eGlc, external glucose concentration; ODE, ordinary differential equation.

https://doi.org/10.1371/journal.pbio.3002711.g002
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CI), Regression 1 (SI)). As model D introduces ROS to the environment (representing the pho-

tochemical production of H2O2 in lab media [28]), we model both internal (Eq 7DA) and exter-

nal ROS (Eq 7DB) with passive diffusion across the membrane as in [29]. Interestingly, the

DAMP produced by this model is dependent on membrane permeability with decreased per-

meability reducing the slope of DAMP (Fig A5 in S1 Appendix).

Decreasing mutation rates at higher population densities could also be the result of changes

in cellular ROS degradation rates (reaction 3). We therefore created models where degradation

is determined by the internal glucose concentration (model E) and by the population density

(model F), replacing Eq 7 with Eqs 7E and 7F, respectively. Of these 2, the first had very little

effect (model E, slope = 0.09 ± 0.016 (95% CI), Regression 1 (SI)), whereas the second had a

large effect, giving a strong slope similar to in culture measurements (model F, slope =

−0.89 ± 0.016 (95% CI), Regression 1 (SI)).

Given that previous work has shown the action of MutT in degrading ROS-damaged dGTP

(odGTP, Fig 1A) to be essential to DAMP [3], we explored models in which the rate of odGTP
degradation by MutT (reaction 4, Fig 1A) is determined by the internal glucose (model G,

using Eq 8G rather than Eq 8), odGTP (model H, using Eq 8H rather than Eq 8) or ROS con-

centration (model I, using Eq 8I rather than Eq 8). None of these models consistently resulted

in DAMP (Fig 2B): making MutT activity dependent on odGTP had very little effect at all

(model H, slope = 0.08 ± 0.03 (95% CI), Regression 1 (SI)), whereas making MutT activity

directly responsive to internal glucose or ROS concentration did reproduce some degree of

DAMP slope (models G and I slopes −0.28 ± 0.016 and −0.62 ± 0.016, respectively (95% CI),

Regression 1 (SI)). However, the DAMP slopes of models G and I are highly parameter depen-

dent with the majority of parameter combinations in the global sensitivity analysis giving very

little slope at all (Fig 2B).

Finally, we replaced model A’s mass action dynamics with saturating Michaelis Menten

kinetics for MutT activity (reaction 4, model J using Eq 7J rather than Eq 7 [20]) and enzymatic

degradation of H2O2 (reaction 3, model K using Eq 7KA and Eq 7KB rather than Eq 7, [29]).

Neither of these modifications greatly affected the mutation rate response of the model to pop-

ulation density (slope = 0.10 ± 0.016 and 0.096 ± 0.016, respectively, (95% CI), Regression 1

(SI), Fig 2). Thus, across 11 biologically plausible model structures chosen as those most likely

to affect mutation rate plasticity, only 2, D and F, affecting reactions 2 and 3, respectively, in

specific ways, produced DAMP comparable to that observed in the laboratory (Fig 2A) and

robust to parameter variations (Fig 2B). Further details of the behaviour of all ODE model var-

iants are included in S1 Appendix.

We can use these model findings for hypothesis generation: Model A (without DAMP)

only describes ROS production from metabolism, whereas Model D (with DAMP) modifies

the initial model to have a constant rate of ROS generation, independent of the cell density.

Model D is consistent with ROS production in the system being dominated by environmental

sources at a constant rate. If DAMP is a result of such environmental ROS production, we

would expect this phenotype to be absent under anaerobic conditions where external H2O2

production is negligible [28].

Model F, which gains DAMP relative to model A, describes an increased rate of ROS detox-

ification dependent on the population density. This reflects a system in which ROS detoxifica-

tion is primarily occurring within cells. Here, ROS diffusion into cells from the environment is

significant and therefore the environment is more efficiently detoxified by larger populations.

If DAMP is a result of an increased environmental detoxification capacity in dense populations

in this way, we expect strains deficient in ROS degradation not to show DAMP. We would fur-

ther expect dense populations to show greater removal of environmental ROS than low-den-

sity populations.
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We therefore go on to test these predictions in culture using fluctuation assays to estimate

the mutation rate in batch cultures of E. coli.

Environmental oxygen is necessary for DAMP in culture

To test the hypothesis (from model D) that DAMP is dependent on external oxygen, we esti-

mated mutation rates of E. coli under anaerobiosis across a range of nutrient-determined final

population densities, analysing the results using a linear mixed effects model (Regression 4

(SI)). We find that anaerobic growth results in a loss of the negative relationship between den-

sity and mutation rate, indeed mutation rates significantly increased with density

(slope = 0.65 ± 0.41 (95% CI), Fig 3B, statistical tests in S1 Table, Regression 4 (SI)). We further

test this relationship using a second wild-type strain (E. coli MG1655). Again, we see a loss of

DAMP under anaerobiosis (slope = 0.14 ± 0.7 (95% CI), cf. slope = −0.43 ± 0.25 (95%CI),

anaerobic and aerobic, respectively, Regression 4 (SI), S4 Fig). This supports the hypothesis

arising from model D that when external ROS production is substantial (model D/aerobiosis),

mutation rates fall with increasing final population size, while when external ROS production

is not included (model A/anaerobiosis) mutation rates remain similar or increase slightly with

higher cell densities.

As well as losing DAMP, cultures grown under anaerobic conditions show significantly

reduced mutation rates (LR = 15.83, P = 1 × 10-4, Regression 4, S1 Table). This raises the ques-

tion of whether high-density cultures display reduced mutation rates because of increased

Fig 3. Mutation rate responses to population density in culture under environmental and genetic manipulations. Points show the slope of a log-log

relationship between final population size and mutation rate (raw data shown in S5 Fig, Regression 4 (SI)), error bars show 95% CI on slope. Treatments shown

are BW25113 ancestor (1,122 parallel cultures (pc) across 70 fluctuation assays (fa)); ancestor minimal media (974 pc, 61 fa); ΔahpF (266 pc, 17 fa); Hpx- (546

pc, 35 fa); ancestor anaerobic (168 pc, 11 fa); ancestor 10mM H2O2 (243 pc, 16 fa); ancestor 70U ml-1 catalase (231 pc, 15 fa); Hpx- anaerobic (105 pc, 7 fa);

ancestor + chelator 2,2,Bipyridyl 100 μm (382 pc, 24 fa); ancestor + FeCl2 100 μm (210 pc, 13 fa); ΔfeoB (210 pc, 13 fa); Δfur (504 pc, 31 fa); ΔtonB (113 pc, 7 fa);

ΔsodA (134 pc, 9 fa); ΔsodB (151 pc, 10 fa): ΔsodC (150 pc, 10 fa). Dashed line shows a slope of 0 (no DAMP); solid blue line shows the slope of BW25113

ancestor in rich media with dashed blue lines showing 95% CI on this estimate (Regression 4 (SI)). All experiments were conducted in dilute LB media unless

stated “Minimal,” in which case glucose minimal media was used. Raw data can be found in S5 data and summary statistics as plotted are in S1 Table. DAMP,

density-associated mutation rate plasticity.

https://doi.org/10.1371/journal.pbio.3002711.g003
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oxygen consumption compared with low-density cultures, resulting in a more anaerobic envi-

ronment [30,31]. To address the hypothesis that the level of anaerobiosis depends on cell den-

sity, we measured dissolved oxygen concentrations in high- and low-density populations over

the course of the growth cycle (S6 Fig). Although oxygen concentrations vary significantly

between time points (F = 22.5, df = 17, P = 3.7 × 10-6), with an expected decrease during expo-

nential growth, there is no difference in oxygenation between low- and high-density cultures

in our system (F = 1.2, df = 17, P = 0.29). Furthermore, even where others have found a rela-

tionship between population density and oxygenation [31], this is highly nonlinear. Therefore,

if DAMP were driven by oxygen availability we would expect differing DAMP slopes in sub-

samples of the data at high and low density. We find DAMP in wild-type BW25113 below and

above a density of 1 × 108 CFU mL-1 to show indistinguishable slopes (−0.89 ± 0.72 (N = 11)

and −0.70 ± 0.82 (N = 59) (±SD), respectively; comparison t = −0.80, DF = 467, P = 0.42).

Thus, while environmental oxygen is necessary for DAMP, its differential utilisation by high-

and low-density cultures is unlikely to be its cause.

Endogenous ROS degradation is necessary for DAMP in culture

The second ODE model able to reproduce DAMP (model F) introduces increased rates of

ROS degradation with increasing population density. If DAMP is the result of active cellular

ROS degradation, we would expect strains deficient in this trait to lack DAMP. The 2 alkyl

hydroperoxide reductase subunits AhpC and AhpF are together responsible for the majority of

H2O2 scavenging in aerobically growing E. coli [32]. The remaining H2O2 is degraded by the

catalase enzymes HPI (katG) and HPII (katE) [33]. The role of catalases in H2O2 scavenging is

much more significant at high H2O2 concentrations due to the higher Michaelis constants of

these enzymes, whereas AhpCF is saturated at approximately 20 μm [33]. We therefore esti-

mated DAMP in a version of the E. coli MG1655 strain lacking ahpC, ahpF, katG, and katE
(Hpx-, [21]). This quadruple deletion results in a complete loss of DAMP with no significant

change in the mutation rate across densities (slope = 0.41 ± 0.2 (95% CI), Fig 3C, Regression 4

(SI)). Enzymatic degradation of H2O2 is thus essential to the DAMP phenotype, consistent

with model F. Deleting only ahpF gives an intermediate DAMP phenotype (slope = −0.23 ± 0.44

(95% CI), Fig 3C, Regression 4 (SI)) with significantly weaker DAMP than the wild-type

(LR = 4.8, P = 0.028, Regression 4 (SI)), but still retaining stronger DAMP than Hpx-

(LR = 7.4, P = 0.0064, Regression 4 (SI)), indicating that DAMP requires both catalase and

alkyl-hydroperoxide reductase activity. In contrast, individual knockouts affecting superoxide

rather than H2O2 (the superoxide dismutase genes sodA, sodB, and sodC, slope = −0.62 ± 0.23,

−0.58 ± 0.24, and −0.44 ± 0.34, respectively (95% CI), Fig 3C, Regression 4 (SI)), or adding

environmental H2O2 or catalase (slope = −0.6 ± 0.2, −0.57 ± 0.2, respectively (95% CI), Fig 3B,

Regression 4 (SI)) do not significantly disrupt the wild-type negative relationship between

population density and mutation rate (S1 Table). It seems likely that the addition of extracellu-

lar catalase does not impact DAMP because in low H2O2 concentrations, such as those in lab

media, it is alkyl hydroperoxide reductase (AhpCF) which plays a larger role than catalase in

H2O2 degradation [33].

If the DAMP reproduced by model F is biologically realistic in this way, it requires that

high-density populations, exhibiting reduced mutation rates, show greater efficiency at remov-

ing H2O2 from their environment than low-density populations. We measured external H2O2

in cultures after 24 h of growth in rich or minimal media and found high-density populations

to achieve significantly lower H2O2 concentrations (F28 = 24.3, P = 3.3 × 10-5, Regression 7B

(SI), S7A Fig); there was no significant effect of rich versus minimal media (F26 = 0.77, P =
0.39, Regression 7A (SI)). The log-log relationship between H2O2 and population density
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(−0.33 ± 0.1, 95% CI, Regression 7B) is of a similar magnitude to the log-log relationship

between mutation rate and population density (−0.43 ± 0.25 and −0.58 ± 0.24 in rich and min-

imal media respectively, 95% CI, Regression 4). The reverse pattern is seen in sterile media

where increasing nutrient provision leads to increased H2O2 concentration (F46 = 9.8,

P = 3 × 10-3, Regression 6 (SI), S7B Fig). This supports the hypothesis that, as embodied in

model F, high-density populations detoxify external H2O2 better than low-density populations.

Testing the expression dynamics of H2O2 degrading enzymes at high and low population den-

sity could clarify whether this greater H2O2 degradation capacity is purely the result of an

increased population size (as in model D) or also reflects changed expression of enzymes such

as AhpCF (as in model F).

Cellular iron regulation is required for DAMP

Our model-guided hypothesis testing has shown that DAMP requires H2O2. Our models

involve the direct effect of ROS on DNA; however, it is the reaction of free Fe(II) with H2O2 to

produce mutagenic OH. radicals, Fenton chemistry, which is a major source of oxidative stress

in E. coli [34,35]. These radicals are far more reactive and damaging to DNA than H2O2 itself,

making iron critical to determining the amount of damage H2O2 causes [36]. If DAMP’s

dependence on H2O2, is the result of variable oxidative damage to DNA and nucleotides, we

would expect this mutation rate plasticity to be perturbed by changes in cellular iron homeo-

stasis. We first tested this using environmental manipulations of iron. However, the provision

of FeCl2 or starving cells of iron with a chelator (2,2-bipyridyl) has little effect on DAMP

(Fig 3D and S1 Table). Nonetheless, we find that a deletant of fur, the master regulator of intra-

cellular iron, results in an almost constant mutation rate across cell densities, with a significant

reduction in DAMP compared to the BW25113 wild-type (slope = −0.16 ± 0.16 (95% CI);

wild-type slope comparison: LR = 29.8, P = 4.9 × 10-8, Regression 4 (SI), S1 Table). Although

Fur is a regulator of many genes including ROS detoxification genes katE/G and sodB/C, it is

Fur’s central role as a negative regulator of multiple iron importers [37], which causes Δfur
strains to have an elevated internal redox-active iron pool [38] leading to increased oxidative

stress and DNA damage ([39,40], S5 Fig). Knockouts of the iron importer genes feoB and tonB,

which, if anything, reduce intracellular iron [41,42], do not lead to any change in mutation

rate plasticity (Fig 3D and S1 Table), likely because regulators such as Fur may maintain iron

homeostasis in the absence of these individual importers.

The critical contribution of iron to H2O2 stress is further demonstrated through whole

genome sequencing of the Hpx- LC106 strain used here. We find a 190-bp loss-of-function

mutation in the iron importer fecD (all mutations listed in S2 Table). This may have allowed

this Hpx- strain to escape the positive feedback cycle that Hpx- cells experience, in which

higher H2O2 concentrations prevent Fur from effectively limiting iron uptake. More intracel-

lular free iron then further exacerbates the damage done by the excess H2O2 [43,44]. It is likely

that this loss-of-function mutation is an adaptation, during laboratory culture, to the loss of

Fur functionality caused by the oxidation of intracellular iron. This raises the question of

whether the lack of DAMP in Hpx- arises not from the katE/G ahpCF knockout, but from this

secondary mutation. To address this, we show that the independently derived Hpx- strain

BE007, without mutations in the fecD gene (S2 Table), also lacks DAMP (X2 = 0.808, df = 1,

P = 0.369) (S8 Fig).

Wild-type cells restore DAMP in cells deficient in peroxide degradation

We have identified DAMP as requiring environmental H2O2 and endogenous H2O2 degrada-

tion, so that, with wild-type iron regulation, increased detoxification of environmental H2O2
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leads to lower mutation rates at higher final cell densities. This understanding leads us to pre-

dict that the presence of wild-type cells should restore DAMP in the peroxidase and catalase-

deficient Hpx- strain. It has previously been shown that a wild-type population can provide

protection against environmental H2O2 to cocultured Hpx- cells, or similarly H2O2 sensitive

ΔoxyR cells, through decreasing the peroxide concentration of the external environment

[32,45]. To better distinguish Hpx- and wild-type strains in a coculture, 2 nalidixic acid (Nal)-

resistant strains of Hpx- were independently created with the resistance conferred by point

mutations in gyrA (D87G and D87Y). Coculturing these Hpx-
nalR strains with wild-type

BW25113 cells, the loss of DAMP via the Hpx- mutation (Fig 3C) is phenotypically comple-

mented by the wild-type cells. That is, Hpx-
nalR mutation rate is significantly decreased in

coculture with increasing population density either of the Hpx- strain (Figs 4, S9, slope =

−0.93 ± 0.5 (95% CI), Χ2
(DF=1) = 11.7, P = 6.4 × 10-4, Regression 4 (SI)), or total population

density (S10 Fig, Slope = −1.4 ± 1.06 (95% CI), t29 = −3.79, P = 7 × 10-4, Regression 8 (SI)).

This supports the hypothesis that DAMP is the result of reduced environmental H2O2 concen-

trations achieved by the local wild-type population. These results are also replicated by intro-

ducing an Hpx- population to the ODE model D, highlighting the ability of this simple model

to explain the DAMP phenotype (see Methods and S11 Fig).

Such mutation rate estimates in coculture could potentially be confounded by differential

survival of rifampicin-resistant (RifR) mutants of Hpx-
nalR when plated in a monoculture or a

coculture. In order to test for any differences in mutant survival, we conducted a “reconstruc-

tion test” (as in S13 Fig of [27]); plating a predetermined number of Hpx-
nalR&rifR cells with a

population of rifampicin susceptible Hpx- or wild-type cells on the selective rifampicin agar.

No significant difference in plating efficiency was seen between plating with Hpx- versus low,

medium, or high density of wild-type cells (S12 Fig; LRdf=6 = 11.7, P = 0.07, Regression 9 (SI)).

Some difference in plating efficiency between the 2 Hpx-
nalR&rifR strains was observed

(S12 Fig), this is likely due to the pleiotropic effects of different RifR resistance mutations in

the rpoB gene [46,47]. The rifampicin resistance mutations in these strains were identified

with Sanger sequencing of the rpoB rifampicin-resistance determining region and are given in

S12 Fig. The specific protein sequence changes caused by these mutations have different

known pleiotropic effects, as characterised in [47].

Although the wild-type strain reintroduces DAMP in Hpx-
nalR it also causes an increase in

total Hpx-
nalR mutation rates (S10 Fig and S1 Table). This is potentially the result of out-com-

petition by the wild-type strain leading Hpx-
nalR growth to stop earlier in the culture cycle

where, consistent with previous fluctuation assay results ([48], Chapter 5.4.3), our modelling

leads us to expect higher mutation rates (Fig 1E and Fig A3 in S1 Appendix).

Discussion

Using ODE modelling (Figs 1 and 2) to guide experiments in E. coli cultures, we have been

able to predict and demonstrate the mechanisms behind the widespread phenomenon of

reduced mutation rates at high microbial population densities (DAMP [3]). Genetic and envi-

ronmental manipulations show that DAMP results from the improved degradation of H2O2 as

the population density is increased (Fig 3). The reintroduction of DAMP in catalase/peroxi-

dase deficient cells by coculture with wild-type cells (Fig 4) demonstrates the importance not

only of a microbe’s own population density in determining the mutation rate but also the den-

sity and genotype of coexisting populations. Our results demonstrate that mutation rates can

be context dependent, through the degradation capacity of a community for mutagens includ-

ing, but perhaps not limited to, H2O2.
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Increased population density provides protection against high levels of external H2O2 stress

[19,45,49]. However, the concentrations of 100 μm to 1 mM applied in such studies is far

beyond the range of known environmental concentrations, which is typically up to only 4 μm

[50]. Here, we show that without any external input of H2O2 higher density populations detox-

ify environmental H2O2 more effectively over 24 h than low-density populations (S7 Fig). As

well as improving survival under extreme H2O2 stress, previous work also finds mutation rates

to decrease in cells protected by a higher density of neighbours able to detoxify the environ-

ment [45]. Here, we find that this mutation protection holds in the absence of external H2O2

application with the presence of higher density wild-type rescuers able to modify mutation

rates in catalase/peroxidase-deficient cells (Fig 4). This interaction between 2 E. coli strains

raises the question of whether similar interactions will be seen in mixed species communities

such as human microbiomes where mutations can be critical for medically important traits,

such as antimicrobial resistance [51,52].

This study, and previous work on DAMP [3,14,27], considers E. coli batch culture in which

there is no renewal of media, meaning that peroxide detoxification is permanent. As media

Fig 4. Coculture with wild-type cells restores DAMP in cells deficient in peroxide degradation. Points show log-log relationship between final population

density of the focal strain and mutation rate fitted by Regression 4 (SI) (raw data shown in S9 Fig), error bars show 95% CI on slope. We found no significant

differences between independent Hpx-
nalR strains; therefore, Hpx- strains D87Y and D87G are combined in Hpx-

nalR. Treatments shown are: BW25113

ancestor (1,122 pc, 70 fa); BW25113 in coculture with Hpx- (498 pc, 31 fa); Hpx-
nalR (388 pc, 24 fa); Hpx-

nalR in coculture with BW25113 (319 pc, 20 fa). Raw

data can be found in S5 Data and summary statistics as plotted are in S1 Table. DAMP, density-associated mutation rate plasticity.

https://doi.org/10.1371/journal.pbio.3002711.g004

PLOS BIOLOGY Working together to control microbial mutation rates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002711 July 15, 2024 12 / 36

https://doi.org/10.1371/journal.pbio.3002711.g004
https://doi.org/10.1371/journal.pbio.3002711


inflow and outflow increase in a system, the ability of individual cells to detoxify ROS is

decreased [53], it therefore seems possible that, increasing flow will be similar to transitioning

from model D (fixed supply of environmental ROS, resulting in DAMP, Fig 2) to model C

(fixed level of nucleotide oxidation, resulting in no DAMP, Fig 2). That would mean that the

spatial structuring and resulting fluid dynamics of flow, which can be critical for bacterial com-

petition and cross-protection [54,55], are also critical for mutation supply. Such factors vary

greatly among natural environments, meaning that the effect of DAMP could be very different

in low versus high through-flow environments (e.g., soil rather than water or lung rather than

bladder). Tracing mutagenesis in single cells of spatially structured populations [56] has the

potential to define the spatial scales and through flow conditions under which benefits from

mutagen degradation are shared.

Our finding that oxygen is key to mutation rate plasticity is supported by mutation accumu-

lation experiments showing that increased oxygen uptake is correlated with increased muta-

tion rates [4]. However, existing literature is not agreed on this point—anaerobic fluctuation

assay-like experiments report reduced mutation frequencies for resistance to multiple antibiot-

ics [57], not unlike the reduced mutation rates we see in our anaerobic fluctuation assays

(S5 Fig and S1 Table). Work assessing mutation rate by the accumulation of resistance mutants

in chemostats also shows oxygen limitation to reduce mutation rates relative to carbon limita-

tion [10]. In contrast, anaerobic mutation accumulation experiments instead report increased

mutation rates [58,59]. This discrepancy is likely due to the change in mutational spectra

caused by anaerobiosis: although overall mutation rates increase, base pair substitutions

(BPSs) fall in frequency by 6.4 times [58] and it is such BPS which we modelled computation-

ally and are often responsible for antibiotic resistance [60–62], particularly to rifampicin, the

drug we used for our mutation rate estimates [61]. In line with our finding that iron and oxy-

gen disruption are similarly able to abolish DAMP, iron and oxygen limitation produce similar

mutational spectra [10]. The loss of DAMP in the Δfur strain is perhaps due to higher intracel-

lular iron levels producing a greater rate of H2O2 breakdown into DNA-damaging radicals

before it can be detoxified, reflective of ODE model C in which a constant ROS burden is

applied and no DAMP seen.

Our recent work suggests that AT>GC transitions are specifically elevated in frequency in

low-density populations of E. coli [15]. Transitions are not generally regarded as a hallmark of

ROS damage [63] and we do not explicitly include them in our modelling here. Nonetheless,

the frequency of AT>GC transitions are the most elevated variant in naïve E. coli exposed to 1

mM H2O2 (as compared to cells primed by exposure to 0.1 mM H2O2) [64]. ROS stress

imposed by either H2O2 treatment and Δfur strains has been shown to elevate all BPS includ-

ing density responsive AT>GC transitions. Future work, both with models and experiments is

needed to clarify the relationship between ROS stress and all the elements of the mutational

spectrum, to determine whether the collective H2O2 detoxification mechanism we have identi-

fied here is specific to the single mutational mechanism on which we built our modelling.

Mutation supply is a key evolutionary hurdle often limiting the adaptation of populations

[1,65–67]. As mutation supply depends on population size, one might expect the supply of

mutations, for instance to AMR, to be severely limited in small populations, such as the small

number of cells forming an infectious propagule of E. coli [17]. Even when population size is

sufficient to enable adaptation, mutation supply may have more subtle effects on the course of

evolution, as demonstrated by the pervasive effects of mutational biases [68–70]. However, due

to the action of DAMP in elevating mutation rates at low density, small populations can expe-

rience a very similar supply of mutations to large populations (as demonstrated in our data, S5

Fig). For E. coli at least, there is a limit to this effect as beyond intermediate densities (~7 × 108
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CFU ml-1) the action of stress-induced mutagenesis causes mutation rates to rise, rather than

fall, with increased density [14].

The collective protection from ROS we identify mirrors studies such as [71], demonstrating

the importance of ROS control in microbial ecology. The dependence of DAMP on active cel-

lular control of H2O2 concentrations, uncovered here, helps explain it is highly conserved

nature. The evolution of cellular systems in an anaerobic world for approximately 1 billion

years [72] means that all branches of life are similarly vulnerable to damage by ROS, leading to

parallel effects of ROS damage across life [73], potentially including its population level control

in DAMP. ROS defences such as those explored here, as well as excreted molecules including

pyruvate [74–76], are therefore widespread in aerobic life. Although DAMP is highly con-

served, it is notably not seen in Pseudomonas aeruginosa [3], despite this species being a close

relative of E. coli. How DAMP is lost between such close evolutionary relatives remains an

interesting open question. The current study suggests some speculative hypotheses: the forma-

tion of multicellular aggregates by P. aeruginosa [77] may make their experience of cell density

more complex than the simple CFU per ml measure used here; the decreased permeability of

P. aeruginosa [78] potentially decreases diffusion of H2O2 into the cytoplasm from external

sources, which we predict to decrease DAMP (Fig A5 in S1 Appendix) and finally the greater

ability of P. aeruginosa to detoxify environmental H2O2 [53], could mean that even low-density

populations of P. aeruginosa can detoxify the environment as effectively as high-density popu-

lations, removing DAMP.

Population associations with mutation rate are widespread, including a significant negative

relationship between the effective population size and mutation rates across vertebrates [79] as

well as microbes [80]. Such patterns seem likely to be driven by the increased efficiency of nat-

ural selection against the deleterious effects of mutation in large populations (the drift barrier

hypothesis, [81]), rather than any common mutagenic mechanism, as explored here, or any

adaptive benefit. The broad reach of such non-adaptive explanations and the fact that the evo-

lutionary effects of DAMP are yet to be explored means that any adaptive explanations should

be approached with great caution. Nonetheless, in wild-type E. coli, the mutation rate has an

inverse relationship not just with population density but also with absolute fitness, providing

the greatest mutation supply to the most poorly performing populations [27]. Mutation supply

also rises in the most nutrient-rich environments [14], potentially providing greater evolution-

ary potential where competition is most intense. Such plausible evolutionary benefits of

DAMP could exist, even if the ultimate origins of its conserved mechanism lie not in selection

for its indirect effects via mutation, but in the legacy, across domains of life, of the chemistry of

the Great Oxidation Event [82].

Materials and methods

Ordinary differential equations and Model A

Models were created as coupled sets of ODEs for the change over time of relevant variables.

These equations were largely parameterised from the literature, given appropriate starting val-

ues and simulated over time by integration with a solver, as described below.

All variables (Fig 1A and Table 1) are measured in molar concentration within the cyto-

plasm, aside from the volume of that cytoplasm (cytVol), measured in ml, and external glucose

(eGlc) and number of growing cells (wtCell and mCell) which are measured as molar concen-

trations within the 1 ml batch culture. It is possible to convert between cytoplasmic and total

metabolite concentrations through scaling by the cytoplasmic volume; this is calculated as the

number of cells multiplied by a volume of 1.03 × 10-9 μl per cell [83]. The reaction of dGTP
with ROS creates oxidised dGTP (odGTP) which is then incorporated into DNA, creating
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AT> CG base pair substitution transversion mutations [26]. Mutations caused by odGTP
may be avoided or repaired by the action of MutT, MutY, and MutS enzymes [84]. By dividing

the number of mutant cells (mCell) by the total cell number (mCell + wtCell) at any point dur-

ing the simulation, a mutation rate (bp-1 generation-1) across the simulation up to that point,

can be calculated. Final population density is here manipulated by changing nutrient input,

this also modifies a range of other timings and features of the culture cycle. We model growth

with no death; though in practice death does occur in laboratory media, mortality rates are

generally low [85]. Although DAMP is measured at approximately 28 h during the stationary

phase where all metabolites are drained (Figs 1C, S3, and Fig A2 in S1 Appendix), we show

that these slopes are also representative of DAMP during the exponential phase (16 h) (Fig A4

in S1 Appendix). This recapitulates in culture findings that DAMP slope is constant across

growth phases in E. coli ([48], Chapter 5.4.3).

The uptake of glucose is described by saturating Michaelis Menten kinetics while the oxida-

tion of dGTP is described as a bimolecular reaction dependent on the cytoplasmic concentra-

tions of dGTP and ROS. All other steps are described by first-order mass action kinetics in

which the rate equals the concentration of the reactant multiplied by a rate constant (Eqs 1–

10). The model is parameterised from published enzymatic and culture data alongside our

own wet lab data (Table 1).

R code to recreate all figures, models, and analysis relating to the ODE models is available

as S1 Code. All models were simulated in R (V4.3.1) [86] using package deSolve (V1.36) [87];

logarithmic sequences were produced with emdbook (V1.3.13) [88]; data handling and plot-

ting was done using the tidyverse (V2.0.0) [89] and magrittr (V2.0.3); and parallel computing

was done using parallel (V4.3.0), doParallel (V1.0.17), and foreach (V1.5.2). Linear mixed

models were fitted to lab data with nlme (V3.1-162) [90], and plots formatted and coloured

using cowplot (V1.1.1), gridExtra (V2.3), ggeffects (V1.3.1) [91], and RColorBrewer (V1.1-3).

Fig 1A was made using R package DiagrammeR (V1.0.10).

deGlc
dt
¼ � U1 wtCell

eGlc
eGlcþ Ks

ð1Þ

diGlc
dt
¼
U1 wtCell eGlc

eGlcþKs

cytVol
� Met1 M1 iGlc ð2Þ

ddGTP
dt

¼ M1 iGlc � I1 dGTP � dGTP � ROS� O2 ð3Þ

dDNA
dt
¼ I1 dGTP þ C2 mDNAþ S mDNAþ R1 odGTP � D1 DNA ð4Þ

dwtCell
dt

¼ D1 DNAþ R2 mDNAð Þ � cytVol ð5Þ

dcytVol
dt

¼ D1 DNAþ R2 mDNAð Þ � cytVol�
molML

GCperGen
CellVol ð6Þ

dROS
dt
¼ M1 r iGlc � dGTP ROS O2 � O3 ROS ð7Þ
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dodGTP
dt

¼ dGTP ROS O2 � C1 odGTP � I2 odGTP � R1 odGTP ð8Þ

dmDNA
dt

¼ I2 odGTP � D2 mDNA � C2 mDNA � S mDNA � R2 mDNA ð9Þ

dmCell
dt

¼ D2 mDNA cytVol ð10Þ

Equations 1–10: ODE equations for initial model (A).

Model variants

Model B—Glucose uptake increases at low eGlc

Original Michaelis Menten kinetics are removed as this reverses the intended effect.

deGlc
dt
¼ � U1 wtCell

U2 � eGlc
U2 � eGlcþ K2

ð1BÞ

U2 ¼ 6:7e � 3

K2 ¼ 1:82e � 4

Both U2 and K2 are in Molar units.

6.7 × 10-3 is chosen as a value slightly higher than maximum eGlc so that the value of
U2� eGlc

U2� eGlcþK2
can cover almost a full range of 0 to 1. This means that glucose uptake rate will

increase from almost 0 to 100% of the measured uptake rate as the external glucose concentra-

tion falls. K2 is given as 1.82 × 10-4 as this value produces the most negative DAMP slope

achievable within the structure; values were tested from 1.82 × 10-6 to 1.82 × 10-2 (S1 Code).

Model C—Constant dGTP oxidation, regardless of ROS concentration

By decoupling ROS concentration from dGTP oxidation there is no extra odGTP in cells

grown to higher density, we expect this to prevent a positive DAMP slope. ROS no longer

alters odGTP formation and therefore Eq 7 is removed from model C.

ddGTP
dt

¼ M1 iGlc � I1 dGTP � dGTP � ROSC � O2 ð3cÞ

dodGTP
dt

¼ dGTP ROSC O2 � C1 odGTP � I2 odGTP � R1 odGTP ð8cÞ

ROSC ¼ 1:8e � 7

ROSC in Molar units.

ROS is removed as a variable and replaced with a constant concentration of 1.8 × 10-7, this

is within the known internal ROS concentration of 1.3 × 10-7 - 2.5 × 10-7 M [23] and produces

mutation rate of 1.93 × 10-10 based on lab data and [26].
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Model D—Constant ROS production regardless of population density

By creating a situation in which ROS is produced in the media at a constant rate (e.g., [28])

and then diffuses into all present cells, higher density populations will expose each individual

cell to less ROS. We expect this to create a negative DAMP slope as high-density populations

will be able to maintain external, and therefore also internal, peroxide concentrations at lower

levels.

dROS
dt
¼ kdiff ROSexternal � ROSð Þ � dGTP ROS O2 � O3 ROS ð7DAÞ

dROSexternal
dt

¼ ROSC2 þ
cytVol

1 � cytVol
kdiff ROS � ROSexternalð Þ ð7DBÞ

ROSC2 ¼ 6e � 11

O2 ¼ 40

ROSC2 in Molar units.

ROSC2 defines the number of millimoles of hydrogen peroxide produced in the media

each second, this can then diffuse into the cells. The chosen value of 6 × 10-11 creates an H2O2

production rate at 78% of that expected from [32] and an altering O2 to 40 restores the muta-

tion rate to 95.5% of that expected from [26].

Permeability coefficient, diffusion coefficient, and cell surface area are taken from [29] to

calculate the diffusion coefficient as follows:

kdiff ¼
permeability� surface area

volume
¼

1:6� 10� 3cms� 1 � 1:41� 10� 7 cm2

3:2� 10� 12 cm3
¼ 70

kdiff is in is in Sec-1 units.

Model E—ROS removal dependent on internal glucose

We expect greater rates of ROS removal to lead to lower rates of GTP oxidation, and therefore,

lower mutation rates. If ROS is more able to be degraded when resources are abundant this

may produce DAMP.

dROS
dt
¼ M1 r iGlc � dGTP ROS O2 � O3 ROS

iGlc
iGlcþ C3

ð7EÞ

C3 ¼ 1:5e � 4

C3 is in Molar units.

C3 is adjusted to produce known mutation rate of 1.98 × 10-10 base pair substitutions per

nucleotide in 0.2% glucose minimal media [26].

Model F—ROS removal dependent on population density

We expect direct control of ROS degradation by population density to allow cells in higher

density populations to avoid mutations more efficiently. The expression MolML
GCperGen wtCell calcu-

lates the population density. The rate of AhpCF+KatEG catalysed ROS degradation is calcu-

lated in this model as this population density multiplied by numeric constant “C3a,” replacing
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“O3.”

dROS
dt
¼ M1 r iGlc � dGTP ROS O2 � ROS

MolML
GCperGen

wtCell C3a ð7FÞ

C3a ¼ 3:5e � 6

C3a is in Sec-1 units.

C3a of 3.5 × 10-6 is chosen to reproduce the mutation rate of 2.05 × 10-10 base pair substitu-

tions per nucleotide.

Model G—MutT activity up-regulated by internal glucose

MutT activity is known to be essential to DAMP and so density-dependent MutT activity is a

candidate DAMP mechanism. iGlc accumulates at higher levels in cells growing to high den-

sity, we expect high MutT activity in these cells to lead to a reduced mutation rate due to MutT

cleaning of odGTP.

dodGTP
dt

¼ dGTP ROS O2 � C1
odGTP
1 � iGlc

C3G

� I2 odGTP ð8GÞ

C3G ¼ 2:6e � 3

O2 ¼ 70

C3G is in Molar units.

2.6 × 10-3 is selected as a number slightly higher than the maximum iGlc achieved (approxi-

mately 0.0023), this prevents MutT activity levels from falling below 0. O2 is refitted to 70 to

restore desired mutation rate.

Model H—MutT activity up-regulated by odGTP

If MutT activity is actively up-regulated to degrade odGTP at a higher rate upon exposure to

higher odGTP concentrations, then we expect cells grown in higher glucose, with higher inter-

nal metabolite concentrations, to have a greater ability to evade mutations caused by odGTP.

dodGTP
dt

¼ dGTP ROS O2 � C1
odGTP

1 � odGTP
C3b

� I2 odGTP ð8HÞ

C3b ¼ 8e � 10

C3b is in Molar units.

8 × 10-10 is selected as a number slightly higher than the maximum odGTP achieved, this

prevents MutT activity levels from falling below 0.

Model I—MutT activity up-regulated by ROS

Reasoning and value selection as in Models G/H.

dodGTP
dt

¼ dGTP ROS O2 � C1
odGTP
1 � ROS

C3c

� I2 odGTP ð8IÞ
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C3c ¼ 1:98e � 7

O2 ¼ 130

C3c is in Molar units.

Model J—Michaelis Menten MutT kinetics

Michaelis Menten kinetics describe saturating, enzyme catalysed reactions. In this situation,

reaction rates proceed slower at low substrate concentrations rising to an asymptote at maxi-

mum reaction rate. As with models G/H/I, we expect this to reduce mutation rates by increas-

ing MutT activity in high-density populations with greater internal metabolite concentrations.

dodGTP
dt

¼ dGTP ROS O2 � C1 odGTP
odGTP

odGTP þ Kt
� I2 odGTP ð8JÞ

Kt ¼ 4:8e7

O2 ¼ 6:36e � 4

Kt is in Molar units and is the Michaelis Menten Km value.

Kt value given by [20], O2 is then titrated to restore mutation rate as in [26].

Model K—Separated activity of ahpCF and katEG genes + limited diffusion

of ROS across the plasma membrane

dROS
dt
¼ M1 r iGlc � dGTP ROS O2 �

kAhp ROS
ROSþ kmAhp

�
kKat ROS

ROSþ kmKat

� kdiff ROS � ROSexternalð Þ ð7KAÞ

dROSexternal
dt

¼ kdiff ROS � ROSexternalð Þ
cytVol

1 � cytVol

� �

ð7KBÞ

As in [29], the activity of alkylhyrdoperoxidase and catalase proteins are separated to allow for

their specialisations to low and high H2O2 concentrations, respectively. Michaelis Menten and

Vmax constants are as follows:

½Ahp�kAhpcat ¼ kAhp ¼ 6:6e � 4

kmAhp ¼ 1:2e � 6

½Kat�kKatcat ¼ kKat ¼ 4:9e � 1

kmKat ¼ 5:9e � 3

Km in Molar units and [Conc]kcat in M.sec-1units.
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All diffusion parameters shared with model D are defined in the same way. H2O2 produc-

tion rate and standing concentration are restored to expected values by altering the value of r:

r ¼ 175

Model D Hpx- coculture

To assess the expected DAMP of an Hpx- population cocultured with wild-type E. coli, we add

a second population to model D which differs from the wild type only in that the rate of ROS

degradation by AhpCF/KatEG, “O3,” is set to 0. In this model, the populations of Hpx- and wt

cells interact only through shared eGlc and a shared pool of ROSexternal. The starting values of

all variables are as in Table 1 and the starting population of both cell populations are set as in

Table 1. As in model D, ROS originates from an exogenous source and can then diffuse into

cells. When ROS diffuses into the Hpx- cells it is not degraded, it is only when it diffuses into

wt cells that ROS can be removed from the system. Eq 11 describes eGlc (external glucose),

Eqs 12–20 describe wt cell metabolism, Eq 21 describes the external ROS pool, and Eqs 22–30

describe the Hpx cell metabolism. All equations are included below:

deGlc
dt
¼ � U1 wtCell

eGlc
eGlcþ Ks

� U1 wtCell hpx
eGlc

eGlcþ Ks
ð11Þ

diGlc
dt
¼
U1 wtCell eGlc

eGlcþKs

cytVol
� Met1 M1 iGlc ð12Þ

ddGTP
dt

¼ M1 iGlc � I1 dGTP � dGTP ROS O2 ð13Þ

dDNA
dt
¼ I1 dGTP þ C2 mDNAþ S mDNAþ R1 odGTP � D1 DNA ð14Þ

dwtCell
dt

¼ D1 DNAþ R2 mDNAð Þ � cytVol ð15Þ

dcytVol
dt

¼ D1 DNA cytVolþ R2 mDNAð Þ � cytVol�
molML

GCperGen
CellVol ð16Þ

dROS
dt
¼ � dGTP ROS O2 � O3 ROS � kdiff ROS � ROSexternalð Þ ð17Þ

dodGTP
dt

¼ dGTP ROS O2 � C1 odGTP � I2 odGTP � R1 odGTP ð18Þ

dmDNA
dt

¼ I2 odGTP � D2 mDNA � C2 mDNA � S mDNA � R2 mDNA ð19Þ

dmCell
dt

¼ D2 mDNA cytVol ð20Þ
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dROSexternal
dt

¼ ROSC2 þ
cytVol

1 � cytVol � cytVolhpx
kdiff ROS � ROSexternalð Þ

þ
cytVol hpx

1 � cytVol � cytVol hpx
kdiff ROS hpx � ROSexternalð Þ ð21Þ

diGlc hpx
dt

¼
U1 wtCell hpx eGlc

eGlcþKs

cytVol hpx
� Met1 M1 iGlc hpx ð22Þ

ddGTP hpx
dt

¼ M1 iGlc hpx � I1 dGTP hpx � dGTP hpxROS hpx O2 ð23Þ

dDNAhpx

dt
¼ I1 dGTPhpx þ C2 mDNAhpx þ S mDNAhpx þ R1 odGTPhpx � D1 DNA hpx ð24Þ

dwtCell hpx
dt

¼ D1 DNA hpxþ R2mDNA hpxð Þ � cytVol hpx ð25Þ

dcytVol hpx
dt

¼ D1 DNA hpxþ R2 mDNA hpxð Þ � cytVol hpx�
molML

GCperGen
CellVol ð26Þ

dROS hpx
dt

¼ � dGTP hpx ROS hpx O2 � 0 ROS � kdiff ROS hpx � ROSexternalð Þ ð27Þ

dodGTP hpx
dt

¼ dGTP hpxROS hpx O2 � C1 odGTP hpx � I2 odGTP hpx

� R1 odGTP hpx ð28Þ

dmDNA hpx
dt

¼ I2 odGTP hpx � D2 mDNA hpx � C2 mDNA hpx � S mDNA hpx

� R2 mDNA hpx ð29Þ

dmCell hpx
dt

¼ D2 mDNA hpx cytVol hpx ð30Þ

Global sensitivity analysis

For each parameter within each model, 50,000 values between 10% and 1,000% of the baseline

value (Table 2), spaced evenly along a log scale were tested. The set of values for each individ-

ual parameter were then independently shuffled so that no parameters were correlated with

one another, allowing for substantial exploration of the available parameter space. Of these

50,000 parameter sets, some encountered fatal errors in the ODE solver and so did not produce

a DAMP slope estimate, the number of parameter sets run without fatal error is shown in

Table 3 as “complete.” Results were filtered for the following criteria: (1) Stationary phase is

reached in all glucose conditions (defined as an average increase of less than 1 cell per 10 s

PLOS BIOLOGY Working together to control microbial mutation rates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002711 July 15, 2024 21 / 36

https://doi.org/10.1371/journal.pbio.3002711


time step across the last 1,000 time steps (2.7 h) of the simulation); (2) final population size

>1 × 107 and <1 × 1010 at every glucose condition; (3) final population size increases with

each increase in glucose concentration; (4) mutation rate >2 × 10-12 and<2 × 10-8 at all glu-

cose conditions; and (5) log-log relationship between mutation rate and final population size

is substantially linear (defined by R-squared >0.5). After this filtering, the following number

of parameter sets was retained for each model (Table 3).

Strains used in this study

The parent of the Keio collection is E. coli strain BW25113 (F-, Δ(araD-araB)567, ΔlacZ4787 (::

rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514). E. coli Hpx- LC106 mutant is ΔahpCF’ kan::

ΔahpF Δ (katG17::Tn10)1 Δ (katE12::Tn10)1 [21]. E. coli Hpx- strain BE007 is from Benjamin

Ezraty as described in [99]. E. coli single-gene knockouts Δfur, ΔfeoB, ΔtonB, and ΔahpF are

sourced from the Keio collection [100]. E. coli K-12 strain MG1655 is from Karina B. Xavier.

Nalidixic acid-resistant strains Hpx- (gyrA D87Y) and Hpx- (gyrA D87G) were isolated from

independent fluctuation assays of the original Hpx- strains on 30 mg L-1 nalidixic acid selective

plating.

Strains Δfur, ΔfeoB, ΔtonB, ΔahpF, Hpx-, Hpx-
nalR(D87Y), and Hpx-

nalR(D87G) were

sequenced to 30× depth by MicrobesNG to verify gene deletions. Lack of KatE activity in Hpx-

was verified by covering a colony on TA agar with 30% H2O2 with no bubbles of oxygen

observed (as in [33]); the MG1655 wild-type was used as a positive control. Mutations were

identified using breseq version 0.36.0 [101,102] with bowtie2 version 2.4.1 and R version 4.2.0

and are listed in S2 Table. For Hpx- strains, the reference genome used was the E. coli K-12

MG1655 genome [[103], NCBI accession U00096.3]. For Keio knockout strains, the reference

genome used was the E. coli K-12 BW25113 genome [[104], NCBI accession CP009273.1],

with additional annotations for insertion (IS) element regions to improve the calling of muta-

tions related to IS insertion (modified Genbank format file as file S1 in [1]).

Media

We used Milli-Q water for all media, all chemicals are supplied by Sigma-Aldrich unless stated

otherwise. LB medium contained: 10 g of NaCl (Thermo Fisher Scientific), 5 g of yeast extract

Table 3. Counts of completed and filtered simulations from 50,000 parameter sets produced for global sensitivity analysis for each model variant. “Complete” col-

umn lists the number of these parameter sets that were able to be simulated without fatal error from the ODE solver. “Filter” columns list how many parameter sets

remained after filtering as described and numbered above.

Complete Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

A 49971 29080 17179 17179 12318 12261

B 33274 17402 9422 9422 6858 5444

C 49988 29202 16735 16735 13513 13496

D 49204 28612 16310 16310 9715 9682

E 49555 27890 16793 16791 12078 10267

F 49982 29107 16717 16717 10117 10115

G 23311 9416 4013 4013 2934 2730

H 49900 8489 3116 3116 2265 2210

I 22832 9787 4447 4447 3546 3334

J 49994 27533 16277 16277 12158 11741

K 45558 21487 12099 12099 7789 7365

ODE, ordinary differential equation.

https://doi.org/10.1371/journal.pbio.3002711.t003
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(Thermo Fisher Scientific) and 10 g of tryptone (Thermo Fisher Scientific) per litre. DM

medium contained 0.5 g of C6H5Na3O7 �2H2O, 1 g of (NH4)2SO4 (Thermo Fisher Scien-

tific), 2 g of H2KO4P and 7 g of HK2O4P� 3H2O per litre; 100 mg L-1 MgSO4 �7H2O

(406 μmol) and 4.4 μg L-1 thiamine hydrochloride were added to DM after autoclaving.

Selective tetrazolium arabinose agar (TA) medium contained 10 g of tryptone, 1 g of yeast

extract, 3.75 g of NaCl, and 15 g bacto agar per litre; after autoclaving 3 g of arabinose and

0.05 g of 2,3,5-triphenyl-tetrazolium chloride were added per litre, this was supplemented

with freshly prepared rifampicin (50 μg ml−1) or nalidixic acid (30 μg ml−1) dissolved in 1

ml of methanol or 1 M NaOH, respectively, when required. For all cell dilutions, sterile

saline (8.5 g L-1 NaCl) was used.

Fluctuation assays

Fluctuation assays were conducted as described in [105]. Briefly, initial growth of glycerol

stocks in LB was carried out for 4 h for all strains aside from Hpx- which was grown for 7 h

due to its reduced growth rate. A dilution factor of 1,000× was then used for transfer to over-

night cultures. Overnight acclimatisation was carried out in DM supplemented with 3.5% LB

or 250 mg L-1 glucose with nutrient type matching that of the fluctuation assay. The density

achieved in the assay was manipulated by growth in varying nutrient conditions, either 2% to

5% LB diluted in DM or 80 to 1,000 mg glucose L-1. Manipulation of density via nutrient pro-

vision potentially confounds density with both nutrient environment and growth rate; the

effects of these factors have been shown to be separable with a distinct effect of density ([106],

Chapter 4). Selective plates were prepared 48 h before use and stored for 24 h at room tempera-

ture followed by 24 h at 4˚C. All strains were plated on rifampicin selective media.

Anaerobic conditions were produced by incubating the 96 deep well plates in an airtight 2.6

L container with 1 Anaerogen 2.5 L sachet (Thermo Scientific). The Anaerogen sachet rapidly

absorbs oxygen and releases CO2 creating anaerobic conditions. Aerobic plates of matching

design were grown in an identical container ventilated with 8 × 4 mm diameter holes without

an Anaerogen sachet. In these plates, 2 to 4 wells in each 96-well plate contained DM supple-

mented with 2.5% LB, resazurin, and E. coli MG1655, leaving space for fluctuation assays of 15

to 16 parallel cultures. On removing the 96-well plates from incubation the resazurin absor-

bance at 670 nm was measured; this quantifies the change from pink resorufin (aerobic cell

growth) to clear dihydro resorufin (anaerobic cell growth), thus providing an objective mea-

sure of anaerobiosis (S15 Fig).

During coculture fluctuation assays between BW25113 wild-type and Hpx- both strains

were grown up in LB for 4 to 7 h, then in 3.5% diluted LB with DM overnight and then diluted

into cultures of approximately 1 × 103 CFU ml-1 as above. Some combination of these 2 initial

cultures was then mixed in each parallel culture ranging from an Hpx-:wild-type ratio of 1:1 to

124:1 (recorded in S1 Data file as “Mut_to_WT_ratio”). Plating of these cultures on TA or TA

+Rif agar enabled the Ara+ (white) Hpx- colonies and the Ara- (red) wind-type colonies to be

distinguished. For assays using NalR Hpx- strains, selective plating was done on TA+Rif+Nal

plates and so only Hpx- mutants and not wild-type mutants were counted, Nt was determined

for both strains using plating on both TA+Nal and TA. Due to amino acid synthesis defects,

Hpx- cells cannot be cultured in glucose minimal media and so all cocultures were conducted

in dilute LB media [34].

In order to test for any differences in survival of Hpx- (NalR) grown in monoculture VS

with differing densities of BW25113 wild-type cells, we conducted a reconstruction test (S12

Fig). A known quantity of Hpx- (NalR + RifR) cells were plated with one of the following treat-

ments: sterile DM, Hpx- (5%LB overnight growth), wild-type (2.5%LB overnight growth),
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wild-type (3.5%LB overnight growth), and wild-type (5% overnight growth). Raw data from

the reconstruction test is available as S11_data.xlsx.

Though fluctuation assays allow for high-throughput and low-cost estimates of mutation

rate, they classically come with some important assumptions to consider [25]. For example,

the assumption that resistance markers will be selectively neutral is not reasonable in practice

[47]. Fortunately, this can be accounted for with the estimation of fitness cost which can then

be accounted for in the estimation of mutational events using R package flan (V0.9). We find

estimations of DAMP with the co-estimation of the individual fitness cost in each assay or

with the application of the median mutant:wild-type fitness ratio estimation (median = 0.59;

fitness cost estimates shown in S16 Fig, regression 3) to have no effect on our conclusions. Spe-

cifically, in regression 4 (SI), re-running the model using either of these approaches to account

for genotypes having different competitive fitness makes no difference to whether DAMP is

inferred (i.e., categorising each treatment as DAMP, no DAMP, or reverse DAMP; S1 Table)

for all treatments. In this study, we allow flan to co-estimate fitness along with mutational

events (m) for each assay. Occasionally, this model failed to converge on estimates, in these

cases average fitness effects were estimated from a model fitted to all successful estimates

(Regression 3 (SI)) and then used to estimate m from the data with this predetermined fitness

effect of mutation. It is also possible to avoid issues of mutant fitness effects by using the p0

method of estimation [25,107] in which parallel cultures are simply divided into those with or

without any viable mutants. However, this method is more restrictive as only in assays in

which parallel cultures both with and without growth have been observed can the method be

applied; it is also subject to more error on estimates than maximum-likelihood methods

[25,108]. Reanalysing our data with the p0 method shows DAMP to exist in almost all of the

same treatments as in the original analysis (S17 Fig), discounting any effect of mutant fitness

costs on our conclusions. Another potentially unrealistic assumption of the fluctuation assay is

that there will be no death; this too is possible to account for using the tools provided in R

package flan. We find that introducing a death rate of 25%, beyond what would be expected

under our conditions which lack added stressors [85], cause no consistent or substantial

changes in DAMP slope (S18 Fig).

Sanger sequencing of rpoB mutations

PCR amplification of the rifampicin-resistance determining region (bp 1328–2235) of rpoB in

rifR mutants (S12 Fig) was carried out as described in [15]. Rifampicin-resistant mutants iso-

lated from a fluctuation assay were grown in LB to exponential phase and stored in 18% glyc-

erol at −80˚C. Mutants were revived by streaking of 1 μl of this glycerol stock onto LB agar

plates. DNA was diluted by touching a colony with a pipette tip, submerging this pipette tip in

25 μl nuclease-free water, and diluting 1 μl of that solution in a further 9 μl of nuclease-free

water. Approximately 1 μl of diluted DNA was added to 24 μl of master mix containing 1.25 μl

of both forward and reverse 100 μm primer stock, 5 μl buffer, 5 μl MgCl2, 0.25 μl high-fidelity

DNA polymerase, and 11.25 μl nuclease-free water.

Polymerase chain reactions (PCRs) were carried out to amplify the rifampicin-resistance

determining region of the rpoB gene for Sanger sequencing, using forward primer 50-ATGA-

TATCGACCACCTCGG-30 and reverse primer 30-TTCACCCGGATACATCTCG-50 [15].

PCR was run with the following protocol: (i) initial denaturation (98˚C for 5 min); (ii) dena-

turation (98˚C for 10 s); (iii) annealing (55˚C for 30 s); (iv) extension (72˚C for 1 min); (v)

repeat steps 2 to 4 for 35 cycles; (vi) final extension (72˚C for 5 min); and (vii) hold at 4˚C.

PCR product verification was performed by gel electrophoresis carried out on 1% agarose TAE

gel with 0.1% SybrSafe stain. PCR products were submitted to Source BioScience for PCR
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Product clean-up and sequencing (Source BioScience, Cheshire). Both reverse and forward

primers were submitted for each sample as sequencing primers.

Using Unipro UGENE v49.0, downloaded from https://ugene.net/, sequences of the rpoB
gene of the mutants were aligned to a reference rpoB genome nucleotide sequence, of the strain

E. coli K-12 substr. MG1655, obtained from EcoCyc version 27.5 to identify point mutations.

BLAST was used to identify amino acid changes created by the mutations [109].

Hydrogen peroxide measurement

External hydrogen peroxide is measured using the Amplex UltraRed (AUR)/Peroxidase assay

as described in [28]. All reagents were dissolved in 50 mM dibasic potassium phosphate.

Diethylenetetraaminepentaacetic acid (DTPA) and AUR solutions were corrected to pH 7.8

with HCl or NaOH. Reactions containing 660 μl 1 mM DTPA, 80 μl filter sterilised sample

solution, and 20 μl 0.25 mM AUR were mixed by vortexing before transferring 141 μl to 3

wells of a clear bottomed black 96-well plate. Fluorescence was measured at 580 nm excitation,

610 nm emission before and after the injection of 7.5 μl horseradish peroxidase (0.25 mg ml-1)

to each well, net fluorescence was calculated as initial fluorescence subtracted from final fluo-

rescence. H2O2 concentration was estimated by calibration to standard solutions of 5 and

20 μm H2O2 (Regression 5 (SI)). Because of background levels of fluorescence, some predicted

concentrations were negative, this was accounted for by taking the absolute value of the lowest

prediction and adding this to all predictions. The range of H2O2 concentrations we observed is

in good agreement with similar measurements in the literature (e.g., Fig 6B in [28]).

Dissolved oxygen (DO) measurement

Dissolved oxygen was measured in 10-ml cultures grown in 50-ml falcon tubes; DAMP has

been shown to be present in E. coli grown under these conditions (see E. coli cultures plated on

nalidixic acid in the second figure of [3]). Tubes were either loosened ½ turn with the lid

secured with a small piece of tape or screwed on fully though no difference was evident

between these treatments. Each starting culture of 40 ml was split between 4 tubes of 10 ml

sampled at 0, 5, 7, and 24 h (sampling is destructive as the head of the DO probe cannot be

confirmed to be sterile). DO was measured by submerging the probe in the given sample for

45 s to allow the measurement to stabilise. Following DO measurement, each culture was

appropriately diluted and plated to determine population density by CFU. Dissolved oxygen

analyser DO9100 was purchased from BuyWeek.

Statistical analysis

All statistical analysis was executed in R (V4.3.1) [86] using the nlme (V3.1-162) package for

linear mixed effects modelling [90]. This enabled the inclusion within the same regression of

experimental factors (fixed effects), blocking effects (random effects), and factors affecting var-

iance (giving heteroscedasticity). R package car (V3.1.2) [110] was used to carry out Chi-

squared tests comparing slope to a null-hypothesis of 1 (S1 Table). In all cases, log2 mutation

rates were used. Details of all regression models are given S1 supplementary statistics along

with diagnostic plots and ANOVA tables for each model. The code and data to reproduce the

main text figures are given in the accompanying R scripts S1 and S2 Code files, and supple-

mentary data files S1–S14 data, respectively. Column header definitions for S1–S14 data are

given in S3 Table. Standard deviation on estimates of m is calculated as in [108]. The same R

packages were used for parallel computing, data handling, and plotting as for the ODE model-

ling, with the addition of plyr (V1.8.8), ggbeeswarm (V0.7.2), and gridExtra (V2.3).

PLOS BIOLOGY Working together to control microbial mutation rates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002711 July 15, 2024 25 / 36

https://ugene.net/
https://doi.org/10.1371/journal.pbio.3002711


Supporting information

S1 Fig. Distribution of initial population size across all fluctuation assays. Mean = 3,537,

median = 3,000. Low population size is desirable in order to maximise the number of genera-

tions considered and to reduce the chances of resistant mutants being present in the starting

population (“jackpot cultures”). Raw data can be found in S5 Data.

(TIFF)

S2 Fig. Global sensitivity analysis of Model A. Left-hand side (A) shows the absolute rank

correlation, as quantified by Spearman’s Rank Correlation Coefficient, between each parame-

ter and the slope of DAMP, parameters are ordered from least to most correlation from left to

right. Right-hand side (B) shows the equivalent information for the correlation between

parameter values and mutation rate (at 250 mg L-1). Positive correlations are shown in green

while negatively correlated parameters are shown in orange. Black borders show significant

rank correlation (P< 0.05). Note the different y axis limits and x axis order on the left- VS

right-hand side. Raw data can be found in S3 data, Spearman’s rank correlation coefficient sta-

tistics, and associated p-values can be found in S6 Data.

(TIFF)

S3 Fig. Dynamics of internal glucose over time in model A simulated at 5 log-spaced glu-

cose concentrations from 55 to 1,100 mg L-1. Higher levels of initial external glucose provi-

sion (point colour) lead to higher levels of internal glucose (y-axis). Raw data can be found in

S1 Data.

(TIFF)

S4 Fig. Slope of log-log relationship between population density (CFU ml-1) and muta-

tional events (ml-1) in wild-type strain MG1655 under aerobic and anaerobic conditions.

Pink circle = MG1655 rich media anaerobic (173 pc, 11 fa); green triangle = MG1655 minimal

media aerobic (273 pc, 17 fa); pink triangle = MG1655 rich media aerobic (285 pc, 18 fa).

Orange line and shaded area shows DAMP for BW25113 in rich media as in Fig 3 with 95%

CI. Raw data can be found in S5 Data and summary statistics as plotted are in S1 Table.

(TIFF)

S5 Fig. Individual assay data underlying Fig 3. Final population density is plotted against

mutational events per ml on a log-log scale. Dashed lines show the null expectation of a con-

stant mutation rate (i.e., slope = 1), the y intercept for the dashed lines is arbitrary. Coloured

lines are fitted slopes from mod3 (S1 Supplementary Statistics file), line gradients with 95% CI

shown in Fig 3. Treatments shown are BW25113 ancestor (1122 parallel cultures (pc) across 70

fluctuation assays (fa)); ancestor minimal media (974 pc, 61 fa); ΔahpF (266 pc, 17 fa); Hpx-

(546 pc, 35 fa); ancestor anaerobic (168 pc, 11 fa); ancestor 10 mM H2O2 (243 pc, 16 fa); ances-

tor 70U ml-1 catalase (231 pc, 15 fa); Hpx- anaerobic (105 pc, 7 fa); ancestor + chelator 2,2,

Bipyridyl 100 μm (382 pc, 24 fa); ancestor + FeCl2 100 μm (210 pc, 13 fa); ΔfeoB (210 pc, 13

fa); Δfur (504 pc, 31 fa); ΔtonB (113 pc, 7 fa). Raw data can be found in S5 Data and summary

statistics as plotted are in S1 Table.

(TIFF)

S6 Fig. Dissolved oxygen concentration over time. (A) O2 concentration is plotted as a func-

tion of time in wild-type BW25113 cultures grown in 2% LB (low density–blue points and

lines) or 5% LB (high density–red points and lines); 50-ml tubes contain 10 ml of culture with

lids attached by a small piece of tape and either screwed on tight (triangles) or loosened one

half turn (circles). Solid lines connect mean values for half turn loosened samples and dashed

lines connect points for tight samples. While there is consistent variation in oxygen
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concentration over time, there is no consistent variation among nutrient treatments. (B) Den-

sity measured at each time point alongside dissolved oxygen measurement. Raw data can be

found in S7 Data.

(TIFF)

S7 Fig. Effects of population density and nutrient level on H2O2. Left-hand side (A) shows

the log-log relationship between population density and external H2O2 in cultures of MG1655

after 24 h of incubation. Rich media is 2/5% LB diluted in DM, minimal media is 80/1,000 mg

L-1 glucose in DM. Population density is estimated from the optical density (OD 1 = 2.37 × 109

cells ml-1 calculated from OD measurements taken alongside fluctuation assays). Lines of best

fit are from regression 7B (SI). Right-hand side (B) shows the H2O2 concentration after 24 h

incubation in rich or minimal media; sterile or with wild-type MG1655, Regression 6 (SI);

error bars show 95% CI. The interaction effect between nutrient level (low versus high) and

presence of a culture (Sterile Media versus Wild-type), where external peroxide decreases with

nutrients increases in the presence of a culture but increases without one, is significant (F

DF=46 = 9.8, P = 3 × 10-3, Regression 6 (SI)). Raw data can be found in S8 Data.

(TIFF)

S8 Fig. DAMP in a second independent Hpx- strain. Left-hand plot shows raw data used to

calculate DAMP slope in Hpx- LC106 (546 pc, 35 fa), Hpx- BE007 (149 pc, 10 fa), and their

ancestor MG1655 (285 pc, 18 fa). Right hand shows DAMP slope as fitted by regression 4.

DAMP slope does not significantly differ between the 2 Hpx- strains (LR = 0.71, DF = 110,

P = 0.4); however, DAMP slopes do differ between MG1655 vs. LC106 (LR = 28.3, DF = 110,

P< 0.0001) and MG1655 vs. BE007 (LR = 5.2, DF = 110, P = 0.02). Raw data can be found in

S5 Data and summary statistics as plotted are in S1 Table.

(TIFF)

S9 Fig. Individual assay data underlying Fig 4. Final population density of the focal strain is

plotted against mutational events per ml on a log-log scale. Dashed lines show the null expecta-

tion of a constant mutation rate with a slope of 1. Ancestor coculture measurements are taken

in coculture with Hpx-, Hpx- D87Y, and D87G are cocultured with ancestor BW25113. Lines

are fitted slopes shown in Fig 4. BW25113 ancestor (1,106 pc, 69 fa); BW25113 in coculture

with Hpx- (498 pc, 31 fa); Hpx-
nalR (388 pc, 24 fa); Hpx-

nalR in coculture with BW25113 (319

pc, 20 fa). Raw data can be found in S5 Data and summary statistics as plotted are in S1 Table.

(TIFF)

S10 Fig. Relationship between total population density and mutation rate in Hpx- with

cocultured wild-type BW25113. (A) Final population density (focal + coculture strain where

relevant) is plotted against mutation rate on a log-log scale. Hpx-
nalR monoculture (388 pc, 24

fa); Hpx-
nalR in coculture with BW25113 (319 pc, 20 fa). Lines are fitted slopes shown from

Regression 8 (SI). (B) Slope and 95% CI on the lines shown in LHS graph. Horizontal orange

line shows the slope of the BW25113 ancestor in rich media (Regression 4 (SI), Fig 3). In

monoculture Hpx- mutation rates increase with total population density while in coculture the

wild type restores a negative association between density and mutation rates (DAMP). Raw

data can be found in S5 Data.

(TIFF)

S11 Fig. Predictions of ODE model D, with Hpx- + wild-type coculture alongside lab mea-

surements. Estimates from lab data are shown in red as in Fig 4. Estimates from ODE model-

ling are shown in blue, and 95% CI are included for all points; however, ODE model CI are too

narrow to be visible. Lab data summary statistics shown can be found in S1 Table and raw data
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in S5 Data; ODE model summary statistics shown can be found in S9 Data, raw data from

ODE models can be found in S10 Data.

(TIFF)

S12 Fig. Reconstruction test showing the plating efficiency of rifampicin-resistant Hpx-

(GyrA D87Y/RpoB S531F) and Hpx- (GyrA D87G/Q513P) when combined and plated in

1.25 ml with: sterile DM media (DM), Hpx-overnight culture (hpx 5% LB), BW25113 low-den-

sity overnight (BW2.5% LB), BW25113 mid-density overnight (BW 3.5% LB), and BW25113

high-density overnight (BW 5% LB). Plating efficiency is calculated as the number of colonies

counted divided by the number of colonies counted on non-selective TA agar plates without

any additional treatment. Raw data can be found in S11 Data.

(TIFF)

S13 Fig. Fit of model variant A to published data. Lines show results of ODE model A simu-

lated as described in methods, circles show data from [93] used to fit parameters U1 and M1.

Left-hand panel shows the molar concentration of external glucose over time and right-hand

panel shows E. coli cells per ml over time. Raw data for fitting can be found in S12 Data, data

from ODE output can be found in S1 Data.

(TIFF)

S14 Fig. Fit of linear mixed effects model relating final population density to initial glucose

concentration. Used to fit parameter Met1 in ODE models. Black points show published lab

data from [3] on population density and glucose provision in E. coli MG1655 used to fit this

regression. Black line and shaded area show fitted relationship and 95% confidence interval,

respectively, of a mixed effects model accounting for random effects of experimental block and

plate. Red stars show output, in final population density, from initial ODE model A under dif-

fering initial glucose concentrations. Raw data for fitting can be found in S13 Data, data from

ODE output can be found in S1 Data.

(TIFF)

S15 Fig. Reduction of resorufin to dihydro resorufin by anaerobic respiration results in

reductions in absorbance at 670 nm verifying the anaerobic conditions during anaerobic

fluctuation assays. Each of 5 blocks is shown as a separate facet; within each block 2 sets of

paired fluctuation assays (A and B) were conducted in aerobic and anaerobic conditions, for

each of these sets 2–4 measurements of resorufin/dihydro resorufin absorbance were taken

after 24 h of growth. Raw data can be found in S5 Data.

(TIFF)

S16 Fig. Fitness effects of resistance mutations where fitness is co-estimated with muta-

tional events. Boxplots shown for each treatment with colour representing genotype. Vertical

lines inside boxes represent the median for that treatment, with the boxes depicting the inter-

quartile range. The black vertical line at a fitness effect size of 1 represents neutral fitness

effects. This data is used to fit regression 3. Raw data can be found in S14 data.

(TIFF)

S17 Fig. DAMP is mostly seen in the same set of treatments using maximum likelihood or

p0 estimation methods. Treatments in which 8 or more fluctuation assays can be analysed by

the p0 method are shown. Colour indicates treatment identity. The only treatment to change

category is Hpx- strain LC106 which moves from “no DAMP” with ML estimates to “reverse

DAMP” with p0 estimates; this does not refute our conclusions that Hpx-strains display no

negative association between mutation rate and population density. All Hpx- points are strain
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LC106 unless indicated as BE007. Raw data used can be found in S5 Data.

(TIFF)

S18 Fig. An assumption of 25% death has little effect on the estimation of DAMP slope.

Solid lines indicate a slope of 0 (no DAMP), dashed line shows identical slope values for both

estimates. All treatments remain in the same category (DAMP, no DAMP, or reverse DAMP).

Raw data used can be found in S5 Data.

(TIFF)

S1 Table. Slope estimates with associated Chi-Squared tests from Regression 4 (SI). Slope

indicates the log-log relationship between population density and mutational events per ml

minus 1 (1 is subtracted to make interpretation simpler as a constant mutation rate is now

defined by a slope of 0 rather than a slope of 1). slope_CI95 indicates that a 95% confidence

interval on the slope estimate will be slope ± slope_CI95. pValue is calculated from a Chi-

Squared test (DF = 1) comparing the original slope value to the Null Hypothesis that the slope

of the given treatment = 1 (slope = 1 when mutation rate is constant with respect to population

density); therefore, in treatments in which the slope significantly differs from 1, we have

observed density associated mutation rate plasticity. FA and PC list the number of fluctuation

assays and parallel cultures used in the analysis respectively. Plasticity shows if the treatment

has DAMP (a significant inverse relationship between population density and mutation rate),

reverse DAMP (a significant direct relationship between population density and mutation

rate), or is Constant (relationship between population density and mutation rate not signifi-

cantly different from the null expectation of a constant mutation rate).

(CSV)

S2 Table. Mutations, missing coverage, and new junction evidence for key strains in this

study as predicted by variant calling with breseq (run in default consensus mode).

(XLSX)

S3 Table. Descriptions for columns in S1–S14 Data files.

(XLSX)

S1 Code. R code necessary to recreate ODE modelling (Figs 1, 2, S2, S3, S11, S13, and S14).

(R)

S2 Code. R code necessary to recreate lab work analysis (Figs 3, 4, S1, S4–S10, S12, and

S15–S18).

(R)

S1 Supplementary Statistics. Details of statistical models used in this study.

(PDF)

S1 Appendix. Further details of ordinary differential equation model dynamics.

(DOCX)

S1 Data. Dynamics of ODE model A over time under 5 initial external glucose conditions.

(CSV)

S2 Data. Mutation rate across 5 densities for ODE models A–K.

(CSV)

S3 Data. Raw output from sensitivity analysis on ODE models A–K.

(7Z)
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S4 Data. Summary statistics from sensitivity analysis on ODE models A–K.

(CSV)

S5 Data. Raw data from fluctuation assays.

(CSV)

S6 Data. Spearman’s rank correlation coefficient comparing the value of each parameter

in ODE model A to both mutation rate and DAMP slope with associated P-values.

(CSV)

S7 Data. Data collected from dissolved oxygen measurements of BW25113 cultures in 2%

VS 5% LB.

(TXT)

S8 Data. Data from amplex ultra-red peroxide assays.

(CSV)

S9 Data. Estimated slope and standard deviation for coculture version of ODE model D

with both wt BW25113 and Hpx- populations.

(CSV)

S10 Data. Raw data used to estimate coefficients in S9_data.csv; final concentration of

mutant base pairs and wild-type base pairs after approximately 27 h when simulating a

coculture version of ODE model D with both wt BW25113 and Hpx- populations.

(CSV)

S11 Data. Data collected from reconstruction test of Hpx-nalR&rifR strains plates with

Hpx- VS BW25113 at varying densities.

(XLSX)

S12 Data. Data available from [93] used to fit parameter U1.

(TXT)

S13 Data. Data available from [3] used to fit parameter Met1.

(CSV)

S14 Data. Estimated fitness cost of rifampicin resistance mutation co-estimated with

mutational events using R package “flan”.

(CSV)
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14. Krašovec R, Richards H, Gifford DR, Belavkin RV, Channon A, Aston E, et al. Opposing effects of final

population density and stress on Escherichia coli mutation rate. ISME J. 2018; 12(12):2981–2987.

PLOS BIOLOGY Working together to control microbial mutation rates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002711 July 15, 2024 31 / 36

https://doi.org/10.1371/journal.pgen.1010791
https://doi.org/10.1371/journal.pgen.1010791
http://www.ncbi.nlm.nih.gov/pubmed/37311005
https://doi.org/10.1016/j.molcel.2018.10.015
https://doi.org/10.1016/j.molcel.2018.10.015
http://www.ncbi.nlm.nih.gov/pubmed/30449724
https://doi.org/10.1371/journal.pbio.2002731
http://www.ncbi.nlm.nih.gov/pubmed/28837573
https://doi.org/10.1186/s12862-018-1252-8
http://www.ncbi.nlm.nih.gov/pubmed/30157765
https://doi.org/10.1016/j.cub.2019.03.054
http://www.ncbi.nlm.nih.gov/pubmed/31056389
https://doi.org/10.1038/nrg3415
http://www.ncbi.nlm.nih.gov/pubmed/23400102
https://doi.org/10.1080/10409230701648494
http://www.ncbi.nlm.nih.gov/pubmed/17917873
https://doi.org/10.1371/journal.pbio.2001477
http://www.ncbi.nlm.nih.gov/pubmed/28594817
https://doi.org/10.1371/journal.pbio.0030176
https://doi.org/10.1371/journal.pbio.0030176
http://www.ncbi.nlm.nih.gov/pubmed/15869329
https://doi.org/10.1016/j.chom.2020.02.002
http://www.ncbi.nlm.nih.gov/pubmed/32130952
https://doi.org/10.1016/j.chembiol.2016.02.010
https://doi.org/10.1016/j.chembiol.2016.02.010
http://www.ncbi.nlm.nih.gov/pubmed/26991103
https://doi.org/10.1371/journal.pbio.3002711


15. Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and genetic
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