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Abstract We study the entanglement between the internal (spin) and external (posi-
tion) degrees of freedom of the one-dimensional discrete time quantum walk starting
from local and delocalized initial states whose time evolution is driven by Hadamard
and Fourier coins. We obtain the dependence of the asymptotic entanglement with the
initial dispersion of the state and establish a way to connect the asymptotic entangle-
ment between local and delocalized states. We find out that the delocalization of the
state increases the number of initial spin states which achieves maximal entanglement
from two states (local) to a continuous set of spin states (delocalized) given by a sim-
ple relation between the angles of the initial spin state. We also carry out numerical
simulations of the average entanglement along the time to confront with our analytical
results.

Keywords Quantum walks · Quantum entanglement · Entanglement production

1 Introduction

Quantum random walks [1,2] or quantum walks (QW) are the quantum counterparts of
the classical random walks. The quantum walker is a qubit, a particle with an internal
degree of freedom (spin) on a regular lattice where each site represents an external
degree of freedom (position). The dynamic evolution of a QW starting from an initial
state is given by successive applications of an unitary time evolution operator, which is
constituted by a quantum coin and a conditional displacement. While the quantum coin
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operates only on the qubit’s internal degree of freedom leaving it in a superposition
of spin states, the conditional displacement operator associates internal and external
degrees of freedom displacing the qubit from a site to the neighbor right (left) site if
its spin state is up (down).

The particular dynamics of a QW dramatically changes the spreading behavior of
the quantum state leading to a quadratic gain in its dispersion (ballistic behavior), and
it creates entanglement between spin and position states. For these features, QW have
been widely investigated opening new branches of research in physics, computational
science and engineering [3]. They offer insights for building quantum search algo-
rithms [4], for understanding the efficiency of energy transfer in the photosynthesis
[5], for performing universal computation in their continuous [6] and discrete time [7]
versions, for simulating Dirac-like Hamiltonians [8], and they can be implemented in
several experimental platforms [9].

The long-time entanglement in QW has a strong dependence on their initial con-
ditions. The initial state of a QW could be an arbitrary qubit placed in one position
(delta-like or local) or distributed over many positions (delocalized state). For a QW
starting from a local state, the maximal entanglement is reached asymptotically and
only for few specific initial spin states [10–13] and also for two walkers [14]. The
maximal entanglement is also achieved regardless of the initial state through the intro-
duction of a dynamic disorder along the QW, such as a random quantum coin in each
time step [15,16]. There are few papers about delocalized initial conditions in QW
showing a rich variety of spreading behavior highly dependent of the quantum coin
[17,18] and their entanglement content [19–21]. However, none of these earlier works
address the interplay between delocalization and asymptotic entanglement for all ini-
tial spin conditions and two kinds of coins (Hadamard and Fourier) or yet, they do not
show a comparison between the average entanglement behavior along the time with
their analytical results.

Our main focus here is the impact of the delocalization of the initial state in QW
regarding their asymptotic entanglement. We perform all calculations also to the local
state in order to contrast with the delocalized cases. In this way this article is organized
as follows. In Sect. 2, we review the QW in position and momentum space using a
Hadamard coin, the quantification of the entanglement in both spaces and we obtain
a general expression for the asymptotic entanglement. In Sect. 3, we investigate the
asymptotic entanglement for QW starting from local and delocalized states (Gaussian
and rectangular states), we show a way to connect both kinds of asymptotic entangle-
ments and we confront our analytical results with numerical calculations. In Sect. 4,
a general conclusion is pictured. Finally, in “Appendix” we extend the calculations of
Sect. 2 and the results of Sect. 3 for a QW which evolves by means of a Fourier coin.

2 Mathematical formalism

The quantum walker state |�〉 belongs to a Hilbert space H = HC ⊗ HP where HC

is a single qubit coin space, a two-dimensional complex vector space spanned by the
spin states {|↑〉 , |↓〉} andHP is the position space, an infinite-dimensional enumerable
vector space spanned by a set of orthonormal vectors | j〉 where the integer j is the
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discrete position of the qubit on a one-dimensional lattice. Thus, a general initial state
is

|�(0)〉 =
+∞∑

j=−∞
[a( j, 0) |↑〉 + b( j, 0) |↓〉] ⊗ | j〉 , (1)

with the normalization condition,

+∞∑

j=−∞

(
|a( j, 0)|2 + |b( j, 0)|2

)
= 1. (2)

The time evolution of a QW state is written as |�(t)〉 = Ut |�(0)〉 and the time
evolution operator is

U = S · (C ⊗ 1P ), (3)

where 1P is the identity in HP and C is the quantum coin. The quantum coin acts over
the spin states and generates a superposition of them. Here, we employ the Hadamard,1

widely used as a quantum coin,

H = 1√
2

(
1 1
1 −1

)
. (4)

The conditional displacement operator

S =
∑

j

(|↑〉 〈↑| ⊗ | j + 1〉 〈 j | + |↓〉 〈↓| ⊗ | j − 1〉 〈 j |), (5)

moves the qubit to the right or left conditioned to its internal state, i.e., from site j to
j + 1 ( j − 1) if its spin is up (down), which creates entanglement between spin and
position along the time evolution.

The total initial state |�(0)〉 is pure and since the time evolution is unitary, |�(t)〉
remains pure. This fact allows us to quantify the entanglement between spin and
position by means of von Neumann entropy

SE (ρ(t)) = −Tr(ρC (t) log2 ρC (t)), (6)

of the partially reduced coin (spin) state ρC (t) = TrP (ρ(t)) [22], where ρ(t) =
|�(t)〉 〈�(t)| and TrP (·) is the trace over the positions. Therefore, we can write

ρC (t) = A(t) |↑〉 〈↑| + B(t) |↑〉 〈↓| + B(t)∗ |↓〉 〈↑| + C(t) |↓〉 〈↓| , (7)

1 In “Appendix” we extend the following calculations for a Fourier coin.
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with A(t) = ∑
j |a( j, t)|2, B(t) = ∑

j a( j, t)b∗( j, t) and C(t) = 1 − A(t) due
to the normalization condition and B(t)∗ is the complex conjugate of B(t). After
diagonalizing ρC (t), we obtain

SE (ρ(t)) = −λ+(t) log2 λ+(t) − λ−(t) log2 λ−(t), (8)

where the eigenvalues of ρC (t) are

λ±(t) = 1

2
±

√
1

4
− A(t)(1 − A(t)) + |B(t)|2. (9)

SE (ρ(t)) ranges from 0 for separable states up to 1 for maximal entanglement condi-
tion. In the context of a numerical simulation, the expression (8) with (9) are used to
calculate the entanglement along the time.

To quantify the entanglement in the asymptotic limit for t → ∞, we need to
consider the dual k-space H̃k spanned by the Fourier transformed vectors |k〉 =∑

j e
ik j | j〉 with k ∈ [−π, π ], where the initial state (1) is,

|�̃(0)〉 =
∫ π

−π

dk

2π
[ãk(0) |↑〉 + b̃k(0) |↓〉] ⊗ |k〉 , (10)

and the corresponding initial amplitudes are

ãk(0) = (〈↑| ⊗ 〈k|) |�̃(0)〉 =
∑

j

e−ik j a( j, 0),

b̃k(0) = (〈↓| ⊗ 〈k|) |�̃(0)〉 =
∑

j

e−ik j b( j, 0). (11)

The time evolution operator U can be rewritten as [23],

UH = 1√
2

(
e−ik e−ik

eik −eik

)
, (12)

once the conditional displacement operator S is diagonal in the Fourier representation,

Sk = |↑〉 〈↑| ⊗ e−ik |k〉 〈k| + |↓〉 〈↓| ⊗ eik |k〉 〈k| . (13)

Let us introduce the state |�k(t)〉 = 〈k|�̃(t)〉, such that the one-step time evolution
is |�k(t + 1)〉 = UH |�k(t)〉. By calculating the eigenvectors of UH , we obtain

|�±
k 〉 =

[
1 + cos2 k ∓ (cos k

√
1 + cos2 k)

]−1/2

√
2

(
e−ik

±√
2e−iωk − e−ik

)
, (14)

and the eigenvalues are ±e∓iωk and the frequency ωk given by sin ωk = sin k/
√

2
with ωk ∈ [−π/2, π/2] [10,23].
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The time evolution starting from an initial state |�k(0)〉 is |�k(t)〉 = (UH )t |�k(0)〉
and through the spectral decomposition of UH , it could be written in the following
way,

|�k(t)〉 = e−iωk t 〈�+
k |�k(0)〉 |�+

k 〉 + (−1)t eiωk t 〈�−
k |�k(0)〉 |�−

k 〉 . (15)

This expression allows us to get the time evolution of each spin amplitude from the
corresponding initial amplitude. Therefore, calculating the integrals

A(t) =
∫ π

−π

dk

2π
|ãk(t)|2, (16)

B(t) =
∫ π

−π

dk

2π
ãk(t)b̃

∗
k (t), (17)

and inserting them in (8) using (9), we have the entanglement as function of the
amplitudes in the momentum space.

To obtain the asymptotic entanglement, we must take the limit for t → ∞ in (15),
then the time dependence vanishes in (16) and (17), thereby we have

A =
∫ π

−π

dk

2π

{
1

2(3 + cos(2k))

[
4|ãk(0)|2 + ã∗

k (0)b̃k(0) + ãk(0)b̃∗
k (0) + 2|b̃k(0)|2

+
(
ã∗
k (0)b̃k(0) + ãk(0)(2ã∗

k (0) + b̃∗
k (0))

)
cos(2k)

− i
(
ã∗
k (0)b̃k(0) − ãk(0)b̃∗

k (0)
)

sin(2k)
] }

, (18)

B =
∫ π

−π

dk

2π

{
cos k − i sin k

3 + cos(2k)

[(
ã∗
k (0)b̃k(0) + ãk(0)b̃∗

k (0)

+ |ãk(0)|2 − |b̃k(0)|2
)

cos k − i
(
ã∗
k (0)b̃k(0) − ãk(0)b̃∗

k (0)
)

sin k
] }

, (19)

where A is A(t → ∞). After inserting these Eqs. (18) and (19) into (8), we have [24]

SE (�) = −(λ+) log2(λ+) − (λ−) log2(λ−) (20)

with λ± = (1±
√

�)/2, a general expression to the asymptotic entanglement in terms
of a characteristic function,

�(A, B) = 1 − 4
[
A(1 − A) + |B|2

]
, (21)

which contains all the information about the initial state, since A and B are functions
of the initial amplitudes in the k-space.
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Fig. 1 Bloch sphere representation of all possible initial spin states from Eq. (22). Here, α and β are the
polar and azimuthal angles, respectively, from standard spherical coordinates. Some spin states are detached

3 Results

Our calculations starting from a local state followed by two delocalized states. In all
cases, we consider a general spin state,

|�s(0)〉 = cos
α

2
|↑〉 + eiβ sin

α

2
|↓〉 , (22)

represented in the Bloch sphere [25] in Fig. 1.

3.1 Local state

Consider the spin state (22) and the probability distribution |�L(0)|2 = δ( j) in (1) to
get a local state,

|�L(0)〉 = |�s(0)〉 ⊗ |0〉 . (23)

Theses amplitudes can be rewritten in the k-space by using (11) as ãk(0) = cos(α/2)

and b̃k(0) = eiβ sin(α/2) and inserting them in (18) and (19), after integrating both
equations we reach

A = 1

2
+

(
1

4
− f

)
(cos α + sin α cos β) , (24)

B = A − 1

2
+ 2i f sin α sin β, (25)

where f = −(1 − √
2)/4. Thus, by inserting them into (2), we have a characteristic

function for local state,
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(a)

(b)

Fig. 2 Asymptotic entanglement SE starting from a local state (23) and b Gaussian state (28) with σ0 = 1
as function of the angles α and β from the initial spin states amplitudes (Color figure online)

�H (α, β) = (3 − 2
√

2)[1 + sin(2α) cos β]. (26)

Figure 2a shows the asymptotic entanglement calculated from (26) in (20) starting
from a local state for any initial spin state. The maximum entanglement is SE = 1.0
for (α, β) = (3π/4, 0) and (π/4, π). The minimum entanglement is SE ∼ 0.736 for
(α, β) = (π/4, 0) and (3π/4, π) [10,11].

3.2 Delocalized states

Let us consider a Gaussian probability distribution,

|�G(0)|2 = exp(− j2/2σ 2
0 )

√
2πσ 2

0

, (27)
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with an initial dispersion σ0 and since |�s(0)〉 is the initial spin state, the discrete
Gaussian state2 could be written as,

|�G(0)〉 =
+∞∑

j=−∞
|�s(0)〉 ⊗ exp

(− j2/4σ 2
0

)

(2πσ 2
0 )

1
4

| j〉 . (28)

In the same way as in the previous case, using (11) to rewrite the Gaussian amplitudes
in the k-space and changing the sum of amplitudes in j by their integration3 in x , we
have

(
ãk(0)

b̃k(0)

)
=

+∞∫

−∞

exp
(−x2/(4σ 2

0 ) − ikx
)

(
2πσ 2

0

) 1
4

dx |�s(0)〉 . (29)

After integrating (29) [26], the imaginary terms vanish, therefore, we have

(ãk(0), b̃k(0))T =
(

8πσ 2
0

) 1
4
e−k2σ 2

0 |�s(0)〉 , (30)

are the Gaussian initial amplitudes in the k-space. Inserting (30) in (18) and (19), after
numerical integration we obtain the same Eqs. (24) and (25), however f is a function
of initial dispersion σ0 given by f (σ0) = ε/σ 2

0 , where the constant ε ∼ 0.0327. Then,
the characteristic function for Gaussian states is

�H (α, β, σ0) = 1

2
(1 − 4 f (σ0))

2 [cos α + sin α cos β]2

+ (4 f (σ0))
2 [sin α sin β]2. (31)

Figure 2b shows the asymptotic entanglement starting from a Gaussian state
obtained from (31) with σ0 = 1 in (20) for any initial spin state. There is a continuous
range of spin states with maximum entanglement, and the minimum entanglement is
SE ∼ 0.343, for the same angles of local case.

To investigate if the asymptotic entanglement has any dependence on the shape of
the initial delocalized state, we also study a QW starting from a rectangular state. The
rectangular probability distribution is |�R(0)|2 = 1/(2a + 1) if −a ≤ j ≤ a and 0,
otherwise, then a rectangular state is given by,

|�R(0)〉 =
a∑

j=−a

|�s(0)〉 ⊗ 1√
2a + 1

| j〉 . (32)

2 The Gaussian states were defined between [−1000, 1000], i.e., for a σ0 = 30 the discrete sum of the
normalization condition gives an error below of 0.001%.
3 Since the numerical difference between the discrete sum and integration of the amplitudes with σ0 = 1
is around 10−4, and this difference is even smaller for larger σ0.

123



Asymptotic entanglement in quantum walks from delocalized… Page 9 of 16 224

(a) (b)

Fig. 3 Asymptotic entanglement SE for a β = 0 and b β = π/2 for α ∈ [0, π ] (Color figure online)

We obtain their amplitudes in the k-space using (11) such as the previous cases. After
the sum we have,

(
ãk(0)

b̃k(0)

)
=

[
sin(ka + k)

tan(k/2)
− cos(ka + k)

] |�s(0)〉√
2a + 1

, (33)

and by inserting these amplitudes in (18) and (19) and performing a numerical inte-
gration, we have the same Eqs. (24) and (25), which leads us to the same characteristic
function obtained from the Gaussian state in (31), however in this case f (a) = ε/a

where ε ∼ 0.0684 with a = (

√
12σ 2

0 + 1 − 1)/2.
The characteristic function has the same analytical form (31) for both delocalized

states. For large initial dispersion σ0 � 1, we reach

�H (α, β) ∼ (1/2)[cos α + sin α cos β]2. (34)

Since SE = 1 for � = 0, we have

cos β = − cot α, (35)

a maximal entanglement condition for high delocalization. On the opposite way, for
α = π/4 and β = 0, SE → 04 for larger σ0, as we can see in Fig. 3 which compares
the asymptotic entanglement for local, Gaussian and rectangular states for (a) β = 0
and (b) β = π/2. The delocalized states have maximum entanglement for both values
of β in agreement with (35).

Connecting local and delocalized states We have obtained an analytical expression for
the asymptotic entanglement for local and delocalized states using the same theoretical
framework, although there is a lack of connection between these two cases. In attempt
to fulfill this requirement, we have to impose a renormalization of the spin amplitudes

4 The minimum entanglement condition for Gaussian and rectangular states obeys a power law SE ∼
0.3463σ−1.59

0 and SE ∼ 0.4874σ−0.853
0 , respectively, both obtained by curve fitting.
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Fig. 4 Asymptotic entanglement SE over the Bloch sphere starting from local to Gaussian states with
σ0 = 0.25, 0.75, 1 and 10 (left to right). The azimuthal angle β is around ẑ and α is the polar angle. Red
(blue) regions show high (low) entanglement rates (Color figure online)

ãk(0) and b̃k(0) for a Gaussian state, i.e., |�̃G(0)〉 /Erf(
√

2πσ0)
1/2 where Erf(z) =

(2/
√

π)
∫ z

0 e−u2
du in order to keep it normalized for 0 < σ0 < 1. After an extensive

numerical integration, we get approximate expressions A and B analogous to the
previous cases, although f is

f (σ0) = 0.0365 {π/2 − ArcTan[3.937(σ0 − 0.8)]} , (36)

such that, f (σ0 → 0) ∼ −(1 − √
2)/4 to recover the local case. Figure 4 shows

SE over the Bloch sphere, starting from local to Gaussian states enhancing the high
entanglement region from two spots up to a strip around the Bloch sphere with a
maximum entanglement which obeys (35).

3.3 Numerical simulations

On the one hand, the long-time entanglement in the position space can be obtained
through an iterative computational way after many time steps calculated by (8). The
asymptotic entanglement, on the other hand, can be straightforward calculated by
Fourier analysis as showed above. However, what is the general behavior of the entan-
glement along the time evolution? How many steps are necessary to be close enough to
the asymptotic entanglement? In order to enlighten these questions, first we perform a
numerical simulation of the average entanglement 〈SE (t)〉 along the time for all cases.
Second, for delocalized cases, we make a comparison between the average asymptotic
entanglement and the average entanglement numerically evaluated as function of the
initial dispersion.

Figure 5 shows the average entanglement 〈SE (t)〉 as function of the time steps
starting from a (a) Gaussian and (b) rectangular states, both for distinct values of
initial dispersion σ0 together with the local state. In both insets, we compare the
asymptotic entanglement 〈SE 〉 with the 〈SE (1000)〉 numerically obtained after 1000
time steps as function of the initial dispersion σ0 being the difference smaller than
0.3% and 1.2%, respectively, for (a) Gaussian and (b) rectangular cases. The average
asymptotic entanglement 〈SE 〉 has a dependence on the initial dispersion σ0 being
always greater than 〈SE 〉 ∼ 0.688 for both delocalized cases. Fitting the asymptotic
curve (red) gives us a σ 2

0 decay, 〈SE 〉G (σ0) ∼ 0.0835σ−2
0 +0.688 for Gaussian states
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(a)

(b)

Fig. 5 The average entanglement 〈SE (t)〉 was obtained over 2016 initial spin states from (α, β) = (0, 0)

up to (π, 2π) in independent increments of 0.1. The black curve shows the local case. The colored curves
are a Gaussian and b rectangular for σ0 = 1, 2, 5, and 10. Inset average entanglement after 1000 time steps
〈SE (1000)〉 (black dots) and average asymptotic entanglement 〈SE 〉 (red curve) obtained from Fourier anal-
ysis as function of initial dispersion σ0. In blue, the percentage difference δ(%) between both calculations
(Color figure online)

and a σ0 decay, 〈SE 〉R (σ0) ∼ 0.1205σ−1
0 +0.688 for rectangular cases, both obtained

by means of numerical integration.

4 Conclusion

The main aspect emphasized here is the effect of delocalization of the initial state
regarding the generation of entanglement. We have obtained the asymptotic entan-
glement in QW starting from local and two kind of delocalized states, as well as
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a way to connect them through analytical and numerical analysis. For delocalized
states, we found out a simple relation between the initial angles of the spin amplitudes
(35), which always leads to the maximal entanglement for Hadamard and Fourier (see
“Appendix”) walks. This relation for both cases expands our knowledge on maximal
entanglement achievement from two specific spin states (local) up to a continuous set
of initial spin states (delocalized). It is worth mentioning that the QW from delocal-
ized states considered here have ballistic spreading since their evolution is ordered, as
opposed to the diffusive behavior for disordered scenarios [15,16].

Finally, we hope that our findings help improve the development of entanglement
generation protocols and the experimentalists can test our results in different experi-
mental platforms [9].

Acknowledgements ACO thanks CAPES (Brazilian Agency for the Improvement of Personnel of Higher
Education) for the grant and EPMA thanks Janice Longo for her careful reading of the manuscript.

Appendix: Fourier walk

The Fourier (or Kempe) is a balanced coin such as the Hadamard,

F = 1√
2

(
1 i
i 1

)
, (37)

however it generates a symmetric probability distribution without phase difference
between initial spin states (β = 0) unlike the Hadamard (β = π/2) [2]. The time
evolution operator in the k-space considering a Fourier coin is

UF = 1√
2

(
e−ik ie−ik

ieik eik

)
, (38)

with eigenvectors |�±
k 〉 given by

|�±
k 〉 = 1√

2

(
1 + sin2 k ± sin k

√
1 + sin2 k

)− 1
2

(
−e−ik

(
sin k ±

√
1 + sin2 k

)

1

)
,

(39)

and the eigenvalues are

λ± = 1√
2

(
cos k ∓ i

√
1 + sin2 k

)
. (40)

If we define a frequency ωk such that cos(ωk) = cos k/
√

2 implies that

λ± = cos(ωk) ∓ i sin(ωk) = e∓iωk . (41)

At this point, we are able to write the time evolution |�k(t)〉 = (UF )t |�k(0)〉 by
means of a spectral decomposition of UF
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|�k(t)〉 = e−iωk t 〈�+
k |�k(0)〉 |�+

k 〉 + eiωk t 〈�−
k |�k(0)〉 |�−

k 〉 . (42)

In order to make it easier to manipulate, let us write

A±
k = 1

2

(
1 + sin2 k ± sin k

√
1 + sin2 k

)−1
, (43)

u±
k = −e−ik

(
sin k ±

√
1 + sin2 k

)
, (44)

in the eigenvectors (39), and since the initial state is |�k(0)〉 =
(
ãk(0), b̃k(0)

)T

therefore we have

|�k(t)〉 = e−iωk t A+
k

(
(u+

k )∗ãk(0) + b̃k(0)
)(

u+
k
1

)

+ eiωk t A−
k

(
(u−

k )∗ãk(0) + b̃k(0)
) (

u−
k
1

)
, (45)

Let us consider |�k(t)〉 =
(
ãk(t), b̃k(t)

)T
where

ak(t) = e−iωk t A+
k

(
|u+

k |2ãk(0) + u+
k b̃k(0)

)
+ eiωk t A−

k

(
|u−

k |2ãk(0) + u−
k b̃k(0)

)
,

(46)

bk(t) = e−iωk t A+
k

(
(u+

k )∗ãk(0) + b̃k(0)
)

+ eiωk t A−
k

(
(u−

k )∗ãk(0) + b̃k(0)
)

. (47)

Since b̃k(t) is the simplest, we can use it to calculate the entanglement through the
expressions,

C(t) =
∫ π

−π

dk

2π
|b̃k(t)|2, (48)

B(t) =
∫ π

−π

dk

2π
ãk(t)b̃

∗
k (t). (49)

When t → +∞, the time-dependent terms vanish [23], leading to

C =
∫ π

−π

dk

2π

{
(A+

k )2
[
|u+
k |2|ãk (0)|2 + (u+

k )∗ãk (0)b̃∗
k (0) + u+

k ãk (0)b̃k (0) + |b̃k (0)|2
]

+ (A−
k )2

[
|u−
k |2|ãk (0)|2 + (u−

k )∗ãk (0)b̃∗
k (0) + u−

k ãk (0)b̃k (0) + |b̃k (0)|2
]}

, (50)

B =
∫ π

−π

dk

2π

{
(A+

k )2
[
|u+
k |2

(
u+
k |ãk (0)|2 + ãk (0)b̃∗

k (0)
)

+ (u+
k )2ãk (0)b̃k (0) + u+

k |b̃k (0)|2
]

+ (A−
k )2

[
|u−
k |2

(
u−
k |ãk (0)|2 + ãk (0)b̃∗

k (0)
)

+ (u−
k )2ãk (0)b̃k (0) + u−

k |b̃k (0)|2
]}

. (51)

After inserting Eqs. (50) and (51) in the entanglement Eq. (8), we reach the asymptotic
entanglement given by (20) as function of a characteristic function (2).
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(a)

(b)

Fig. 6 Asymptotic entanglement SE as function of the angles α and β from the initial spin amplitudes
and over the Bloch sphere of a Fourier walk from a a local state with 〈SE 〉 = 0.871 and 0.736, such as the
Hadamard walk and b Gaussian state (σ0 = 10) with 〈SE 〉 = 0.796 and ∼0, respectively, for the average
and minimum entanglement. Red (blue) regions show high (low) entanglement rates (Color figure online)

Local initial state Let us consider the initial local state given by k-space amplitudes
ãk(0) = cos(α/2) and b̃k(0) = eiβ sin(α/2) and inserting them in (50) and (51) to
obtain the characteristic function for the Fourier walk,

�F (α, β) = (3 − 2
√

2)[1 − sin(2α) sin β], (52)

which satisfies �F (α, β − π/2) = �H (α, β) and the maximum entanglement is
reached for (α, β) = (π/4, π/2) and (3π/4,−π/2).

Gaussian initial state Inserting the Gaussian k-space amplitudes (30) in (50) and (51)
leads us to the characteristic function of Fourier walk starting from a Gaussian state,

�F (α, β, σ0) = 1

2
(1 − 4 f (σ0))

2 [cos α − sin α sin β]2 + (4 f (σ0))
2 [sin α cos β]2,

(53)

123



Asymptotic entanglement in quantum walks from delocalized… Page 15 of 16 224

that also satisfies �F (α, β −π/2) = �H (α, β). However, for this case f (σ0) → 1/4
when σ0 � 1, therefore for a large initial dispersion we have,

�F (α, β) ∼ (sin α cos β)2, (54)

which gives a maximum entanglement for β = ±π/2 for any α as showed in Fig. 6.
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