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Connecting velocity and entanglement in quantum walks
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We investigate the relation between transport properties and entanglement between the internal (spin) and
external (position) degrees of freedom in one-dimensional discrete time quantum walks. We obtain closed-form
expressions for the long-time position variance and asymptotic entanglement of quantum walks whose time
evolution is given by any balanced quantum coin, starting from any initial qubit and position states following
δ-like (local) and Gaussian distributions. We find out that the knowledge of the limit velocity of the walker
together with the polar angle of the initial qubit provide the asymptotic entanglement for local states, while this
velocity with the quantum coin phases give it for highly delocalized states.
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I. INTRODUCTION

Quantum random walks [1] or quantum walks are known
as the quantum counterparts of the classical random walks.
The walker is a quantum particle with a spin-1/2 state (qubit)
as an internal degree of freedom placed on a regular lattice
where each site corresponds to an external degree of freedom
(position). Instead of tossing a coin to determine whether
the particle goes to the left or right, the time evolution is
given by a unitary operator applied successive times to the
initial quantum walk state. This operator is constituted by a
quantum coin and a conditional displacement operator. The
quantum coin operates over the qubit by putting it on a
new superposition of spin states. After that, the conditional
displacement operator displaces the up (down) spin state to
the right (left) neighbor position [2].

The main difference between classical random walks and
quantum walks is the superposition principle, which allows
the latter to have unique features: a double peak probability
distribution showing a quadratic gain in their position variance
over time and the creation of entanglement between the spin
and position [3]. These properties have many implications in
basic science and underlying potential technological applica-
tions. For instance, early works have demonstrated that they
are useful to perform computational tasks as a quantum search
engine [4,5], to make universal quantum computation [6,7],
for the understanding of some biological processes such as
photosynthesis [8] or human decision making [9], to foster
entanglement protocols [10], for generating Anderson local-
ization [11], and to test the foundations of quantum mechanics
[12]. Moreover, they are versatile enough to be implemented
in some experimental platforms [13].

The initial quantum walk state can be a qubit over one
position (local state) [2,14] or spread over many positions fol-
lowing some sort of distribution function (delocalized state)
[15–18]. The spreading and entanglement in quantum walks
are very sensitive to their initial conditions and quantum coin.
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This dependence is reflected in the probability distribution of
the state over time. For instance, while one initial state leads to
a symmetrical probability distribution evolved by one kind of
coin, another state or coin leads to an asymmetrical one [2,14].
The entanglement content is similar: while one initial state
allows the quantum walks to reach the maximal entanglement,
another leads to the minimal entanglement [18–22]. Pecu-
liarly, while a local state has only two qubits which cause the
maximal entanglement, a delocalized state has a continuous
set of initial qubits given by simple expressions between the
polar and azimuthal angles of the initial qubit [18].

The relation between the initial qubit and the chirality
introduced by the coin (coin bias) in quantum walks on their
spreading or entanglement was analyzed in previous works
[14–17,19,22]. However, as far as we know, some differences
between local and delocalized states still remain uncovered
by the literature, such as the influence of the quantum coin
phases, which play an important role in delocalized states.
Despite the efforts to characterize the transport and entangle-
ment in quantum walks, the main question that arises here
is: what kind of information regarding the entanglement is
provided by the transport? Therefore, our main purpose is
to make an analytic connection between their limit velocity
and asymptotic entanglement to enlighten some aspects of the
question above. In an attempt to perform this study as broad as
possible, we consider quantum walks starting from any qubit,
using two kinds of position states (local and Gaussian), and
time-evolved by any balanced quantum coin.

This article is structured as follows. In Sec. II, we review
the mathematical formalism of quantum walks. In Secs. III
and IV, by means of Fourier analysis [23,24] we obtain
general expressions for the long-time variance and asymptotic
entanglement, respectively, and in Sec. V, a linkage between
them is established and discussed. Finally, a brief conclusion
with our main results is depicted in Sec. VI.

II. ONE-DIMENSIONAL QUANTUM WALKS

The quantum walk state belongs to H = HC ⊗ HP, where
HC is the coin space, a complex two-dimensional vector space
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spanned by the spin states {|↑〉 , |↓〉}, and HP is the position
space, a countably infinite-dimensional vector space spanned
by a set of orthonormal vectors {| j〉} with j ∈ Z being the
discrete positions on a lattice. Then, the one-dimensional
quantum walker has a qubit (spin-1/2-like) or coin state,

|�C〉 = cos
(α

2

)
|↑〉 + eiβ sin

(α

2

)
|↓〉 , (1)

as the internal degree of freedom in the Bloch sphere rep-
resentation [25] with polar angle α ∈ [0, π ] and azimuthal
angle β ∈ [0, 2π ], and its position and momentum as external
degrees of freedom. Let us consider an initial quantum walk
state,

|�(0)〉 =
+∞∑

j=−∞
|�C〉 ⊗ f ( j) | j〉

=
+∞∑

j=−∞
[a( j, 0) |↑〉 + b( j, 0) |↓〉] ⊗ | j〉 , (2)

where the initial amplitudes a( j, 0) = f ( j) cos(α/2) and
b( j, 0) = f ( j)eiβ sin(α/2) correspond to the spins up and
down, respectively, | f ( j)|2 gives us an initial position distri-
bution function, and

∑
j[|a( j, 0)|2 + |b( j, 0)|2] = 1 over all

integers is the condition of normalization.
The dynamical evolution of the quantum walk state is given

by |�(t )〉 = U (q, θ, φ)t |�(0)〉 in discrete time steps with
U (q, θ, φ) = S[C(q, θ, φ) ⊗ 1P] being the time evolution op-
erator where 1P is the identity operator in HP, C(q, θ, φ) is the
quantum coin, and S is the conditional displacement operator.
The quantum coin C(q, θ, φ) belongs to the SU(2), and up to
an irrelevant global phase, the most general way to write it is
[10,11,14,19]

C(q, θ, φ) =
[ √

q
√

1 − qeiθ

√
1 − qeiφ −√

qei(θ+φ)

]
, (3)

where the parameters 0 � θ, φ � 2π control the relative
phases between spin states and the chirality parameter 0 �
q � 1 determines if the coin is biased (q 	= 1/2) or unbiased
(q = 1/2). A fair or unbiased quantum coin C(θ, φ) operates
over the spin states generating a balanced superposition of
them. Two common fair coins are Hadamard and Fourier
(Kempe). While the Hadamard coin creates a superposition
without relative phases between spin states (θ, φ = 0), the
Fourier coin imposes a relative phase of π/2 (θ, φ = π/2)
between them. At last, the conditional displacement operator
is

S =
∑

j

(|↑〉 〈↑| ⊗ | j + 1〉 〈 j| + |↓〉 〈↓| ⊗ | j − 1〉 〈 j|), (4)

and it shifts the up (down) spin state from site j to site j + 1
( j − 1), which generates entanglement between the spin and
position states.

The quantum walk state |�(t )〉 remains pure over time,
so the entanglement can be quantified by means of the von
Neumann entropy SE (ρ(t )) = −Tr[ρC (t ) log2 ρC (t )], where
ρC (t ) = TrP[|�(t )〉 〈�(t )|] is the partially reduced coin state
[26] and TrP[·] is the trace over the positions; then we have

ρC (t ) =
[

A(t ) γ (t )
γ ∗(t ) B(t )

]
, (5)

with A(t ) = ∑
j |a( j, t )|2, γ (t ) = ∑

j a( j, t )b∗( j, t ), γ ∗(t ) is
the complex conjugate of γ (t ), and B(t ) = 1 − A(t ). The
eigenvalues of ρC (t ) are

�± = 1

2
±

√
1

4
− A(t )(1 − A(t )) + |γ (t )|2; (6)

therefore,

SE (t ) = −�+(t ) log2 �+(t ) − �−(t ) log2 �−(t ), (7)

which ranges from zero (separable states) to 1 (maximal
entanglement).

III. LONG-TIME VARIANCE

After some initial fluctuation, the variance of quantum
walks attains the long-time regime. We should make a change
of basis to the dual k-space H̃k spanned by the Fourier-
transformed vectors |k〉 = ∑

j eik j | j〉 with k ∈ [−π, π ] [23]
to reach an expression for the long-time variance. The initial
state in Eq. (2) is rewritten as

|�̃(0)〉 =
∫ π

−π

dk

2π
|�k (0)〉 ⊗ |k〉 , (8)

where |�k (0)〉 = ãk (0) |↑〉 + b̃k (0) |↓〉. In the Fourier repre-
sentation, the conditional displacement operator S is diagonal,
Sk = |↑〉 〈↑| ⊗ e−ik |k〉 〈k| + |↓〉 〈↓| ⊗ eik |k〉 〈k|, and thus the
time evolution operator in the k-space with a fair coin gives

Uk = [e−ik |↑〉 〈↑| + eik |↓〉 〈↓|]C(θ, φ). (9)

After diagonalizing Uk , to shorten the notation we assume that
kδ = k − δ, δ = (θ + φ)/2, and η = (θ − φ)/2; then we find
the following eigenvalues,

λ±
k = ± eiδ

√
2

[
√

1 + cos2 kδ ± i sin kδ] = ±ei(δ±ω), (10)

since sin ω = sin kδ/
√

2 with ω ∈ [−π/2, π/2] and their re-
spective eigenvectors,

|�±
k 〉 = 1

N±
k

[
eik

e−i(δ+η)
(√

2λ±
k − eik

)], (11)

with (N±
k )2 = 4(1 ∓ cos kδ

√
1 + cos2 kδ ± sin2 kδ ). It is pos-

sible to expand the states |�k (0)〉 in terms of the eigenstates
of Uk ,

|�k (0)〉 = c+
k |�+

k 〉 + c−
k |�−

k 〉 , (12)

in such a way that c±
k = 〈�±

k |�k (0)〉. After following the
development from Ref. [24], we have

〈ĵm〉t =
∫ π

−π

dk

2π
{|c+

k |2 〈�+
k | Ẑ |�+

k 〉m

+ |c−
k |2 〈�−

k | Ẑ |�−
k 〉m}tm, (13)

where Ẑ = |↑〉 〈↑| − |↓〉 〈↓| and t  1, since oscillatory
terms are disregarded. The expected values of Ẑ are

〈�±
k |Ẑ|�±

k 〉 = ± cos(k − δ)√
1 + cos2(k − δ)

, (14)
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and also the coefficients,

c±
k = e−ik

N±
k

{ãk (0) − b̃k (0)ei(δ+η)[1 −
√

2eik/λ±
k ]}, (15)

where the spin-up and -down initial amplitudes are ãk (0) =
f̃ (k) cos(α/2) and b̃k (0) = f̃ (k)eiβ sin(α/2), respectively, in
the k-space. By inserting these amplitudes in Eq. (15) and
replacing it together with Eq. (14) in Eq. (13), for m = 1 we
find the expected position,

〈ĵ〉t = {I ( f̃ , δ)[cos α + sin α cos(β + δ + η)]

− R( f̃ , δ) sin α sin(β + δ + η)}t, (16)

which depends on the initial qubit given by α and β and coin
parameters δ + η. Similarly, for m = 2 we have the expected
squared position,

〈ĵ2〉t = I ( f̃ , δ)t2, (17)

where the remaining integrals I ( f̃ , δ) and R( f̃ , δ) are

I ( f̃ , δ) =
∫ π

−π

dk

2π
| f̃ (k)|2

[
cos2(k − δ)

1 + cos2(k − δ)

]
, (18)

R( f̃ , δ) =
∫ π

−π

dk

2π
| f̃ (k)|2

[
cos(k − δ) sin(k − δ)

1 + cos2(k − δ)

]
. (19)

Let us first consider a local state whose initial probability
distribution is a Dirac delta function, | f ( j)|2 = δ( j) in Eq. (2),
which results in |�L(0)〉 = |�C〉 ⊗ |0〉. The local amplitudes
in the k-space have f̃L(k) = 1 and inserting it in Eqs. (18)
and (19) gives IL = 1 − √

2/2 and RL = 0, respectively. Then
replacing it in Eqs. (16) and (17), we can find the long-time
variance as

σ 2
L (t ) = 〈ĵ2〉t − 〈ĵ〉2

t =
{(

1 −
√

2

2

)

−
(

3

2
−

√
2

)
[cos α + sin α cos(β + δ + η)]2

}
t2

(20)

for quantum walks starting from an initial local state, arbitrary
qubit, and fair coin. The average variance by integrating all
qubits over the Bloch sphere results in

〈
σ 2

L

〉
(t ) =

∫ π

0

dα

π

∫ π

−π

dβ

2π
σ 2

L (t ) = 2
√

2 − 1

8
t2, (21)

and the dependence on the coin parameters vanishes, in agree-
ment with previous works [27,28].

Let us consider a Gaussian probability distribution with
initial dispersion σ0. The initial Gaussian state is

|�G(0)〉 =
+∞∑

j=−∞
|�C〉 ⊗ e− j2/(4σ 2

0 )(
2πσ 2

0

) 1
4

| j〉 , (22)

where σ0 � 1; then the initial dispersion is equal to or larger
than the distance between two adjacent positions. Since the
numerical difference between the discrete summation and
integration of the Gaussian amplitudes is around 10−4 with

TABLE I. Fitting parameters of ξn.

ξ1 ξ2 ξ3 ξ4 ξ5

μ 0.8674 − 1.2113 0.2477 − 0.6081 2.3145
ν − 0.6461 0.7183 − 0.1083 0.4476 − 1.4515

σ0 = 1, to determine the Gaussian amplitudes in k-space, we
can change from j to x to integrate

f̃G(k, σ0) =
∫ +∞

−∞

e−[x2/(4σ 2
0 )+ikx](

2πσ 2
0

) 1
4

dx = e−k2σ 2
0(

8πσ 2
0

)− 1
4

, (23)

since the imaginary part is gone [18]. After replacing it in
Eqs. (18) and (19) the remaining integrals do not have exact
solutions; however, both approximate numerical solutions
bring us

IG(δ, σ0) = cos4 δ

1 + cos2 δ
ξ1(σ0) + cos2 δ

1 + cos2 δ
[1 + ξ2(σ0)]

+ ξ3(σ0)

1 + cos2 δ
, (24)

RG(δ, σ0) = cos δ sin δ

1 + cos2 δ
[ξ4(σ0) − 1] + sin(2δ)ξ5(σ0), (25)

where ξn(σ0) can be fitted by μ/σ 2
0 + ν/σ 3

0 , whose corre-
sponding parameters μ and ν are in Table I. Following the
same procedure for the local state, by averaging over all
qubits, we have

〈
σ 2

G

〉
(t ) =

[
IG(δ, σ0) − 3I2

G(δ, σ0) + R2
G(δ, σ0)

4

]
t2, (26)

with a dependence on the quantum coin parameter δ. Neglect-
ing lower-order terms of σ−3

0 , for a Hadamard walk 〈σ 2
G〉 ≈

[5 + 2
∑3

n=1 ξn(σ0)]t2/16 with 〈σ 2
G〉 → 5t2/16 for σ0  1,

while for a Fourier walk 〈σ 2
G〉 ≈ ξ3(σ0)t2 with null variance

for large σ0. Moreover, for σ0 → 0, 〈σ 2
G〉 does not converge

to 〈σ 2
L 〉 in Eq. (21), since making it would imply the renor-

malization of the state by means of a typical error function
[18]. However, for σ0 � 1 the condition of normalization is
preserved through this model. Figure 1 shows 〈σ 2〉 /t2 for
distinct values of δ given by Eqs. (21) and (26).

IV. ASYMPTOTIC ENTANGLEMENT

The entanglement in quantum walks has a strong depen-
dence on the initial conditions and the quantum coin. The
asymptotic entanglement, SE , which means the asymptotic
limit of SE (t ) as t → ∞, can be evaluated by Fourier analysis.
To achieve a general expression, let us first consider the time
evolution given by |�k (t )〉 = (Uk )t |�k (0)〉 and its spectral
decomposition [23],

|�k (t )〉 = ei(δ+ω)t c+
k |�+

k 〉 + (−1)t ei(δ−ω)t c−
k |�−

k 〉 . (27)

Therefore, since |�k (t )〉 = (ãk (t ), b̃k (t ))T and the elements of
the partially reduced coin state from Eq. (5) in the k-space are

A(t ) =
∫ π

−π

dk

2π
|ãk (t )|2, (28)
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FIG. 1. The average long-time position variance averaged over
all initial qubits for quantum walks starting from a local state (black)
from Eq. (21) and Gaussian states from Eq. (26) with σ0 = 1 (red),
2 (blue), 3 (green), and 10 (cyan) for distinct values of δ. Inset:
The average long-time variance of Gaussian states (dashed) for
δ = 0 (black), π/8 (red), π/4 (blue), 3π/8 (green), and π/2 (cyan)
over σ0.

γ (t ) =
∫ π

−π

dk

2π
ãk (t )b̃∗

k (t ), (29)

after replacing Eqs. (11) and (15) into Eq. (27) and by taking
t → ∞, the time dependence vanishes in both Eqs. (28) and
(29) giving us A and γ . Inserting them in Eq. (7), we can get
SE (�) with �± = (1 ± √

�)/2, a general expression for the
asymptotic entanglement as a function of

� = 1 − 4[A(1 − A) − |γ |2], (30)

which contains all information about the initial state and the
quantum coin. For quantum walks starting from a local state,

�L(α, β, δ, η) = (3 − 2
√

2)[1 + sin(2α) cos(β + δ + η)],
(31)

and the corresponding SE ranges from ∼0.736 to 1. The
values (α, β ) = (3π/4, 0) and (π/4, π ) for a Hadamard walk
and (3π/4,−π/2) and (π/4, π/2) for a Fourier walk imply
�L = 0 and, consequently, SE = 1 [18]. The integration of
SE over the Bloch sphere results in 〈SE 〉 ∼ 0.871 for any
quantum coin. For quantum walks starting from a Gaussian
state with σ0  1,

�G(α, β, δ, η) = [cos α cos δ + sin α cos(β + η)]2

1 + cos2 δ
, (32)

which depends on δ and η. In this case, the SE ranges from
zero up to 1 and the maximum entanglement condition is
given by a continuous set of initial qubits, such that cos β =
− cot α for a Hadamard walk and β = ±π/2 for any α for
a Fourier walk [18]. After integrating, we have 〈SE 〉 ∼ 0.688
for a Hadamard walk and 〈SE 〉 ∼ 0.793 for a Fourier walk
being the minimum and maximum values, respectively, as
shown in Fig. 2, which also displays the average long-time
variance 〈σ 2〉 /t2 for comparison.

FIG. 2. The average long-time position variance (black) from
Eq. (26) and asymptotic entanglement (red) obtained from Eq. (32)
in 〈SE 〉 averaged over all initial qubits for quantum walks starting
from a Gaussian state with σ0  1.

V. DISCUSSION

The average results presented here show some curious
differences between quantum walks starting from local and
Gaussian states. The average long-time variance and asymp-
totic entanglement have no dependence on the quantum coin
for the quantum walks starting from a local state, but they
have strong dependence on the coin parameter δ when they
start from Gaussian states, as shown in Figs. 1 and 2. For
instance, the average position variance from a local state is
lower than the one from Gaussian states driven by a Hadamard
coin (δ = 0), while the variance is null by means of a Fourier
coin (δ = π/2) being stationary for a large initial dispersion,
as displayed in Fig. 2. In fact, this contrasting behavior
also appears in the average entanglement, since Hadamard
and Fourier walks have the lowest and highest average en-
tanglement, respectively, opposite to the spreading behavior.
Therefore, it is reasonable to state that these two sorts of walks
represent borderline spreading and entanglement behaviors.

We carry out extensive numerical calculations of aver-
age entanglement and variance over time of Hadamard and
Fourier walks starting from a Gaussian state with σ0 = 10,
as performed in earlier works [10,11,18,29]. The average
variance and entanglement over time depicted in Figs. 3(a)
and 3(b), respectively, corroborate the long-time variance
and asymptotic entanglement from the previous section. The
average variances 〈σ 2〉 /t2 are about 0.31 and < 0.01, while
the average entanglements 〈SE 〉 reached after 3000 time steps
are about 0.69 and 0.76 for Hadamard and Fourier walks,
respectively. The probability profile has two opposite peaks
in the Hadamard walk as shown in Fig. 3(c) with up- and
down-state contributions. When the peaks are separated, the
entanglement quickly reaches a steady behavior with a large
real coherence term from Eq. (5), since the Hadamard coin
does not impose a relative phase between spin states. In the
Fourier case, due to the tiny spreading of the state, there is a
high overlapping between up and down states as can be seen
in Fig. 3(d). This interesting effect causes a slow entanglement
convergence, and together with the relative phase of π/2
imposed by the Fourier coin, the real and imaginary parts of
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FIG. 3. Average (a) variance and (b) entanglement over time for Hadamard (black) and Fourier (red) quantum walks starting from a
Gaussian state with σ0 = 10. Probability amplitudes for up (black) and down (red) for (c) Hadamard and (d) Fourier quantum walks after
N = 3000 time steps. There is a break region within j = −2050 and 2050 in (c). The average was made over a set of 2016 initial qubits
[Eq. (1)] from (α, β ) = (0, 0) to (π, 2π ) with independent increments of 0.1.

the coherence term evolve to a smaller |γ |2 than the Hadamard
walk.

The expected position in the long-time limit 〈ĵ〉t in Eq. (13)
is a function of the operator Ẑ , so it has a dependence on
the main diagonal of the partially reduced coin state given
by Eq. (5). Then, by using Eq. (28) with A(t ) = 1 − B(t )
and after taking the asymptotic limit, we can find 〈ĵ〉t =
(2A − 1)t . Replacing this result in Eq. (30), we get � =
(〈ĵ〉 /t )2 + 4|γ |2, therefore, since the maximal entanglement
in the asymptotic limit SE → 1 would imply γ → 0 and
A → 1/2. This result reveals that 〈ĵ〉t = 0 is a necessary but
not sufficient condition to achieve maximal entanglement. On
the other hand, the conditions that lead 〈ĵ〉t far from the origin
position have worse asymptotic entanglement. Let us define
the slope of the expected position, u = d 〈ĵ〉t /dt , as the limit
velocity of the walker [27,28],

uL =
(

1 −
√

2

2

)
[cos α + sin α cos(β + δ + η)], (33)

for quantum walks starting from a local state, and also,

uG = cos α cos2 δ + sin α cos δ cos(β + η)

1 + cos2 δ
, (34)

from a Gaussian state with σ0  1. After replacing uL from
Eq. (33) in Eq. (31), we get

�L(α, uL ) = (4 − 2
√

2)uL cos α − (3 − 2
√

2) cos(2α),
(35)

which implies that all dependence on the coin and the relative
phase β is inside uL. All qubits are within two SE curves with
negative concavities given by the conditions �L = 2u2

L (upper
bound) and �L = u2

L + (3 − 2
√

2) (lower bound). In the case
of quantum walks starting from highly delocalized Gaussian
states, �G = 2u2

G for a Hadamard walk and for δ → π/2, so
uG → 0 for a Fourier walk. After replacing uG from Eq. (34)
in Eq. (32), we have

�G(δ, uG) = 1 + cos2 δ

cos2 δ
u2

G for δ 	= π/2, (36)

and it means that the maximal entanglement condition is
achieved whenever the expected position is null or for
sin α cos(β + η) = 0 with δ = π/2. In other words, except
for δ = π/2, a symmetrical probability distribution which has
〈ĵ〉 = 0, and thus the limit velocity uG = 0, is necessary and
sufficient to reach the maximal entanglement between the spin
and position for highly delocalized Gaussian states.

The expressions as a function of the initial qubit reached
so far allow us to correlate the long-time spreading behavior
of the states to their respective asymptotic entanglement.
Figures 4 and 5 show scatter plots between the asymptotic
entanglement and the long-time variance, where each point
corresponds to a distinct initial qubit given by α from zero
to π without relative phase between spin states (β = 0). The
local case depicted in Fig. 4 has the intersection point between
all curves corresponding to α = 0. For Hadamard and Fourier
walks, the ellipse curves have unitary eccentricity and distinct
axes, varying between these two walks in the intermediate
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FIG. 4. Asymptotic entanglement and long-time variance for
quantum walks starting from a local state with β = η = 0 for δ = 0
(black), π/8 (red), π/4 (green), 3π/8 (blue), and π/2 (cyan).

cases. While the Hadamard walk reaches a considerable range
of asymptotic entanglement values, the Fourier case has SE ≈
0.87 for all initial qubits, such as the Hadamard walk for β =
π/2 [18]. For the Gaussian case in Fig. 5, the entanglement
is between SE = 0 and 1 for all cases with an appreciable
decrease in the long-time variance from the Hadamard to the
Fourier walk.

It is worth mentioning that a highly delocalized Gaussian
state is distinct from a uniform state, because this last one
has all position states occupied for all the time steps, which
would imply a closed path geometry or the introduction of any
sort of boundary condition. In this scenario, quantum walks
starting from a local state have dispersion and entanglement
periodic or quasiperiodic over time with a strong dependence
on the size of the confinement region [14,19,30]. We can
introduce a boundary through the parameter q from the quan-
tum coin, which controls the relative velocities between the
two dominant peaks in the probability distribution as ±2

√
q

[31] for local states and Gaussian states with δ = 0. The coin
at each position j behaves like a scattering center transmitting

FIG. 5. Asymptotic entanglement and long-time variance for
quantum walks starting from a Gaussian state (σ0  1) with β =
η = 0 for δ = 0 (black), π/8 (red), π/4 (green), 3π/8 (blue), and
0.4995π (cyan).

the spin up to j + 1 and reflecting the spin down to j −
1 with the same probability for q = 1/2. This generates a
probability distribution with relative velocities ±√

2 between
the two peaks. On the one hand, for q = 0 the reflection is
maximal, and this means that the spin state which comes
from the left (right) is reflected to the right (left) trapping
the state [29,32]. On the other hand, for q = 1, the two spin
states are split, generating two peaks with relative velocities
±2. In this case, the initial qubit completely determines the
probability of each peak centered at j = ±t , where t is the
number of time steps. Then the limit velocity u = ±1 and the
entanglement is null for an initial spin-up or -down state, and
u = 0 and the entanglement is maximal for an initial equal
superposition between spin states. Therefore, the parameter q
has a meaningful impact on the transport and entanglement
for both kinds of initial position states [14–17,19,22,29].

In view of the possibility to measure the entanglement and
the expected position, we believe that our findings can be
tested on different experimental platforms [13]. In particular,
it is important to notice that the external degree of freedom
could be the z component of orbital angular momentum
instead of position j. In this context, the experiments based on
the manipulation of the orbital angular momentum of photons
from a unique light beam [33–35] seem to be promising for
implementing delocalized states, besides the local ones, and
for testing our results here in a straightforward way. The pho-
ton polarization can be written as ρC (t ) = 1C + ∑3

l=1 rlσl ,
where σl are the Pauli matrices. By a proper disposition of
half- and quarter-wave plates, it is possible to measure the av-
erage polarization of the photon in the vertical-horizontal axis
(r3), in the ±45◦ axis (r1), and the average right-left circular
polarization (r2) [36]. After that, a postprocessing by tracing
out the external degrees of freedom could be performed to
obtain ρC (t ) [10]. In the same way, the measurement of the
expected position of state, together with the knowledge of
the initial qubit and the quantum coin both given by the
experimental arrangement, can supply a different route to
establish the entanglement.

VI. CONCLUSION

Quantum walks have a rich spreading and entanglement
behavior at long times with a deep dependence on the initial
conditions and quantum coin. We have considered quantum
walks starting from local and Gaussian states by means of
Fourier analysis to find general closed-form expressions for
the long-time variance and asymptotic entanglement. From
these results, we have pointed out some peculiarities that
distinguish local and Gaussian states. First, by averaging over
all initial qubits, we showed that the average variance is
constant from local states, while from Gaussian states have
strong dependence on the quantum coin, being stationary
for a Fourier walk with high initial delocalization. Second,
since there are two initial qubits from local states and a
continuous set of qubits from Gaussian states which lead to
the maximal entanglement evolved by means of Hadamard
and Fourier coins [18], we extended these results here for any
fair quantum coin. Third, we also corroborated our analytical
results through numerical calculations to verify the average
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spreading and entanglement behavior over time of Hadamard
and Fourier walks.

After obtaining the long-time position variance and asymp-
totic entanglement, we established a linkage between them
by detaching the dependency on the initial conditions and
quantum coin, and by showing their correlation via scatter
plots. Our main result shows that the achievement of the limit
velocity of the walker together with the knowledge of the
polar angle of the initial qubit (coin state) furnish the asymp-
totic entanglement for local states, and the limit velocity with
the quantum coin phases provide it for highly delocalized

states. Furthermore, we believe that better understanding of
the entanglement content from the quantum transport behavior
perspective might offer novel ways to build entanglement
protocols and to interpret some measurements.
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