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Abstract
We find out a few ways to improve the realization of entanglement between the internal (spin) and external (position)
degrees of freedom of a quantum particle, through the insertion of disordered time steps in a one-dimensional discrete
time quantum walk in different scenarios. The disorder is introduced by a randomly chosen quantum coin obtained from
a uniform distribution among infinite quantum coins or only between Hadamard and Fourier coins for all the time steps
(strong disorder). We can also decrease the amount of disorder by alternating disordered and ordered time steps throughout
a quantum walk or by establishing a probability p < 0.5 to pick a Fourier coin instead of a Hadamard one for each time step
(weak disorder). Our results show that both scenarios lead to maximal entanglement outperforming the ordered quantum
walks. However, these last scenarios are more efficient to create entanglement, because they achieve high entanglement rates
in fewer time steps than the former ones. In order to compare distinct disordered cases, we perform an average entanglement
by averaging over a large set of initial qubits over time starting from one site (local state) or spread over many neighbor
positions following a Gaussian distribution. Some transient behaviors from order to disorder in quantum walks are also
evaluated and discussed. Experimental remarks based on available experimental platforms from the literature are made.

Keywords Quantum walks · Entanglement · Gaussian states

1 Introduction

The pioneering work of Aharonov et al. [1] introduced the
quantum version of classical random walks, the quantum
random walks, or simply quantum walks (QW) [2, 3] where
the quantum walker is a particle that has a two-level state
such as spin 1/2-like (qubit) sited on one or more discrete
positions of a regular one-dimensional lattice. The state
of QW is described as a tensor product between spin and
position states and it time-evolves through an unitary operator
composed of a quantum coin and a conditional displacement
operator. The quantum coin operates on the qubit, leaving
it in a new superposition of spin states, then the conditional
displacement operator shifts the spin up (down) state to
the right (left) site. The singular dynamics of QW shows a
quadratic gain in the position variance (ballistic spreading)
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and generates entanglement between the internal (spin) and
external (position) degrees of freedom.

QW have been attracting considerable attention in many
fields such as physics, computation, engineering, and biol-
ogy [3]. First studies were focused on algorithmic applica-
tions of QW as a quantum search engine [4]. However, they
also offer some insights to understand the process of human
decision making [5] and the energetic efficiency of photo-
synthetic systems [6]. They are a possible route to make
universal computation [7, 8], simulate Dirac-like Hamiltoni-
ans [9], and generate teleportation protocols [10]. QW allow
us to contrast quantum-mechanics principles with classical
ones, for instance, the violation of Leggett-Garg inequal-
ity challenging theories based on classical trajectories [11].
Furthermore, they are robust enough to be implemented in
several experimental platforms [12].

The realization of entanglement in QW is very sensitive
to their initial conditions as well as to the quantum coin
used in their dynamical evolution. The initial state can be
any qubit placed on one position (local state) or spread over
many adjacent positions following some kind of distribution
function (delocalized state). Previous works showed that
the maximal entanglement is achieved when the QW start
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from two initial qubits in a local state [13–16], and from
a continuous set of initial qubits in delocalized states [17].
Other works also demonstrated that delocalized states show
a rich variety of behaviors, regarding their dispersion and
entanglement in contrast with the local ones [18–24].

Since the long-time entanglement in QW has a strong
dependence on the initial coin state, we can obtain the
average entanglement by averaging over a large ensemble
of initial qubits in order to assess the general features. From
this perspective, when some kind of disorder (or noise)
introduces different quantum coins in distinct time steps
and/or positions, some novel broad features emerge [25–
27]. In particular, when the quantum coins change in a truly
random way with the same probability to have any coin for
all the time steps (strong dynamic disorder), the QW state
manifests a diffusive behavior with maximal entanglement
between spin and position regardless of the initial state [25].
However, for this case, the QW asymptotically reach high
rates of entanglement slowly, i.e., after a large number of
time steps, taking a time still larger when they start from
delocalized states.

Our main objective here is to find other ways to reach
better efficiency to generate maximal entanglement. This
article is organized as follows. In Section 2, we introduce
the mathematical formalism about QW. In Section 3, we
obtain the average entanglement of ordered and disordered
QW over time by averaging over a large set of initial qubits
placed on one position (local) or spread over many positions
following a Gaussian distribution. We investigate the
alternation between disordered and ordered steps in QW and
the insertion of steady or time-dependent probabilities to
randomly choose one between Hadamard and Fourier coins
in the QW. Experimental remarks and some conclusions are
outlined in Sections 4 and 5, respectively.

2Mathematical Formalism

2.1 One-Dimensional QuantumWalk

The one-dimensional quantum walker is a qubit spread over
position states, thus the state of QW belongs to the Hilbert
space H = HC ⊗ HP , where HC is the qubit (coin) space
and HP is the position space. The coin space is a complex
two-dimensional vector space spanned by two spin states
{|↑〉 , |↓〉} and the position space is a countably infinite-
dimensional vector space spanned by a set of orthonormal
vectors |j〉 and j ∈ Z are the discrete positions on a lattice.
Then, we can write an initial state as follows,

|Ψ (0)〉 =
+∞∑

j=−∞
[a(j, 0) |↑〉 + b(j, 0) |↓〉] ⊗ |j〉 , (1)

with
∑

j [|a(j, 0)|2 + |b(j, 0)|2] = 1 as the normalization
condition and the sum is over all integers.

The dynamical evolution of the QW is unitary in discrete
time steps. After N time steps, the state of QW is given by,

|Ψ (N)〉 = T
N∏

t=1

U(t) |Ψ (0)〉 , (2)

where T represents a time-ordered product, and

(3)

is the unitary time evolution operator. From the right to
the left, is the identity operator in the position space
HP , C(t) is a time-dependent quantum coin, and S is the
conditional displacement operator. The quantum coin C(t)

operates over the spin states and generates a superposition
of them. Since an arbitrary quantum coin C(t) belongs to
the SU(2), if an irrelevant global phase is neglected, C(t)

can be written as

C(t) =
( √

q(t)
√

1 − q(t)eiθ(t)√
1 − q(t)eiφ(t) −√

q(t)ei[θ(t)+φ(t)]
)

, (4)

with three independent parameters q(t), θ(t) and φ(t). The
first parameter ranges from 0 to 1, and determines whether
the coin is balanced (q(t) = 1/2) or not (q(t) 	= 1/2). Both
last parameters range from 0 to 2π , and they control the
relative phases between the spin states.

The conditional displacement operator S moves the spin
up (down) state to the right (left), then from the site j to the
site j + 1 (j − 1),

S =
∑

j

(|↑〉 〈↑| ⊗ |j + 1〉 〈j | + |↓〉 〈↓| ⊗ |j − 1〉 〈j |). (5)

This operator generates entanglement between the
internal (spin) and external (position) degrees of freedom
throughout the dynamical evolution of the QW.

2.2 Initial Conditions

The initial conditions are given by the initial qubit and
position states. First, let us consider an arbitrary initial qubit
or coin state,

|ΨC〉 = cos
(α

2

)
|↑〉 + eiβ sin

(α

2

)
|↓〉 , (6)

in the Bloch sphere representation [28] where α ∈ [0, π ]
and β ∈ [0, 2π ]. We employ two kinds of initial position
states, local and delocalized (Gaussian) ones. The local
state |ΨL〉 has a delta-like probability distribution and by
replacing it in (1), we get a general local initial state
given by

|ΨL(0)〉 = |ΨC〉 ⊗ |0〉 , (7)
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and let us consider a Gaussian probability distribution where
σ0 is the initial dispersion, thus a general initial Gaussian
state1 is

|ΨG(0)〉 =
+∞∑

j=−∞
|ΨC〉 ⊗ exp

(−j2/4σ 2
0

)

(
2πσ 2

0

) 1
4

|j〉 . (8)

Our calculations are performed by averaging over a large
set of initial coin states (qubits) starting from these two
kinds of initial position states.

2.3 Average Entanglement

The initial local and Gaussian states are pure and since their
time evolution is unitary, |ΨL(t)〉 and |ΨG(t)〉 remain pure
for the whole dynamics. Therefore, the entanglement bet-
ween spin and position can be evaluated by von Neumann
entropy,

SE(ρ(t)) = −Tr[ρC(t) log2 ρC(t)], (9)

of the partially reduced spin (coin) state [29],

ρC(t) = TrP [ρ(t)], (10)

where ρ(t) = |Ψ (t)〉 〈Ψ (t)|, TrP [·] is the partial trace over
the positions and

ρC(t) =
(

A(t) γ (t)

γ ∗(t) B(t)

)
, (11)

with A(t) = ∑
j |a(j, t)|2, B(t) = ∑

j |b(j, t)|2, γ (t) =∑
j a(j, t)b∗(j, t) with γ ∗(t) being the complex conjugate

of γ (t). By diagonalizing ρC(t), we have

SE(ρ(t)) = −λ+(t) log2 λ+(t) − λ−(t) log2 λ−(t), (12)

with eigenvalues,

λ± = 1

2
±

√
1

4
− A(t)(1 − A(t)) + |γ (t)|2, (13)

since A(t) = 1 − B(t). The entropy of entanglement
SE(t) ranges from 0 for separable states to 1 for maximal
entanglement between spin and position.

The average entanglement for any time step t can be
calculated by

〈SE(t)〉 =
n∑

i=1

SE,i(t)

n
, (14)

where SE,i(t) is the entanglement at a time step t , obtained
from Eq. 12 for the QW starting from a ith initial qubit

1The discrete Gaussian states are defined within j = −100 and 100
centered at j = 0, the condition of normalization gives an error below
10−5% when σ0 = 10.

|ΨC〉i given by a particular (αi, βi) over the Bloch sphere.
Therefore, after all the n calculations are performed, the
average entanglement is obtained.

2.4 Order, Strong Disorder, andWeak Disorder

The ordered QW have a steady quantum coin over all the
time steps and positions, such as Hadamard or Fourier
(Kempe) coins. Both coins are unbiased (q = 1/2), and
while the Hadamard coin creates a superposition without
relative phases between spin states (θ = ϕ = 0), the Fourier
coin imposes a relative phase of π/2 (θ = ϕ = π/2), then
using Eq. 4 we have

CHadamard = 1√
2

(
1 1
1 −1

)
, CFourier = 1√

2

(
1 i

i 1

)
.

(15)

The strongly dynamically disordered (SDD) QW is given
by a quantum coin C(t) with q(t), θ(t) and ϕ(t) for all
positions, however, C(t) randomly switches for each time
step in two distinct ways. The first way, namely SDD2 QW,
C(t) is randomly chosen between Hadamard and Fourier
coins, thus q(t) is fixed, and θ = ϕ = (πrN)/2 where the
random integer rN is picked 0 or 1 with the same probability.
The second way, namely SDD∞ QW, C(t) can be any coin
from the SU(2), therefore q(t) = rq , θ = 2πrθ and
ϕ = 2πrϕ such that the random real numbers rq , rθ , and rϕ
are independently chosen from a uniform distribution within
0 and 1. Therefore, while the chosen coin for the SDD2

QW is always only one between Hadamard and Fourier, in
the SDD∞ QW there are infinite possibilities to choose a
different coin for each time step.

In order to study some situations between ordered QW
and SDD QW, we establish weakly dynamically disordered
(WDD2) QW by means of a probability p ∈ [0, 1] to have
a Fourier coin instead of a Hadamard one at each time step.
Notice that, WDD2 QW with p = 0 and 0.5 recovers the
Hadamard QW and SDD2 QW, respectively. If p(t) varies
from 0 to 0.5, we can simulate a transient dynamics from an
ordered QW to SDD2 QW and vice versa.

3 Entanglement Production

3.1 Order and Disorder

Ordered QW and SDD QW have distinct characteristics
regarding their entanglement generation. While the ordered
QW reachs a maximal entanglement for specific initial
states [13–17], the SDD QW always achieves the maximal
entanglement, but for distinct time rates depending on the
initial state [25–27]. Since the entanglement generation
of ordered QW and the rate of entanglement production
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in a disordered context are both sensitive to their initial
conditions, in order to properly compare them and observe
their general features, we perform the simulations to
obtain the average entanglement using Eq. 14. The average
entanglement is computed for a set of initial qubits from
α = 0 to π and β = 0 to 2π in independent increments
of 0.1, given a total of 2016 initial qubits. The numerical
simulations are made starting from local and Gaussian
position initial states.

Figure 1 shows the average entanglement 〈SE〉 over
time of (a) two ordered QW (Hadamard and Fourier) and
(b) SDD2 QW and SDD∞ QW starting from local and
Gaussian states. Among the ordered cases in Fig. 1 a, while
Hadamard and Fourier QW starting from a local state have
the same behavior and average long-time entanglement,
Hadamard QW starting from delocalized states reach high
entanglement rates faster than Fourier ones. All ordered
cases exhibit average long-time entanglement 〈SE〉 < 1
and the more delocalized the initial states are, the lower the
values where they achieve the convergence are, with 〈SE〉 ∼
0.688 as the lower bound for σ0  1 [17]. Figure 1b indi-
cates that SDD2 QW and SDD∞ QW lead to 〈SE〉 → 1 for
t → ∞, then the dynamic disorder is a sufficient condition
to generate maximal entanglement [25, 26]. It is worth
noting that SDD2 QW is more efficient than SDD∞ QW,
since the former takes fewer time steps to reach better rates
of average entanglement regardless of initial position states.

When we start ordered QW from a particular time step
of SDD QW, in an attempt to recover the ordered behavior,
a kink appears in the average entanglement and it reaches a
long-time entanglement 〈SE〉 < 1. Figure 1 displays SDD2

QW and SDD∞ QW from (c) local state and (d) Gaussian
state (σ0 = 10) with an ordered QW starting from distinct ti-
me steps. The difference between the average entanglement
after and before the kink drops asymptotically over time and
the time interval to achieve the long-time entanglement in-
creases as the time goes on. This behavior raises the follo-
wing issue: is there any particular combination of disorder
and order, which leads to a maximal entanglement condition
in fewer time steps than the SDD2 QW? The next section is
devoted to investigate this question.

3.2 Alternating Disorder and Order

The results from the previous section suggest possible
alternative routes to achieve high entanglement rates
through the insertion of ordered time steps in SDD QW. Let
us consider SDD QW with a fixed periodic time interval
Δt of ordered steps, i.e, if Δt = 10 the first 10 steps are
disordered, followed by the next 10 ordered steps, and so on.
Moreover, we chose all the values of Δt to assure the same
number of ordered and disordered steps in all calculations.
In order to make a comparison between the efficiency of

Fig. 1 a (color online) Average entanglement 〈SE(t)〉 of a two ordered
QW (Hadamard and Fourier) with a break region between t = 140
and 990; b SDD2 (triangle) and SDD∞ QW (square) from local and
Gaussian states with σ0 = 1 (red), 2 (green), 5 (blue), and 10 (cyan); c
SDD2 (triangle) and SDD∞ QW (square) with an ordered Hadamard
QW starting from t = 500 (cyan), 250 (blue), 100 (green), and 50 (red)
from local; d Gaussian state with σ0 = 10. Black lines show SDD2
QW and SDD∞ QW as references
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alternating disorder and order (ADO) in QW to SDD2 QW
and SDD∞ QW, we define a relative average entanglement
improvement η as

η = 〈SE(1000)〉ADO

〈SE(1000)〉SDD
− 1, (16)

at t = 1000 when all cases achieve a similar entanglement
rate.

Figure 2 shows the average entanglement of ADO in
QW for Δt = 10 and 100 and η for distinct values
of time interval Δt starting from a–b local state and c–
d Gaussian state with σ0 = 10. For all cases depicted
in Fig. 2 a and c, ADO in QW outperformed the SDD
QW during the whole evolution of time. Peculiarly, each
case of ADO in QW starting from the Gaussian state is
notably greater than the local one when we compare them
to their respective SDD QW efficiency. On the one hand,
ADO2 in QW has a better average entanglement efficiency
than ADO∞ in QW, which is similar to what is evaluated
between SDD2 QW and SDD∞ QW. On the other hand,
if we compare the entanglement efficiency of each ADO
in QW to their respective SDD QW as shown in Fig. 2 b
and d, ADO∞ in QW improves the entanglement attained
better than ADO2 in QW regardless of initial state. For both
kinds of disorder and initial states, the best improvement of
ADO2 (ADO∞) in QW is achieved with Δt = 100 being
η = 0.65% (0.43%) starting from local and 18.9% (12.3%)
from Gaussian state. The only exception is the case with

Δt = 2 (local state) which the average entanglement has
a tiny decrease about 0.21% (0.06%) of ADO2 (ADO∞) in
QW, respectively.

3.3Weak Disorder

SDD QW and ADO in QW with a steady time interval
lead to the maximal entanglement condition for t →
∞; however, they have distinct time rates to reach it.
Since the introduction of ordered steps among disordered
ones improves the entanglement achievement, it seems
reasonable to suppose that weak disorder could be more
efficient than the strong disorder for creating entanglement.
Therefore, a controlled way to decrease the amount of
disorder can be reached by introducing a probability to
have one coin instead of the other. Once a random choice
between Hadamard and Fourier coins has a better efficiency
to achieve high entanglement rates than the one among
infinite possibilities of coins [25, 26] or with two other
coins [27], then from this point, we will just deal with the
first kind of disorder. Let us consider WDD2 QW with a
probability p(t) ∈ [0, 1] to obtain a Fourier coin, where for
p = 0 we have a Hadamard QW, for p = 0.5 we recover
SDD2 QW and for p = 1 we have a Fourier QW.

Figure 3 shows the average entanglement of WDD2 QW
for different values of p. WDD2 QW starting from a–b local
state with p = 12% and c–d Gaussian (σ0 = 10) state
with p = 3% are the most effective scenarios to generate

Fig. 2 (color online) Average entanglement 〈SE(t)〉 of ADO2 in QW
(triangle) and ADO∞ in QW (square) for Δt = 100 (olive) and
Δt = 10 (blue) with SDD2 QW (triangle) and SDD∞ QW (square)
both in red starting from a local state and b Gaussian state with

σ0 = 10. Relative average entanglement improvement η(%) calcu-
lated for t = 1000 of ADO2 in QW (triangle) and ADO∞ in QW
(square) with different values of Δt ∈ [1, 500] from c local state and
d Gaussian state with σ0 = 10. c, d The lines are a guide for the eyes.



600 Braz J Phys (2019) 49:595–604

Fig. 3 (color online) Average entanglement 〈SE(t)〉 of WDD2 QW
starting from a, b local state and c, d Gaussian state with σ0 = 10 for
some values of probability p to obtain a Fourier coin: a 12% (blue),
25% (green); b 12% (blue), 1% (magenta), 0.1% (cyan); c 3% (olive),
10% (pink), 30% (blue); d 3% (olive), 1% (magenta), 0.5% (blue),
0.1% (cyan). Red and black lines represent SDD2 QW and Hadamard
QW, respectively

entanglement outperforming the entanglement achieved
by SDD2 QW across the whole dynamical evolution.
Since all cases of WDD2 QW have asymptotic long-time
entanglement, in Fig. 3, it is already possible to distinguish

Fig. 4 (color online) Average entanglement 〈SE(t = 100)〉 of WDD2
QW starting from local state (black) and Gaussian states with σ0 = 2
(red), 5 (blue), and 10 (olive) for 1000 different values of p ∈ [0, 1].
The inset magnifies part of the above graphs

the best entanglement situations from t = 100. Therefore,
in Fig. 4, we obtain the 〈SE(t = 100)〉 as function of p,
which reveals the following best p values: ∼ 12% starting
from local state and ∼ 9%, ∼ 6%, and ∼ 3% from Gaussian
states with σ0 = 2, 5, and 10 respectively.

Figure 5 compares the average entanglement behavior for
the most notable cases studied here. When the QW starts
from the local state, ADO2 in QW (Δt = 100) exceeds

Fig. 5 (color online) Average entanglement 〈SE(t)〉 starting from a
local state and b Gaussian state with σ0 = 10 of ADO2 in QW with
Δt = 100 (blue), WDD2 QW with a p = 12% and b 3% (green),
SDD2 QW (red), b Hadamard QW with Fourier coin at t = 33n with
n ∈ N (magenta) and Hadamard QW (black)
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WDD2 QW with p = 12% and SDD2 QW, while from the
Gaussian state, WDD2 QW with p = 3% defeats ADO2 in
QW (Δt = 100) and SDD2 QW, in both cases over almost
the whole evolution on time. Moreover, we add an ordered
simulation with one Fourier coin every 33 steps, which gives
3% of Fourier coins over all the steps, in order to emphasize
the need of disorder to achieve maximal entanglement
[25, 26].

3.4 Transition Between Order and Disorder

The transient behavior from order to disorder or from
disorder to order can be appraised by means of WDD2 QW
with a time-dependent probability p(t). We propose here
three smooth analytic functions for p(t) detached in the
Table 1. They allow us to study a linear and two quadratic
(up and down concaves) time-dependent probabilities from
Hadamard QW with p(0) = 0 to SDD2 QW with p(N) =
0.5 and vice versa over a walk with N = 1000 time steps.

Figure 6 shows the average entanglement for all transient
scenarios starting from Gaussian state outperforming the
SDD2 QW, nonetheless they are worse than WDD2 QW
with a steady probability p = 3%. Between the three types
of time-dependent probabilities, the quadratic overcomes
the linear and negative quadratic over most of the time
steps. The average entanglement of WDD2 QW with steady
probability at t = 1000 is just 0.4% and 0.3% higher than
WDD2 QW with quadratic time-dependent probability for
the transitions from Hadamard QW to SDD2 QW and from
SDD2 QW to Hadamard QW as depicted in Fig. 6 a and
b respectively. To conclude, it is worth mentioning that the
evolution from Hadamard QW to SDD2 QW creates higher
entanglement in fewer time steps than the opposite case.

4 Experimental Remarks

Nowadays, there are available experimental platforms to
implement QW with dynamic disorder based on the photon
as a quantum walker [12]. These platforms are capable to
evaluate different disordered scenarios presented here with
QW starting from an arbitrary qubit (coin state) with initial
local and/or delocalized states.

Table 1 Expressions for p(t) (% Fourier coins) from t = 0 up to
N = 1000: transition from Hadamard QW to SDD2 QW (H→S) and
the opposite (S→H)

p(t) Linear Quadratic Negative quadratic

H→S
t

2N

t2

2N2

1

2
− (t − N)2

2N2

S→H − t − N

2N

(t − N)2

2N2

1

2
− t2

2N2

Fig. 6 Average entanglement 〈SE(t)〉 starting from Gaussian state
with σ0 = 10 of the transient behavior a from Hadamard QW to SDD2
QW and b from SDD2 QW to Hadamard QW by means of WDD2
QW with quadratic (blue), linear (orange), and negative quadratic
(magenta) functions for p(t) as showed in the Table 1. WDD2 QW
with p = 3% (olive), SDD2 QW (red), and Hadamard QW (black) as
references

Schreiber et al. proposed an arrangement with passive
optical elements and a fast-switching electro-optical mod-
ulator (EOM) able to perform a QW with controllable
dynamics [30, 31]. The polarization of photon (vertical and
horizontal) and its arrival times at the photodetector are the
internal and external degrees of freedom respectively. The
initial local state is prepared by using half-wave (HWP) and
quarter-wave plates (QWP). The random quantum coin is
implemented by another HWP and EOM, while the con-
ditional displacement by two polarizing beam splitters and
an extra fiber line responsible for delaying the horizon-
tally polarized light. The temporal difference between both
polarization components corresponds to one discrete time
step. This technique allows the authors to introduce dynamic
disorder with different time scales [30, 31]. Thus, mea-
surements of entanglement of QW with disorder applied in
distinct time ranges could experimentally verify our results
shown here.

Another platform to implement disordered QW uses
integrated waveguide circuits built by femtosecond laser
writing techniques with directional couplers playing the role
of beam splitters and controlled phase shifts are realized by
deforming the waveguides at the output of each directional
coupler [32]. The initial state could be a single photon or
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two entangled photons whose state can obey the Fermionic
or Bosonic statistics. Two perpendicular axes along the
circuit indicate the different positions and time steps. The
dynamical disorder is introduced by keeping the same phase
shifts set for all positions but changing the set from a time
step to another [32]. This experimental platform performs a
QW with one photon or more from different input positions.
Therefore, in principle, a delocalized initial state could be
prepared as an input state.

The last platform is based on the manipulation of orbital
angular momentum (OAM) of photons [33] from a unique
light beam [34, 35]. The internal degree of freedom is
determined by the left or right circular polarization of
photons and the external degree of freedom is the z-
component of OAM of photons. The initial coin state is
selected by HWP and QWP, and the position states can be
prepared as a local state or a superposition of generic OAM
states [35]. The step is performed by an inhomogeneous and
anisotropic birefringent liquid-crystal arranged in a specific
pattern (q-plate) [36]. The dynamical disorder could be
implemented by modulating the voltage applied to the q-
plates and/or changing the phase retardation and orientation
of the waveplates [37].

All experimental proposes above have notable advan-
tages in terms of phase stability and scalability, com-
pared with an optical quantum quincunx (Galton’s board)
[38]. However, a measure of entanglement would imply
in obtaining the partially reduced coin state ρC(t) through
a few changes in the experimental schemes above [25].
Since a general photon polarization can be written as

, with σj being Pauli matri-
ces, it could be experimentally obtained by performing the
measure of the average polarization of the photon in the
vertical/horizontal axis (r3), in the ±45◦ axis (r1), and the
average right/left circular polarization (r2) [39]. These mea-
surements could be done through an adequate arrangement
of HWP and QWP. The collected data is associated to ρ(t);
therefore, after a post-processing measurement by tracing
out its position degree of freedom, we can get ρC(t) [25].

5 Conclusions

We studied the interplay between order and dynamic disorder
in QW, in an attempt to better understand the rules for
creating maximal entanglement efficiently. First, in order to
cover the general features and perform a fair comparison
between all cases investigated, we established an average
entanglement calculation given by averaging over a large
set of initial coin states over time starting from two variety
of position states. Second, since all cases studied led to
the maximal entanglement, we searched for those scenarios
which achieved high entanglement rates more rapidly.

Third, we reviewed the average entanglement behavior of
ordered QW (Hadamard) and SDD QW based on recent
literature [25, 26] as the starting point for our study.

We carried out some calculations and realized that the
change from SDD QW to Hadamard QW introduced an
abrupt increase (kink) in the entanglement, but the long-
time entanglement converged to values below the maximal
value. From this point, our main aim was to find out
other routes combining order and disorder to achieve high
entanglement using fewer time steps than in SDD QW.
We simulated a periodic alternation between SDD QW
and Hadamard QW for different time intervals and we
introduced WDD QW with a steady probability to pick one
coin between Hadamard and Fourier for each time step.
Moreover, we studied the transient behavior from Hadamard
QW to SDD QW and the opposite situation by means of a
time-dependent probability along the walk.

Our main findings regarding the efficient creation
of entanglement could be summarized in the following
statements: (i) a truly random choice between Hadamard
and Fourier coins over all the time steps leads to a maximal
entanglement more readily than the one among infinite
coins, which indicates a dependence on the variation of the
used coins over time, once both θ and ϕ have π/2 of phase
difference between Hadamard and Fourier coins [25–27];
(ii) for most of the cases, ADO in QW with a constant time
interval Δt exhibited a better efficiency than SDD QW; (iii)
the efficiency to generate entanglement depends not only on
the number of ordered or disordered steps, but also on how
they are employed in the QW; (iv) the transient behavior
from Hadamard QW to SDD2 QW has a better efficiency to
generate entanglement than the contrary case.

We also found out some similarities and differences
starting from each position initial state: (i) the convergence
to the long-time entanglement of QW starting from a
Gaussian state is slower than from a local one [17] for all
disordered cases; (ii) ADO in QW with Δt = 100 is the best
case from both position states, being the relative efficiency
differences between ADO in QW and SDD QW more
significant starting from a Gaussian state; (iii) regarding
WDD2 QW to create entanglement, the probability p

increases with the localization of the state, starting in 3%
from Gaussian state with σ0 = 10 up to 12% from local
state; (iv) ADO in QW with Δt = 100 and WDD2 QW with
a constant probability p = 3% are the most efficient cases
for creating entanglement starting from local and Gaussian
states, respectively.

Finally, since the quantum entanglement is a key issue
in the quantum information processing with implications
in developing quantum algorithm protocols, quantum
teleportation, quantum cryptography, and dense coding and
for building a quantum computer [40], we believe the
efficient creation of entanglement could be an important
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issue in this context. Moreover, our achievements raise
novel further questions. For example, is it possible
to observe this enhancement of entanglement through
dynamical disorder for two- or three-dimensional QW [41]?
And also, for two or more quantum walkers? What should
be the interplay between dynamical and static disorder to
generate high entanglement with localization [25, 26, 41]?
We hope our findings inspire other investigations on this
subject and the experimental researchers can test our results
for diverse platforms.
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