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Quantum realism: Axiomatization and quantification
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The emergence of an objective reality in line with the laws of the microscopic world has been the focus of
longstanding debates. Recent approaches seem to have reached a consensus at least with respect to one aspect,
namely, that the encoding of information about a given observable in a physical degree freedom is a necessary
condition for such an observable to become an element of the physical reality. Taking this as a fundamental
premise and inspired by quantum information theory, here we build an axiomatization for quantum realism—a
notion of realism compatible with quantum theory. Our strategy consists of listing some physically motivated
principles able to characterize quantum realism in a “metric” independent manner. We introduce some criteria
defining monotones and measures of realism and then search for potential candidates within some celebrated
information theories—those induced by the von Neumann, Rényi, and Tsallis entropies. We explicitly construct
some classes of entropic quantifiers, among which some are shown to satisfy all the proposed axioms and hence
can be taken as faithful estimates for the degree of reality (or definiteness) of a given physical observable.
Hopefully, our framework may offer a formal ground for further discussions on foundational aspects of quantum
mechanics.
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I. INTRODUCTION

The explanation of quantum phenomena in terms of an ob-
jective preexistent reality is arguably problematic. Unless one
is willing to accept nonlocal elements of reality—such as the
Bohmian trajectories—it seems better to abandon the idea that
an electron always chooses to traverse only one of two slits
or to travel a well-defined orbit around a proton. Challenging
our everyday intuition, quantum mechanics allows a “quan-
tum coin” to be prepared in a state like |ψ〉 = √

1 − p |H〉 +
eiφ√

p |T〉, with {H, T} ≡ {Heads, Tails} and p ∈ (0, 1). This
preparation can by no means be described by an ensemble
(1 − p) |H〉 〈H| + p |T〉 〈T| of “well-behaved” coins, with a
fraction p of copies with tails facing upward. In particular,
this classical mixture is incapable of encapsulating the funda-
mental phase φ. Therefore, the idea that a two-valued physical
quantity, like an electron’s spin or a photon’s polarization, is
an element of reality—thus being well defined regardless of
any observation (realism)—does not peacefully coexist with
the preparation |ψ〉.

The discussion about elements of the physical reality in the
context of quantum mechanics takes us back to the seminal
work of Einstein, Podolsky, and Rosen (EPR) [1], where the
authors call into question the completeness of quantum theory.
Envisaging a scenario in which measurements of incompat-
ible observables are conducted in two spatially separated
parts of an entangled system and dismissing any sort of ac-
tion at distance, EPR concluded that there exist elements of
physical reality that are not predicted by quantum theory,
which is then alleged to be an incomplete model of nature.
This idea was immediately confronted by Bohr [2], who ar-
gued that complementary physical quantities associated with

incompatible observables cannot be elements of reality in the
same experimental arrangement. Decades later, Bell (first in
Ref. [3] and then in Ref. [4]) proved that any model based
on local hidden variables cannot be consistent with the pre-
dictions of quantum mechanics. Given the undeniable success
of quantum mechanics in fitting experimental data, violations
of Bell inequalities suggest that nature itself is incompatible
with the local causality hypothesis [4]. This phenomenon,
conventionally referred to as Bell nonlocality [5], has been
verified through several loophole-free tests [6–11]. Interest-
ingly, local causality has been acknowledged as a compound
assumption [12], stronger than locality (in the sense of “pa-
rameter independence” [13]) but weaker than no signaling (the
impossibility of faster-than-light communication, which has
never been seen violated), so that no tension whatsoever exists
with relativity principles. The debate still remains concerning
an alternative decomposition of the local causality hypothesis
into other assumptions, such as some form of realism (see
the work of Wiseman and Cavalcanti [14,15] for a detailed
discussion on the assumptions underlying Bell’s theorem).

Recently, the emergence of physical reality has been
discussed in scenarios involving more than one observer.
Considering extended Wigner’s friend scenarios, Brukner de-
rived a no-go theorem for observer-independent facts [16].
In another no-go theorem, Frauchiger and Renner showed
that quantum mechanics cannot consistently describe the
use of itself [17]. Inspired by that, Bong et al. [18] have
proved and experimentally verified that if quantum evolu-
tion is controllable on the scale of an observer, then no
physical theory can simultaneously satisfy the hypotheses of
no-superdeterminism, locality, and absoluteness of observed
events (also called macroreality [14]). Roughly speaking, by
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examining instances where two observers confront their expe-
riences about the physical reality, these results reinforce the
subtleties underlying the measurement problem. In a different
vein, the authors of Ref. [19] suggest that the elements of
reality associated with the system under scrutiny are estab-
lished when correlations are developed in an early stage of the
dynamics, before any observer comes into play.

Whatever perspective one may adopt in assessing the quan-
tum phenomena, the task of combining the algebraic structure
of the theory with the experienced physical reality is always
an issue. In effect, it has been suggested that many of the
interpretations of quantum mechanics known to date can be
divided in two groups, depending on their attitude toward
(the emergence of) realism1 [20,21]. Among the frameworks
accounting for the emergence of an objective reality from the
quantum substratum, quantum Darwinism [22] is a prominent
one. Corroborated by recent experiments [23–25], this model
claims that reality emerges when information about a quantum
system gets prolifically copied into the environment.

Once we accept a noninstantaneous transition to classical
reality, it makes sense thinking of an intermediate state of
affairs, the one prior to the definitive achievement of realism.
Presumably, any gradation of “nonrealism” would be possible
a priori. This was the intuition leading Bilobran and Angelo
(BA) to introduce the so-called irreality (the complement of
reality)—an operational quantifier intended to diagnose how
far a given physical quantity is from full definiteness [26]. The
criterion of realism envisaged in this approach, henceforth re-
ferred to as BA’s realism, does not imply full classical reality,
since situations are shown to exist where the z component of
spin is an element of reality whereas the x component is not.
The basic premise employed by BA is that a measurement
establishes an element of reality for the measured observable,
even when the measurement outcome is not revealed. If a
given state is not altered by an unrevealed measurement, then
this means that this state already implied an element of reality
before the measurement. Hence, the uncertainties associated
with the measured observable are of subjective essence and
the state is epistemic. Many developments followed from
this framework, from a novel notion of nonlocality [27–29]
to foundational aspects of quantum theory [19,30] and their
proofs of principle [31,32], to the realization that irreality is a
quantum resource [33].

Given the above, it seems very difficult to figure out what
quantum mechanics is all about without a proper framing
of the notion of realism. This work is devoted to this task.
Inspired by the formal structure of the resource theories of
entanglement [34] and coherence [35] and resorting to a fun-
damental premise shared by quantum Darwinism and BA’s
realism, we suggest an axiomatization of the concept of quan-
tum realism (in opposition to classical reality). Our axioms
are physically motivated and connected to an informational
description of the measurement dynamics. We propose two

1In most cases the term realism is taken as a synonym for “classical
reality,” which may be identified with the dogma according to which
all the systems exist and have well-defined physical properties at
every instant of time regardless of the presence or action of observers
(brain-endowed systems).

categories of reality quantifiers: reality monotones and reality
measures, the former requiring a smaller set of axioms to
be satisfied. Our search for quantifiers takes place within the
quantum information theories of Rényi [36–50] and Tsallis
[51–56], whose scopes extend the one induced by the von
Neumann entropy [57]. This article is organized as follows.
In Sec. II we present our list of axioms for quantum realism.
In Sec. III we briefly review some elements of the aforemen-
tioned quantum information theories. In Sec. IV we explicitly
build reality monotones and measures in consonance with the
proposed axioms. Our concluding remarks are left to Sec. V.

Before starting, it is useful to spell out the meaning that
shall be presumed from the term “quantum realism” through-
out this article. It is not connected to the existence of a system,
which is taken for granted from the outset, but rather to the
definiteness of a physical quantity prior to any observer’s
intervention. When this scenario is realized, the corresponding
quantity is said to be an element of reality. Unlike classical
reality, quantum realism does not presume all physical quan-
tities to be elements of reality simultaneously. “Definiteness,”
by its turn, does not mean “total absence of uncertainties,”
which would be equivalent to the condition of full pre-
dictability appearing in EPR’s approach. It actually refers to
the absence of quantum uncertainties for a particular phys-
ical quantity. Adhering to BA’s criterion, the quantum state
ρ = (1 − p) |a1〉 〈a1| + p |a2〉 〈a2|, with A |a1,2〉 = a1,2 |a1,2〉,
is then taken as an example of scenario in which quantum
realism is established for the observable A, even though mere
subjective uncertainties are present when p ∈ (0, 1). To see
this, we check what happens with the state when it is sub-
mitted to a nonselective measurement of A = ∑

i aiAi (where
Ai = |ai〉 〈ai|). Since

∑
i AiρAi = ρ, then BA’s criterion of

realism is satisfied, meaning that the element of reality that
would presumably be installed by the measurement is al-
ready there before the measurement. In other words, in this
case, reality is not dictated by the measurement, and the
present uncertainties reflect only subjective ignorance (ρ is
an epistemic state). This is consistent with the fact that no
“interference pattern” would be observed with respect to the
observable A. Thus, while in BA’s approach A is an element
of reality for all p, in EPR’s this is so only when p = 0 or
p = 1 (full predictability regimes). The differences between
these approaches can be further emphasized in multipartite
settings. As thoroughly discussed in Ref. [29], while EPR
would claim that the spin observables Sx,z are simultaneous
elements of reality for the singlet state, BA’s criterion implies
that these observables actually are maximally unreal. As an-
other example, consider the bipartite separable state ρsep =∑

λ pλρ
A
λ ⊗ ρBλ . It immediately satisfies Bell’s local causal-

ity hypothesis—sometimes referred to as local realism—but
does not imply BA realism for a vast set of observables,
since

∑
i(Ai ⊗ 1B)ρsep(Ai ⊗ 1B) �= ρsep. Throughout this ar-

ticle, we stick to the notion of BA realism.

II. AXIOMS FOR QUANTUM REALISM

Quantum resource theories have shown to be a powerful
framework to characterize a given quantum effect [58]. Inci-
dentally, quantum realism cannot be thought of as a quantum
resource because reality abounds for free in the classical
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regime. On the other hand, quantum realism is complemen-
tary to quantum irrealism (as quantified by irreality, which is
believed to be a quantum resource [33]). With this inversion in
mind, we seek inspiration in the formal structure of quantum
resource theories to guide our axiomatization of quantum
realism.

We start by grounding our intuition on some empirical
facts. After passing through a wall with two slits, an elec-
tron has its paths described as a quantum superposition and
an interference pattern is observed in the detection system.
During the flight, quantum mechanics does not ascribe a well-
defined position for the electron, so that its position is not
an element of reality and the electron is said to behave like
a wave. On the other hand, when the two slits are preceded
with a very lightweight floating slit, the interference pattern
disappears [2,59] (see the double-slit quantum eraser [60]
for a similar phenomenology). In this case, the entanglement
created between the electron and the floating slit allows for
the former to be described by a statistical mixture. It then
follows that trajectory-based models are admissible so that the
electron position can be claimed to be an element of reality. In
other words, particle-like elements of reality emerge in this
experiment because a given degree of freedom—the momen-
tum of the lightweight slit—encodes which-way information
about the electron [61]. Notice that these are expected to be
the results of the experiment even in the absence of a huge
environment, like a thermal bath.

Now, even though the supporters of quantum Darwinism
would eventually claim that the conditions for the emergence
of an objective reality are not met during the electron flight—
for the information about the electron path does not have an
environment to be recorded in—we believe they would agree
that the motional degree of freedom of the first slit is able to
acquire information about the electron path, thus suppressing
its wavelike properties. This is exactly the same viewpoint
adopted by supporters of BA’s realism [19,31]. We then take
this common perspective as our fundamental premise regard-
ing the dynamical emergence of quantum realism: the reality
status of a physical observable can increase only when infor-
mation about it is stored in another physical degree of freedom.
Moreover, we adhere to BA’s conception that such a reality
degree can be quantified at every instant of time by use of the
quantum state.

To formalize these ideas, we consider the functional
ρ 	→ RA(ρ), hereafter named the reality of the observable
A ∈ B(HA) given the state ρ ∈ B(HS = HA ⊗HB), where
B(H ) is the set of positive semidefinite Hermitian operators
acting on the Hilbert space H . Let us now consider some
generic dynamics involving the interest systemS and an ancil-
lary system E generically referred to as environment. Assume
that the state of the composite system at an arbitrary instant
of time t is given by υt ∈ B(HS ⊗HE), so that ρt = Tr E(υt )
denotes the reduced state of S with initial condition ρt=0 = ρ.
An alteration in the reality degree of the observable A in the
time interval [t1, t2] is here denoted as

�RA(t2, t1) := RA(ρt2 ) − RA(ρt1 ). (1)

Let us also introduce another functional, υt 	→ IE|S(υt ), aim-
ing at denoting how certain informational content associated
with the environment is conditioned to some configuration of

the system. Variations of this information with time are then
described as

�IE|S(t2, t1) := IE|S(υt2 ) − IE|S(υt1 ). (2)

We are now ready to state our main postulate.
Axiom 1 (Reality and information flow). The degree of re-

ality of an observable A is altered in the time interval [t1, t2]
only when an amount �IE|S(t2, t1) of information about this
observable is shared with the environment, that is,

�RA(t2, t1) ≡ �IE|S(t2, t1). (3)

The specific mathematical structures of RA and IE|S and the
sense in which information “flows” to the environment will
be opportunely specified for each information theory we con-
sider. By now, the crux is realizing that this axiom implements
the fundamental premise of quantum Darwinism and BA’s
realism, namely, that reality varies with time only through a
physical process involving interactions, the establishment of
correlations, and some form of information exchange. Also,
the relation (3) attaches an informational profile to the quan-
tifier RA. Although this choice is somewhat ad hoc (after all,
one could use, for instance, norm-based “metrics”) it is very
convenient for the establishment of conceptual bridges with
well-known information theoretic quantities.

Our second axiom aims at making explicit reference to
measurements, another fundamental process through which
an element of reality emerges. In a sense, this axiom is related
to the first one in that a measurement can be viewed as a
process whereby information about an observable is shared
with an apparatus. On the other hand, a measurement is a
very special instance involving, at the last stage, updating of
information in the observer’s mind, a physical system whose
informational dynamics is often excluded from the theoretical
description. For this reason, the quantum state collapse is
generally used as an effective description for the measurement
process. We can also envisage scenarios where measurements
are performed on an ensemble but the results are neither
registered nor revealed to the observer. Let us consider such
a nonselective measurement for a nondegenerate discrete-
spectrum observable A = ∑

i aiAi, where Ai = |ai〉 〈ai| are
projectors such that AiAj = δi jAi and

∑
i Ai = 1A. Since

no outcome is ever revealed, the postmeasurement state is
given by

	A(ρ) :=
∑

i

(Ai ⊗ 1B) ρ (Ai ⊗ 1B) =
∑

i

piAi ⊗ ρB|i, (4)

where ρB|i = Tr A[(Ai ⊗ 1B)ρ]/pi and pi = Tr [(Ai ⊗ 1B)ρ].
The nonselective-measurement map 	A has shown to be very
useful in BA’s approach. By considering a protocol involving
the action of a secret agent, who intercepts the state, measures
A (thus creating an element of reality), and then submits the
system to state tomography, BA concluded that the relation
	A(ρ) = ρ can be taken as an operational criterion of realism.
The rationale behind this criterion is as follows. If the post-
measurement state 	A(ρ) equals the premeasurement state ρ,
then the secret measurement has played no role whatsoever
for the establishment of realism, meaning that ρ already was a
state for which A is an element of reality. In this circumstance,
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the assessed state ρ is termed an A-reality state.2 The idea of
taking 	A(ρ) as an A-reality state can be further supported
by the realization that it also describes a scenario wherein,
after collapsing the description to Ai ⊗ ρB|i, the observer sud-
denly forgets the measurement outcome ai. This misfortune,
though, should not change the fact that an element of reality
has just been established by the projective measurement. In
addition, because the A reality was already installed, repeating
the procedure alters nothing, that is, 	A[	A(ρ)] = 	A(ρ).
We can also consider a monitoring of A [19], a generalized
version of the unrevealed projective measurement (4) that is
able to interpolate weak and strong measurements through the
strength parameter ε ∈ [0, 1]. Formally, the monitoring of A
is written as

Mε
A(ρ) := (1 − ε) ρ + ε 	A(ρ). (5)

Implementing a positive operator-valued measure (POVM)
with effects {√1 − ε1,

√
εAi}, this map is expected to in-

crease the reality of A whenever ε > 0. The second axiom
then follows.

Axiom 2 (Reality and measurements). The reality RA(ρ)
is a nonnegative real number bounded from above by Rmax

A .
It is maximum iff ρ is an A-reality state and never decreases
upon generalized measurements of A, that is,

0 � RA(ρ) � RA[Mε
A(ρ)] � RA[	A(ρ)] := Rmax

A , (6)

where the second and third equalities hold iff 	A(ρ) = ρ.
Given the informational nature of the reality quantifier RA

and because the maximum amount of information a given
Hilbert space can codify is bounded by its dimension, the
upper bound Rmax

A is expected to depend on dA = dim(HA).
Note that while Axiom 1 specifies the measure unity by
which reality is quantified, Axiom 2 establishes a numerical
scale. The intrinsic relation between these axioms can be
appreciated in terms of the dynamics imposed on the initial
state ρ ⊗ |e0〉 〈e0| by a given unitary operator Ut acting on
HS ⊗HE. By use of the Stinespring dilation theorem (see
also Ref. [19]), we have

ρt = Tr E[Ut (ρ ⊗ |e0〉 〈e0|)U †
t ] =Mε

A(ρ), (7)

where ρ ∈ B(HS), Ut=0 = 1SE, and ε is a parameter that
depends on t and other characteristics of Ut . The action of
Mε

A generally changes the purity degree of ρ, so that some
correlations with the environment and corresponding alter-
ations in IE|S are expected to occur, in agreement with the
prescription (3).

To state our third axiom, we appeal to the intuition that the
reality status of a physical quantity should not decrease upon

2To further appreciate the reason why BA’s criterion relies on non-
selective instead of selective measurements, consider the A-reality
state ρ = (1 − p) |a1〉 〈a1| + p |a2〉 〈a2|. A selective measurement of
A would result in |ai〉 〈ai| (i ∈ {1, 2}), implying a clear alteration
in the description of the system and eventually inducing one to
believe that the measurement has somehow changed the state of
affairs. Conversely, using the nonselective-measurement map one
obtains 	A(ρ ) = ρ, which shows that ρ actually is immune to A
measurements and, therefore, can be viewed as a state in which A
reality is already installed.

discard or addition of uncorrelated degrees of freedom. On the
other hand, we cannot exclude the possibility of increasing the
realism of a quantity when the discarded system is correlated
because in this case the system state undergoes an effective
decoherence process and, hence, is shifted toward classical
reality.

Axiom 3 (Role of other parts). (a) Discarding a part of the
system does not diminishes reality, that is,

RA[Tr X(ρ)] � RA(ρ), (8a)

forHX ⊆ HB, where the equality applies when the discarded
part is uncorrelated. Also, (b) adding a fully uncorrelated
system Z can by no means change the elements of reality of
the system S, that is,

RA(ρ ⊗ �) = RA(ρ), (8b)

where � ∈ B(HZ).
From a mathematical viewpoint, we can recognize by

Axioms 2 and 3 a set of maps, henceforth called realistic
operations, that do not diminish the reality of an observable.
Formally, a realistic operation is a map ρ 	→ �(ρ) such that
RA[�(ρ)] � RA(ρ). For the above axioms, we have iden-
tified a particular set of realistic operations, that is, � ∈
{Mε

A, Tr X,⊗ �}.
With our fourth axiom we make a clear departure from

classical reality. The point consists of implementing the in-
tuition according to which, for a generic preparation ρ,
noncommuting observables, such as three orthogonal spin
components, cannot be simultaneous elements of reality.
In other words, quantum realism is expected to be upper
bounded.

Axiom 4 (Uncertainty relation). Two observables X and Y
acting on HA cannot be simultaneous elements of reality in
general, that is,

RX (ρ) + RY (ρ) � 2Rmax
A . (9)

The equality is expected to hold only in “classical-like”
circumstances, such as ρ = (1/dA) ⊗ ρB or [X,Y ] = 0. The
statement (9) links quantum realism to Bohr’s complementar-
ity principle. Interestingly, a recent experiment conducted in
a nuclear magnetic resonance platform [32] has been reported
corroborating the validity of the uncertainty relation (9) within
the information theory induced by the von Neumann entropy.

Let us consider now a collection of quantum states ρi ∈ HS
with associated probabilities pi and realities RA(ρi ). We do
not expect the simple combination of these individual mem-
bers to generate an ensemble with a lower reality status. In
fact, mixing typically is an action toward classicality, so that
reality is expected to be a concave functional. The fifth axiom
is then stated as follows.

Axiom 5 (Mixing). The reality of a mixture {pi, ρi} of den-
sity operators ρi with respective weights pi can never decrease
the installed mean reality, that is,

RA

(∑
i

piρi

)
�

∑
i

piRA(ρi ). (10)

So far, we have presented the properties that we consider
sufficient to define a meaningful reality monotone, in the
sense that, upon the processes described above, reality never
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decreases.3 That is, the typical move is toward classical re-
ality, not the opposite. Although this set of axioms is rather
constraining, we shall see in Sec. IV that it can be satisfied
by a number of quantifiers supported not only by the standard
von Neumann information theory but also by the Rényi and
the Tsallis ones. This justifies the following definition.

Definition 1. A functional ρ 	→ RA(ρ) satisfying Axioms
1–5 is called a reality monotone.

In what follows we introduce two supplementary proper-
ties that can arguably be viewed as natural requirements for a
reality measure.

Axiom 6 (Additivity). The reality is an additive quantity
over n independent systems each one prepared in a state ρi,
that is,

RA

(
n⊗

i=1

ρi

)
=

n∑
i=1

RA(ρi ), (11)

where A, on the left-hand side, acts on each one of the n
systems.

In particular, this means that given n independent (eventu-
ally far apart) systems prepared in the same state ρ, the total
amount of reality of an observable A that acts on each ρ is
nothing but the direct sum nRA(ρ).

Axiom 7 (Flagging). The mean reality of an ensemble
{pi, ρi} does not change under flagging, that is,

RA

(∑
i

piρi ⊗ |xi〉 〈xi|
)

=
∑

i

piRA(ρi ). (12)

The flagging property [62] has recently been discussed
within the context of quantum resource theories. Suppose one
identifies with a flag |xi〉 ∈ HX each one of the states ρi ∈ HS
of our collection. The above axiom reflects the fact that merely
labeling each element of the ensemble with a flag basis {|xi〉}
should not increase the mean reality. In other words, the
insertion of classical correlations with respect to the flag is
innocuous on average.

With the above axioms we have set the grounds to define
what we propose to be a significant reality quantifier.

Definition 2. A functional ρ 	→ RA(ρ) satisfying Axioms
1–7 is called a reality measure.

The next section is reserved for a brief review of in-
formation theoretic quantities that will be the basis for the
construction of faithful reality quantifiers.

III. ELEMENTS OF QUANTUM INFORMATION THEORY

Quantum divergences (or relative entropies) are measures
of the distinctiveness of positive operators. These measures
are known for their usefulness and versatility in defining sev-
eral quantum information concepts, in particular, the one that
will be shown to be of key relevance in this work, namely, the
quantum conditional information. We now review three diver-

3With respect to Axiom 1, we are of course envisaging dynamics
whereby correlations typically build up so that �IE|S(t2, t1) � 0. This
is particularly true when the environment E is a genuine reservoir,
like a thermal bath.

gence measures, namely, the von Neumann relative entropy,
Rényi divergences, and Tsallis relative entropies.

A. von Neumann relative entropy

The von Neumann relative entropy, also known as the
Umegaki relative entropy [63], is one of the most used diver-
gences in quantum information theory. It is defined as

D(ρ||σ ) := Tr [ρ(ln ρ − ln σ )]

Tr ρ
, (13)

where ρ > 0, σ � 0, and ker σ ⊆ ker ρ. The factor Tr ρ en-
sures that D(λρ||λσ ) = D(ρ||σ ) for all λ > 0 ∈ R. D(ρ||σ )
is a continuous functional satisfying (whenever ρ � σ ) the
positive definiteness property:

D(ρ||σ ) � 0, with equality holding iff ρ = σ. (14)

The von Neumann relative entropy also satisfies the following
properties: (i) unitary invariance,

D(UρU †||UσU †) = D(ρ||σ ), (15)

for any unitary U ; (ii) additivity,

D

(⊗
i

ρi

∣∣∣∣∣∣ ⊗
i

σi

)
=

∑
i

D(ρi||σi ); (16)

(iii) joint convexity,

D

(∑
i

piρi

∣∣∣∣∣∣ ∑
i

piσi

)
�

∑
i

piD(ρi||σi); (17)

and (iv) data-processing inequality (DPI),

D[�(ρ)||�(σ )] � D(ρ||σ ), (18)

also known as contractivity or monotonicity under quantum
channels � (completely positive trace-preserving maps).

The largest divergence implied by Eq. (13) emerges when
one considers a generic pure state, ψ = |ψ〉 〈ψ |, and the
maximally mixed one, 1/d , with d = dimH . We have
D(ψ ||1/d ) = S(1/d ) = ln d [sometimes referred to as the
normalization condition D(1||1/d ) = S(1/d ) [41]], where

S(ρ) := −Tr (ρ ln ρ)

Tr ρ
(19)

is the von Neumann entropy of ρ. The quantum informational
content I (ρ) of a quantum state ρ is a concept complementary
to ignorance, that is, I (ρ) + S(ρ) = Imax = Smax with Smax =
S(1/d ) = ln d = I (ψ ) = Imax (meaning that the entropy of a
maximally mixed state 1/d equals the informational content
of a pure state ψ). In terms of the relative entropy, information
can be defined as

I (ρ) := D(ρ||1/d ) = ln d − S(ρ), (20)

Since pure states (resp. maximally mixed states) have max-
imum (resp. minimum) informational content, I (ρ) is itself
a direct measure of purity. One can make a further inter-
pretation of I (ρ) referring back to the map (4). Consider
the pairs {A, A′} and {B, B′} of noncommuting operators act-
ing on HA and HB, respectively, and forming maximally
unbiased bases (MUBs). One has 	AA′ (ρ) ≡ 	A	A′ (ρ) =
	A′	A(ρ) = 1A

dA
⊗ ρB, where ρB = Tr A(ρ), and similarly for
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{B, B′}. For the whole context C = {A, A′, B, B′}, we can
write 	C(ρ) = 1A

dA
⊗ 1B

dB
= 1/d , with d = dAdB. This is a

state of full reality (or classical reality), since for any ob-
servable X one has 	X (1/d ) = 1/d , that is, a nonselective
measurement of X cannot change the established state of
affairs. Therefore, we can rewrite Eq. (20) in the form I (ρ) =
D[ρ||	C(ρ)], which allows us to interpret the informational
content as the divergence of ρ with respect to its classical
counterpart 	C(ρ).

Equation (13) can also be used to define the quantum
conditional entropy of a quantum state ρ,

HA|B(ρ) := −D(ρ||1A ⊗ ρB). (21)

It can be checked that this formula yields the usual relation
HA|B(ρ) = S(ρ) − S(ρB). The conditional entropy can alter-
natively be defined through an optimization process over the
subspace B, since infσB D(ρ||1A ⊗ σB) = D(ρ||1A ⊗ ρB).
By its turn, the conditional information of ρ can also be
defined through the information-ignorance complementar-
ity, that is, IA|B(ρ) + HA|B(ρ) = Hmax

A|B = HA|B(1AdA
⊗ ρB) =

ln dA, a relation that will be taken as a fundamental premise in
all information theories throughout this article. We then write

IA|B(ρ) := ln dA − HA|B(ρ) = D
(
ρ

∣∣∣∣ 1A
dA

⊗ ρB
)
. (22)

Because both entries in the above divergence are normalized
density operators, one has 0 � IA|B(ρ) � ln d . Also, the condi-
tional information can be decomposed as IA|B(ρ) = I (ρA) +
IA:B(ρ), where I (ρA) = D(ρA||1A/dA) is the informational
content of part A and IA:B(ρ) = D(ρ||ρA ⊗ ρB) is the mu-
tual information, a measure of total correlations between
the parts. In this sense, IA|B can be said to be composed
of “local” and “global” information. Now, using the state
υt = Ut (ρ ⊗ |e0〉 〈e0|)U †

t , we can compute the variation of
IE|S(υt ) = I[Tr S(υt )] + IE:S(υt ) in the interval [0, t] and then
return to Axiom 1 to better specify the notion of “information
flow.” The condition for the A-reality increase, �IE|S(t, 0) >

0, will be satisfied when IE:S(υt ) > S[Tr S(υt )], which means
that the share of information (correlations) between system
and environment has to be sufficiently large for the emergence
of reality. An alternative way of appreciating the role of the
information flow for the emergence of realism is by writing
I (υt ) = I (Tr Eυt ) + IE|S(υt ) and then noticing that I (υt ) is
conserved in any unitary dynamics. It readily follows that
�IE|S = I (Tr Eυ0) − I (Tr Eυt ) ≡ −�IS. By Axiom 1 we then
have �RA = −�IS, which shows that the A reality increases
whenever information “flows out of the system.”

B. Rényi divergences

Constituting a generalization of the von Neumann relative
entropy, the Rényi divergences [36] are defined as

Dα (ρ||σ ) := 1

α − 1
ln

Tr (ρασ 1−α )

Tr ρ
, (23)

for α ∈ (0, 1) ∪ (1,+∞) and the same conditions of quan-
tity (13). Here we also have Dα (λρ||λσ ) = Dα (ρ||σ ), for
any positive real λ. Equation (23) is said to be a general-
ization of Eq. (13) because Dα→1(ρ||σ ) = D(ρ||σ ). Another
relative entropy comprised by the Rényi divergences is
the min-relative entropy Dmin(ρ||σ ) := limα→0 Dα (ρ||σ ) =

− ln[Tr (ρ0σ )/Tr ρ] where ρ0 is the projection onto the sup-
port of ρ, as defined by Datta [38] (see Table I for a summary
of properties and Appendix A for more details about the
min-relative entropy). Some properties that are satisfied by the
von Neumann relative entropy encounter, however, some re-
strictions in the Rényi generalization: joint convexity is valid
only for α ∈ (0, 1) and DPI only for α ∈ (0, 1) ∪ (1, 2] (see
Ref. [40] and references therein). The rest of the properties
remain intact. A variant of definition (23) is the so-called
sandwiched Rényi divergence, which was independently pro-
posed by Müller-Lennert et al. [41] and Wilde et al. [44] as

D̃α (ρ||σ ) := 1

α − 1
ln

{
1

Tr ρ
Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]}
, (24)

with the same conditions of quantity (23). Besides reducing to
the von Neumann relative entropy as α → 1, the divergence
(24) reproduces other famous relative entropies, such as the
collisional relative entropy (α = 2) [37] and the max-relative
entropy Dmax(ρ||σ ) := limα→+∞ D̃α (ρ||σ ) [38] (see Table I
for a summary of properties and Appendix A for more de-
tails about the collisional and the max-relative entropies). The
sandwiched Rényi divergence satisfies the same properties
as its counterpart (23) but for different ranges of parame-
ters: joint convexity is valid only for α ∈ [1/2, 1) while DPI
holds for α ∈ [1/2, 1) ∪ (1,+∞) [42,43]. It was proved for
α ∈ (0, 1) [45] and α > 1 [44] that the inequality D̃α (ρ, σ ) �
Dα (ρ, σ ) is always true, where the equality holds iff [ρ, σ ] =
0. The necessity of this statement was noted in Ref. [48].

The issue concerning the commutativity of operators raised
the discussion about the use of the divergence (24) instead
of (23). However, as pointed out by Gupta and Wilde [47],
Dα (ρ||σ ) “is perfectly well defined” when ρ and σ do not
commute, and, in fact, this divergence has proven to be useful
for discrimination tasks in some contexts when α ∈ (0, 1),
including the limiting case α → 0 (see Ref. [47] and ref-
erences therein). The problem with definition (23) is that it
does not satisfy DPI for α ∈ (2,+∞), a large range that is in
fact covered by the sandwiched version, including its limiting
case (α → +∞) known as max-relative entropy [37]. Since
divergences are fundamental tools for one to distinguish a
quantum state from another, it is expected that after the action
of a quantum channel the states become less distinguishable,
and, therefore, DPI is an essential property for quantum in-
formation. Nonetheless, to obtain reality quantifiers it will
be sufficient for us to focus on the original version of the
Rényi divergence, since all the results will directly have a
counterpart for the sandwiched version.

Now, using Eq. (23) one checks the validity of the normal-
ization condition, Dα (ψ ||1/d ) = ln d = Sα (1/d ), where

Sα (ρ) := − 1

α − 1
ln

Tr ρα

Tr ρ
(25)

is the quantum Rényi entropy of ρ. The Rényi informational
content of ρ can be defined as

Iα (ρ) := Dα (ρ||1/d ) = ln d − Sα (ρ), (26)

which reproduces Eq. (20) as α → 1. Since ρ commutes
with 1/d , the original and the sandwiched Rényi divergences
result in the same informational content. Here as well, we
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TABLE I. Summary of properties satisfied by the von Neumann relative entropy D, the Rényi divergence Dα , the min-relative entropy
Dmin := Dα→0, the sandwiched Rényi divergence D̃α , the max-relative entropy Dmax := D̃α→+∞, and the Tsallis relative entropy Dq, for any
pair {ρ, σ } of density operators.

D Dα Dmin D̃α Dmax Dq

Continuity � � x � x �
Positive definiteness � � x � � �
Unitary invariance � � � � � �

Additivity � � � � � x
Joint convexity � α ∈ (0, 1) � α ∈ [1/2, 1) x q ∈ (0, 1) ∪ (1, 2]

DPI � α ∈ (0, 1) ∪ (1, 2] � α ∈ [1/2, 1) ∪ (1,+∞) � q ∈ (0, 1) ∪ (1, 2]

can interpret the informational content as the amount by
which ρ diverges from a full reality state, that is, Iα (ρ) =
Dα[ρ||	C(ρ)].

It is usual to define the Rényi conditional entropy in at least
two different ways:

Hα↓
A|B(ρ) := −Dα (ρ||1A ⊗ ρB), (27a)

Hα↑
A|B(ρ) := − inf

σB
Dα (ρ||1A ⊗ σB), (27b)

with σB ∈ B(HB). The arrows are used to express the
relation Hα↑

A|B � Hα↓
A|B. It is noteworthy that, unlike its von

Neumann counterpart (21), the Rényi conditional entropy
cannot be expanded as Sα (ρ) − Sα (ρB). Moreover, as empha-
sized by Tomamichel et al. [46], proposals along these lines
lead to conceptual problems, such as the invalidation of DPI.
From the complementarity relation Iα↑,↓

A|B (ρ) + Hα↑,↓
A|B (ρ) =

[Hα
A|B]max = Hα↑,↓

A|B (1AdA
⊗ ρB) = ln dA, we propose the Rényi

conditional information measures

Iα↑
A|B(ρ) := ln dA − Hα↓

A|B(ρ), (28a)

Iα↓
A|B(ρ) := ln dA − Hα↑

A|B(ρ), (28b)

with arrows justified by the relation Iα↓
A|B(ρ) � Iα↑

A|B(ρ). For
any quantum channel �B→B′ , both measures satisfy DPI, that
is, Iα↑,↓

A|B (�(ρ)) � Iα↑,↓
A|B′ (ρ) for α ∈ (0, 1) ∪ (1, 2] (including

the limiting case α → 0) and α ∈ [1/2, 1) ∪ (1,+∞), respec-
tively [46]. Both conditional information measures are convex
under mixing for α ∈ (0, 1) and α ∈ [1/2, 1), respectively
[49]. Finally, by use of Eq. (23) we have

Iα↑
A|B(ρ) = Dα

(
ρ

∣∣∣∣ 1A
dA

⊗ ρB
)
, (29a)

Iα↓
A|B(ρ) = inf

σB
Dα

(
ρ

∣∣∣∣ 1A
dA

⊗ σB
)
. (29b)

C. Tsallis relative entropies

To close this section, let us revisit the Tsallis relative
entropies, originally proposed by Abe [53]. Here we adopt
the form

Dq(ρ||σ ) := Tr [ρq(lnq ρ − lnq σ )]

Tr ρ
= Tr (ρ − ρqσ 1−q )

(1 − q) Tr ρ
,

(30)

where q ∈ (0, 1) and lnq(x) := (x1−q − 1)/(1 − q). As
pointed out by Rastegin [56], the definition (30) can be
extended to q > 1 if ker σ ⊆ ker ρ. The normalization

guarantees that Dq(λρ||λσ ) = Dq(ρ||σ ) for any λ > 0 ∈ R.
When q → 1, we regain the von Neumann relative entropy.
The Tsallis relative entropies and the Rényi divergences share
several properties. Dq(ρ||σ ) is a continuous and positive
definite functional in ρ and σ for q ∈ (0, 1) ∪ (1,+∞).
In addition, the Tsallis relative entropies satisfy unitary
invariance for q ∈ (0, 1) ∪ (1,+∞), and both joint convexity
and DPI for α ∈ (0, 1) ∪ (1, 2] [54,56]. Most importantly,
they are pseudo-additive, that is,

Dq(ρA ⊗ ρB||σA ⊗ σB) = Dq(ρA||σA) + Dq(ρB||σB)

+ (q − 1)Dq(ρA||σA)Dq(ρB||σB). (31)

From Eq. (30) we find Dq(ψ ||1/d ) = dq−1Sq(1/d ), where

Sq(ρ) := −Tr (ρq lnq ρ) = − Tr (ρ − ρq)

(1 − q) Tr ρ
(32)

is the Tsallis entropy of ρ [51,52] and Sq(1/d ) = lnq d . Note
that, differently from the structure found for the previous
information theories, here the normalization relation is such
that Dq(ψ ||1/d ) �= Sq(1/d ). This suggests that it may be
convenient to “correct” either Dq or Sq by means of a scaling
factor like d1−q or dq−1. To preserve the fundamental status
of the information-ignorance complementarity, we then define
the Tsallis informational content as

Iq(ρ) := d1−qDq(ρ||1/d ) = lnq d − Sq(ρ). (33)

Similarly to what can be found in Ref. [55], let us define the
Tsallis conditional entropy as

Hq
A|B(ρ) := −Dq(ρ||1A ⊗ ρB). (34)

One may wonder whether − infσB Dq(ρ||1A ⊗ σB) would be
an admissible formulation as well. Although we believe there
is no reason why this proposal should be ruled out a priori, we
are not aware of any study supporting it. Following previous
rationales, we now look for a conditional information satisfy-
ing the information-ignorance relation Iq

A|B(ρ) + Hq
A|B(ρ) =

[Hq
A|B]max = Hq

A|B(1AdA
⊗ ρB) = lnq dA. We then find

Iq
A|B(ρ) := lnq dA − Hq

A|B(ρ). (35)

Using the above formulas, one shows that

Iq
A|B(ρ) = d1−q

A Dq
(
ρ

∣∣∣∣ 1A
dA

⊗ ρB
)
, (36)

which correctly reduces to the result (22) as q → 1. Up to the
scaling factor d1−q

A , proved necessary in the present scenario,
we note by Eqs. (22), (29a), and (36) that it is possible to
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maintain a unified picture for the definition of the conditional
informational of ρ in terms of its divergence with respect to
its full reality counterpart, 	AA′ (ρ) = 1A

dA
⊗ ρB. We refer the

reader to Table I for a summary of properties that are satisfied
by each divergence presented in this section.

IV. REALITY MONOTONES AND MEASURES

A. von Neumann reality measure

Through the relation RA(ρt ) − RA(ρ) = IE|S(υt ) −
IE|S(υ0), Axiom 1 links the emergence of realism
in the system S with the acquisition of information
by the environment E. Our strategy here consists of
starting with the uncorrelated state υ0 = ρ ⊗ |e0〉 〈e0|
and searching for a dynamics that yields maximum
reality for A. That is, we want to find a reduced state
ρt = Tr E(υt ) = 	A(ρ) such that R(ρt ) = Rmax

A as per Axiom
2, so that we can construct the A-reality measure RA(ρ) =
Rmax
A − �IE|S(t, 0). From the additivity [Eq. (16)] of the von

Neumann conditional information [Eq. (22)] we find

IE|S(υ0) = D
(
ρ ⊗ |e0〉 〈e0|

∣∣∣∣ ρ ⊗ 1E
dE

) = ln dE. (37)

Because there are no correlations in the initial state, the infor-
mational content of the environment is not conditioned to the
system. Now we consider a dynamics induced by a unitary
operator Ut satisfying Eq. (7) with ε = 1. Since Tr E(υt ) =
	A(ρ), we have IE|S(υt ) = D(Utυ0U

†
t ||	A(ρ) ⊗ 1E/dE). Us-

ing the fact that 	A(ρ) ⊗ 1E/dE does not evolve under the
action of Ut [see Theorem 1, Appendix B], we can freely apply
Ut onto it and then use the unitary invariance of the von Neu-
mann relative entropy to obtain IE|S(υt ) = D(υ0||	A(ρ) ⊗
1E/dE). Using additivity again, we get

IE|S(υt ) = ln dE + D[ρ||	A(ρ)]. (38)

From Eqs. (37) and (38) we have �IE|S(t, 0) = D[ρ||	A(ρ)]
and hence RA(ρ) = Rmax

A − D[ρ||	A(ρ)]. We now use the
fact that D[ρ||	A(ρ)] � ln dA (see Lemma 2, Appendix B),
to set Rmax

A = ln dA. This yields the reality quantifier

RA(ρ) = ln dA − D[ρ||	A(ρ)], (39)

which is such that RA(ρ) � 0 and RA[	A(ρ)] = ln dA, as
required by Axiom 2. A particularly interesting property of
the reality quantifier (39) is that it allows us to formally
state a complementarity relation. To see this, we can em-
ploy Lemmas 1 and 2 (see Appendix B) to demonstrate that
D[ρ||	A(ρ)] = S(	A(ρ)) − S(ρ) =: IA(ρ), where IA(ρ) is
the irreality (indefinite reality) of the observable A given the
state ρ, as originally proposed by BA [26]. We then have

RA(ρ) + IA(ρ) = ln dA. (40)

It becomes clear now the duality between irreality—a quan-
tum resource per se [33]—and reality, which can thus be
viewed as the amount of quantum resource that is destroyed
when an observable is measured.

Now we show that the quantifier (39) does satisfy
Definition 2, which characterizes it as a reality measure.
Axiom 1 was of course satisfied by construction. From DPI,
we can check that any quantum channel � that commutes
with 	A for every ρ, that is, �[	A(ρ)] = 	A[�(ρ)], will

never decrease the A reality. This includes monitoring maps
Mε

A of any intensity and the discarding of parts of the sys-
tem that do not include A. The Axioms 2 and 3(a) are
therefore satisfied. Along with the fact that 	A(ρ ⊗ �) =
	A(ρ) ⊗ �, additivity [Eq. (16)] guarantees that the quan-
tifier (39) satisfies the Axiom 3(b). Therefore, we have
RA[�(ρ)] � RA(ρ), confirming that realistic operations �

cannot make realism decrease. That Axiom 4 is respected
follows from Lemma 3 (Appendix B). At this point, it is
opportune to remark how quantum correlations influence the
realism uncertainty relation (Axiom 4). It has been shown
in Ref. [26] that IA(ρ) = IA(ρA) +DA(ρ), where DA(ρ) =
IA:B(ρ) − IA:B[	A(ρ)] is the (nonoptimized) quantum dis-
cord associated with the observable A and IA:B = D(ρ||ρA ⊗
ρB) is the mutual information. SinceDA(ρ) � minADA(ρ) ≡
DA(ρ), where DA stands for the one-sided quantum dis-
cord, one can conclude thatDX (ρ) +DY (ρ) � 2DA(ρ), with
equality holding, for instance, for product states. Combining
IA(ρA) = D[ρA||	A(ρA)] � 0 with Eq. (40), we can verify
that RA(ρ) � ln dA −DA(ρ) and

RX (ρ) + RY (ρ) � 2[ln dA − DA(ρ)]. (41)

This shows that quantum correlations, as measured by quan-
tum discord (entanglement for pure states) forbid X and Y
to be simultaneous elements of reality. Accordingly, using a
nuclear magnetic resonance platform and associating X and Y
with wave- and particle-like observables, researchers have re-
cently reported on an experiment where an entangled quantum
system behaves neither as a wave nor as a particle [32]. The
validity of Axiom 5 (mixing) comes immediately from joint
convexity [Eq. (17)]. With respect to Axiom 6 (additivity), we
should first note that RA(ρ⊗n) := ln dn

A − D(ρ⊗n||	A(ρ)⊗n),
that is, A is presumed to act over each copy of ρ. It then
follows from the identity (16) that RA(ρ⊗n) = nRA(ρ). Last
but not least, to verify the validity of Axiom 7 (flagging),
we start with RA(ρ f ) = ln dA − S[	A(ρ f )] + S(ρ f ) (see the
proof of Lemma 2, Appendix B), with the flagged state ρ f =∑

i piρi ⊗ |xi〉 〈xi|. The joint entropy theorem yields S(ρ f ) =
H ({pi}) + ∑

i piS(ρi ), where H ({pi}) = −∑
i pi ln pi is the

Shannon entropy of the distribution pi [57]. Direct calcu-
lations gives RA(ρ f ) = ∑

i piRA(ρi ) with RA(ρi ) = ln dA −
S[	A(ρi )] + S(ρi ), which proves the point. With all that, it be-
comes established that the quantifier (39) does indeed satisfy
Definition 2 and can hereafter be called a reality measure.

Referring back to Axiom 2, it is worth discussing how the
reality measure (39) changes upon monitoring maps [Eq. (5)].
First, because the reality measure respects Axiom 5 (mixing),
which ultimately is a statement of concavity, one can read-
ily show that RA[Mε

A(ρ)] � (1 − ε)RA(ρ) + ε RA[	A(ρ)].
Then by use of Eq. (40) we arrive at

RA[Mε
A(ρ)] − RA(ρ) � ε IA(ρ). (42)

This shows that a monitoring of A always increases the A
reality as long as there is a nonzero amount of A irreality [19].
Second and more surprising, it turns out that the monitoring
of an observable Y ∈ B(HA) never diminishes the reality of
another observable X ∈ B(HA), that is,

RX [Mε
Y (ρ)] − RX (ρ) � 0, (43)
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∀ ε ∈ [0, 1], whenever the X and Y eigenstates form MUBs.
This is one of the main results of Ref. [19], but the reader
can find a simpler alternative proof of it based on DPI and
mixing in Appendix B (see Lemma 4). Notice that the above
inequality generalizes Axiom 2.

Finally, it is worth noticing that the so-called local irreal-
ity, IA(ρA) = S(	A(ρA)) − S(ρA), which relates to irreality
through the formula IA(ρ) = IA(ρA) +DA(ρ), is nothing but
the measure known as relative entropy of coherence [64],
which has been acknowledged as a quantum resource [35].
This shows that quantum irrealism is induced by both types
of “quantumness,” namely, quantum coherence and quan-
tum correlations. In particular, in the absence of correlations,
one has IA(ρA ⊗ ρB) = IA(ρA), showing that coherence is
sufficient to preclude classical reality. Within the coherence
theory of multipartite settings, the irreality IA(ρ) turns out
to be equivalent to the concept known as quantum-incoherent
relative entropy [65]. These connections between quantum
irrealism and quantum coherence measures just reinforce that
IA(ρ) is a sensible quantifier of the former concept, for quan-
tum superposition (coherence) is the fundamental mechanism
responsible for the departure of the natural behavior from
classical reality.

B. Rényi reality monotones

We now derive a reality quantifier based on the nonopti-
mized conditional information (29a). Because this quantity
and the von Neumann relative entropy share properties such
as positive definiteness, unitary invariance, and additivity, we
can rigidly follow the steps of the precedent section, which
amounts to using Theorem 1 and Axiom 1, to directly propose
the Rényi reality quantifier

R
α↓
A (ρ) = ln dA − Dα[ρ||	A(ρ)], (44)

for α ∈ (0, 1) ∪ (1,+∞). Since limα→1 R
α↓
A (ρ) = RA(ρ) for

any ρ and A, we have here an evident generalization of (39)
within the Rényi quantum information theory. Inspired by the
results of the previous section, we have chosen Rmax

A = ln dA
to make the quantity (44) always nonnegative (in particular,
for α → 1).

As we show now, the quantifier (44) is a reality monotone
only in the restricted range α ∈ (0, 1). Axioms 2 and 3(a) are
satisfied whenever DPI is valid, in this case, for α ∈ (0, 1) ∪
(1, 2]. Axioms 3(b) and 4 are validated by additivity and
positive definiteness, respectively. Axiom 5, however, holds
only when Dα is jointly convex, that is, for α ∈ (0, 1). This
significantly restricts the domain wherein Rα

A can be termed a
reality monotone. Although additivity guarantees the Axiom 6
to be respected by the monotone (44), there is no answer yet as
to whether or not Dα satisfies flagging. Only in the affirmative
case could we regard Rα

A as a reality measure for α ∈ (0, 1).
Since the Rényi divergence is a monotonically increasing

real function of α, for all α > 0 and fixed density operators
[40], the reality measure (44) is a monotonically decreasing
real function of its parameter, meaning that

R
α↓
A (ρ) � R

β↓
A (ρ) (45)

for real nonnegative numbers α � β. This entails that if
R

β↓
A (ρ) = ln dA for some β � 0, meaning that ρ = 	A(ρ),

FIG. 1. Reality measure (dash-dotted green line) and Rényi
monotones R

α↓
A (ρε ) for any spin observable A of the first qubit of

a Werner state [Eq. (46)] as a function of the purity parameter ε (as
introduced in Example 1) for α = 1/8 (solid black line), α = 1/4
(dashed blue line), α = 1/2 (dotted red line), and α → 1 (dash-
dotted green line).

then R
α↓
A (ρ) = ln dA for every α � β. If, in addition, β → 1,

then all Rényi reality monotones will numerically reach the
maximum ln dA. Therefore, although Rényi reality monotones
with different parameters α disagree in value when applied to
nonreal observables [those for which R

α↓
A (ρ) < ln dA], they

do always agree about states of reality (see Example 2 and
respective Fig. 2 below).

One of the consequences of the positive definiteness
property—which does not hold when we use the min-relative
entropy—is that R

α↓
A (ρ) = 0 if and only if ρ = ∑

i piAi ⊗
ρB|i = 	A(ρ), which is a classical-quantum state with zero
one-sided quantum discord. This means that the lack of quan-
tum correlations is a condition necessary for the occurrence of
at least one element of reality. On the other hand, classical re-
ality manifests itself for the preparation ρ = (1A/dA) ⊗ ρB,
since in this case we have R

α↓
A (ρ) = ln dA for any A.

Next we present some case studies.
Example 1. Let ρε ∈ B(HA ⊗HB) be the Werner state

ρε = (1 − ε)14 + ε ψs, (46)

where ε ∈ [0, 1], ψs = |ψs〉 〈ψs|, and |ψs〉 = (|01〉 −
|10〉)/

√
2 is the singlet state. To assess the reality

degree of the spin observable A = û · �σ acting on
HA, with �σ = (σx, σy, σz ) being the Pauli vector,
we take the projectors A± = (1A ± û · �σ )/2 with
û = (cos θ sin φ, sin θ sin φ, cos φ) and then compute the
A-reality state 	A(ρε ) = A+ρεA+ + A−ρεA−. Because ρε is
rotationally invariant, it commutes with 	A(ρε ) and we have
D̃α[ρε ||	A(ρε )] = Dα[ρε ||	A(ρε )] for α ∈ (0, 1) ∪ (1,+∞).
Therefore, both the original and the sandwiched Rényi
divergences can be used within the range α ∈ (0, 1) to
provide a reality monotone for the Werner state. By direct
calculation of Rα↓

A (ρε ) = ln 2 − Dα[ρε ||	A(ρε )] we find

R
α↓
A (ρε ) = ln 2 − ln

[
(1 − ε)α + (1 + 3ε)α

4(1 + ε)α−1
+ 1 − ε

2

] 1
α−1

.

(47)

052218-9



ALEXANDRE C. ORTHEY JR. AND R. M. ANGELO PHYSICAL REVIEW A 105, 052218 (2022)

FIG. 2. Reality monotones R
α↓
A (ρμ) of the spin observable A = û · �σ , where û = (cos θ sin φ, sin θ sin φ, cos θ ), regarding the first qubit

of the ρμ state (49) as a function of μ as introduced in Example 2 for any θ and (a) φ = 0, (b) φ = π/4, and (c) φ = π/2 and for (from top to
bottom): α = 1/8 (solid black line), α = 1/4 (dashed blue line), α = 1/2 (dotted red line), and α → 1 (dash-dotted green line).

Note that the special cases

lim
α→0

R
α↓
A (ρε ) =

{
ln 2 if ε ∈ [0, 1) ,

0 if ε = 1,
(48a)

lim
α→+∞R

α↓
A (ρε ) = ln 2 − ln

(
1 + 3ε

1 + ε

)
(48b)

do not constitute reality monotones, since they do not
satisfy Axioms 2 and 5, respectively. See Appendix A for
the technical details on how to calculate the Rényi diver-
gences when α → 0 and +∞. As we can see in Fig. 1 ,
the monotonicity property (45) is verified. Also, since the
Rényi monotone is concave (due to the mixing axiom) and
R

α↓
A (ψs) = 0, then R

α↓
A (ρε ) � (1 − ε) ln 2. This result man-

ifests itself in Fig. 1 through the concavity of the curves, a
feature that is not respected by the convex function (48b).

Example 2. Let us consider now the one-parameter two-
qubit state ρμ ∈ B(HA ⊗HB) defined as

ρμ = 1
4 + μ

4 (σx ⊗ σx − σy ⊗ σy) + 2μ−1
4 σz ⊗ σz, (49)

where μ ∈ [0, 1]. This state is such that ρμ=1 = |ϕ〉 〈ϕ|,
with |ϕ〉 ≡ (|00〉 + |11〉)/

√
2, and ρμ=0 = (|01〉 〈01| +

|10〉 〈10|)/2. Unlike the previous example, for the observable
A = û · �σ it follows that ρμ does not always commute with
	A(ρμ). Indeed, our calculations show that Rα↓

A (ρμ) (whose
lengthy and nonenlightening expression will be omitted)
depends on the polar angle φ, as shown in Fig. 2 . Again, the
monotonicity relation (45) makes itself clear. Also, numerical
simulations show that in this case a reality monotone based
on D̃α for α ∈ [1/2, 1) behaves very similarly to what is
presented in Fig. 2.

Now we turn our attention to the optimized version (29b)
of the Rényi conditional information. Here the derivation of
a reality monotone becomes subtler because the optimiza-
tion process does not keep a unique and straightforward
connection with the self-contained dynamical scenario pre-
scribed by Axiom 1. Still, some potential candidates can
be proposed. Let us consider again the initial state υ0.
Plugged into Eq. (29b), it yields Iα↓

E|S(υ0) = infσS Dα (ρ ⊗
|e0〉 〈e0| ||σS ⊗ 1E/dE) = ln dE, where we have used addi-
tivity and infσS Dα (ρ||σS) = 0. By applying Ut , we find
Iα↓
E|S(υt ) = infσS Dα (υt ||σS ⊗ 1E/dE). As before, we assume

that Ut is such that ρt = Tr E(υt ) = 	A(ρ). With that, we

obtain R
α↑
A (ρt ) = Rmax

A = ln dA and, via Axiom 1,

R
α↑
A (ρ) = ln d − inf

σS
Dα

(
υt

∣∣∣∣ σS ⊗ 1E
dE

)
, (50)

where υt = Ut (ρ ⊗ |e0〉 〈e0|)U †
t , d = dAdE, and dE = dA.

That this quantifier is indeed a reality monotone for α ∈
(0, 1) (when R

α↓
A is too) is demonstrated in Appendix C.

A disadvantage of R
α↑
A in comparison with R

α↓
A is the

presence of the environment state |e0〉 and the observable-
dependent unitary operator Ut , whose formal structure is
provided in the proof of Theorem 1 (Appendix B). What
is more, the optimization process may be impracticable,
specially if the sandwiched Rényi divergence D̃α is used
instead of Dα . Interestingly, however, by use of the quan-
tum Sibson identity (see the supplemental material of
Ref. [66]), we obtain the closed form infσB Dα (ρ||1A ⊗
σB) = α

α−1 ln Tr B{[Tr A(ρα )]1/α}, which allows us to simplify
Eq. (50) as

R
α↑
A (ρ) = ln dA − α

α − 1
ln Tr A

{[
Tr E

(
υα

t

)]1/α}
, (51)

for α ∈ (0, 1). An example is opportune.
Example 3. Computing the monotone (51) for the Werner

state (46) yields the result Rα↑
A (ρε ) = ln 2 − α

α−1 ln χ , where

χ = 1 − ε

2
+

[
(1 + ε)α + (1 + 3ε)α

2α+1

]1/α

(52)

and α ∈ (0, 1). Figure 3 illustrates the slight differences be-
tween the monotones (51) and (44), which always respect
R

α↑
A (ρε ) � R

α↓
A (ρε ), as expected.

Roughly speaking, the divergences in Eq. (50) evaluate the
“minimum distance” (according to an “entropic metric”) be-
tween the time-evolved state υt and the product σS ⊗ 1E/dE.
One might argue, however, that it would be more reasonable
to run the optimization, at every instant of time, within a set
more closely related with the reduced state Tr E(υt ), which is
strictly confined to the dynamics imposed by Ut . Adhering
to this rationale, we start over by proposing the following
adaptation in the optimized conditional information (29b):

Iα↓
E|S(Utυ0U

†
t ) = inf

σS
Dα

[
Utυ0U

†
t

∣∣∣∣ Tr E(Utη0U
†
t ) ⊗ 1E

dE

]
.

(53)
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FIG. 3. Differences R
↑α
A (ρε ) − R

↓α
A (ρε ) for the Werner state

(46) as a function of the purity parameter ε ∈ (0, 1) and α ∈
(0, 1). The maximum difference, ∼0.0044, is reached when (α, ε) ∼
(0.24, 0.89).

where η0 = σS ⊗ |e0〉 〈e0| and σS ∈ B(HS). For t = 0 we see
that no significant change is implied to the original definition.
By use of additivity and υ0 = ρ ⊗ |e0〉 〈e0|, we easily obtain
Iα↓
E|S(υ0) = ln dE. Nevertheless, for t > 0 the optimization runs

only over the initial state σS. This preserves the dynamics
imposed by Ut and avoids any artificial freedom that would
otherwise be tested throughout the minimization process.
Noticing that Tr E(Utη0U

†
t ) = 	A(σS), we can employ Theo-

rem 1 (Appendix B), unitary invariance, and additivity to show
that Iα↓

E|S(υt ) = ln dE + infσS Dα[ρ||	A(σS)]. Employing Ax-

iom 1 with R̄α
A(ρt ) = ln dA gives

R̄α
A(ρ) = ln dA − inf

σS
Dα[ρ||	A(σS)]. (54)

This is exactly the result we would obtain by restricting the
optimization in Eq. (50) to the set of A-reality states, that is,
the one constituted by states satisfying σS = 	A(σS).

From the discussion conducted up until now, one
can conclude that R

α↓
A (ρ) � R̄α

A(ρ) � R
α↑
A (ρ). This is not

to say, however, that we have mathematical evidence
that R̄α

A and R
α↓
A are distinct quantities. On the con-

trary, we do have evidence that they are equal when
α → 1. To show this, we use Lemma 1 to obtain
D[ρ||	A(σS)] = D[ρ||	A(ρ)] + D[	A(ρ)||	A(σS)], which
gives infσS D[ρ||	A(σS)] = D[ρ||	A(ρ)]. This readily im-
plies that, R̄α

A = R
α↓
A as α → 1. Although we expect for the

definitive solution to this problem, we can safely announce the
Rényi reality monotone Rα

A(ρ) in the form

Rα
A ∈ {

R
α↓
A , R̄α

A,R
α↑
A

}
(55)

for α ∈ (0, 1), with their respective formulas (44), (54), and
(50), and R

α↓
A thus being a lower bound for the Rényi A reality.

Remark 1. Very similar arguments can be made toward the
establishment of reality quantifiers such as Rmin

A , R̃A, and
Rmax

A . Operationally, they can be directly obtained through
the replacement of Dα in Eq. (44) by the respective di-
vergences Dmin := limα→0 Dα , D̃α (the sandwiched Rényi

FIG. 4. Tsallis reality monotone R
q
A(ρε ) for any spin observable

A of the first qubit of a Werner state (46) as a function of the purity
parameter ε (as introduced in Example 1) for q = 1/2 (solid black
line), q → 1 (dashed blue line), q = 3/2 (dotted red line), and q = 2
(dash-dotted green line).

divergence), and Dmax := limα→+∞ D̃α . The reader can find
in Table I a summary of the properties that are satisfied by
these divergences and in Table II the axioms respected by
the corresponding reality quantifiers. It turns out, though, that
only R̃A works as a reality monotone for some values of α.

C. Tsallis reality monotones

Unlike the Rényi divergence (23), the Tsallis relative
entropy (30) is not additive on its entries. Yet we show
now that it is still possible to construct a reality mono-
tone in this information theory. Aiming at accounting for
Axiom 1, we employ Theorem 1, unitary invariance, and
definitions (30) and (36) to demonstrate that Iq

E|S(υt ) −
Iq
E|S(υ0) = Dq[ρ||	A(ρ)], where υ0 = ρ ⊗ |e0〉 〈e0|. Now, we

note that for ρ = |ψ〉 〈ψ | ⊗ 1B/dB and 	A(ψ ) = 1/dA we
find Dq[ρ||	A(ρ)] = dq−1

A Sq(1A/dA), which also manifests
the normalization issue. Selecting a unitary evolution such
that R

q
A(ρt ) = R

q
A[	A(ρ)] = lnq dA, we then propose the

quantifier

R
q
A(ρ) = lnq dA − d1−q

A Dq[ρ||	A(ρ)], (56)

which reduces to its von Neumann counterpart (39) as q →
1. Table I, along with the fact that Dq(ρ ⊗ �||σ ⊗ �) =
Dq(ρ||σ ), shows that likewise the Rényi divergences, Dq satis-
fies all properties necessary for one to validate Rq

A as a reality
monotone in the domain q ∈ (0, 2]. On the other hand, even if
flagging comes to eventually be proved for the Tsallis reality
monotone, the lack of additivity already guarantees that Rq

A
will never be classified as a reality measure. See Table II for
a summary of the axioms held by the Tsallis reality monotone
(56) with respect to the parameter q. Next, we present a brief
case study.

Example 4. Let us take again the Werner state (46). A
lengthy but direct calculation of (56) yields

R
q
A(ρε ) = lnq 2 − (1 − ε)q − 2(1 + ε)q + (1 + 3ε)q

4(q − 1) [2(1 + ε)]q−1
, (57)

for q ∈ (0, 1) ∪ (1, 2]. As in Example 1, due to the rotational
invariance of the singlet state it follows that Rq

A(ρε ) actually is
observable independent. See Fig. 4 for numerical illustrations
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TABLE II. Summary of the axioms satisfied by the A-reality quantifiers RA [Eq. (39)], Rα
A [Eq. (55)], Rmin

A , R̃α
A, Rmax

A (see Remark 1), and
R

q
A [Eq. (56)] built out of their corresponding divergences D, Dα , Dmin, D̃α , Dmax, and Dq, whose properties are listed in Table I. For some

specific parameter domains, our approach legitimates several reality monotones, namely, Rα
A, R̃α

A, and R
q
A, while only RA can be validated (up

to now) as a reality measure.

RA Rα
A Rmin

A R̃α
A Rmax

A R
q
A

Axiom 1 (information flow) � � � � � �
Axiom 2 (measurements) � � x � � �
Axiom 3(a) (part discard) � α ∈ (0, 1) ∪ (1, 2] � α ∈ [1/2, 1) ∪ (1, +∞) � q ∈ (0, 1) ∪ (1, 2]
Axiom 3(b) (uncorrelated part) � � � � � �
Axiom 4 (uncertainty relation) � � x � � �
Axiom 5 (mixing) � α ∈ (0, 1) � α ∈ [1/2, 1) x q ∈ (0, 1) ∪ (1, 2]
Axiom 6 (additivity) � � � � � x
Axiom 7 (flagging) � ? ? ? x ?

of the above formula. It can be checked that ∂qR
q
A(ρε ) � 0,

meaning that Rq
A(ρε ) � R

p
A(ρε ) for q � p.

V. CONCLUDING REMARKS

Inspired by a significant amount of theoretical and experi-
mental works regarding the emergence of classicality from the
quantum substratum [19,22–33], here we propose an axiom-
atization for the concept of quantum realism. This notion is
different from classical reality in a very fundamental manner,
namely, noncommuting observables cannot be simultaneous
elements of reality in general (Axiom 4). Our core premise,
implemented via Axiom 1, is the one permeating the afore-
mentioned literature: an observable A emerges as an element
of the physical reality only when another degree of freedom
encodes information about it. By its turn, Axiom 2 highlights
the role of measurements to quantum realism. In full con-
sonance with Axiom 1—for measurements can be viewed
as dynamical processes through which an apparatus get to
know about the measured observable—the second axiom can
yet be used, along with the Stinespring theorem [Eq. (7)],
as a necessary criterion for one to decide when a measure-
ment is concluded. The rationale is that we do not expect a
measurement to have been finished before the establishment
of reality, that is, before the instant t at which ρt = 	A(ρ)
and hence RA(ρt ) = Rmax

A . The role of large environments in
this respect then consists of ensuring the irreversibility of the
measurement. Axioms 3 and 5 complete the list of reasonable
assumptions for a functional RA(ρ) to be named a reality
monotone, while Axioms 6 and 7 are additional conditions
legitimating a reality measure. However debatable our list of
axioms may be, it furnishes an intuitive “metric independent”
characterization of quantum realism, thus framing the con-
cept in a formal structure. Moreover, as we have explicitly
demonstrated (see Table II for an overview), sensible reality
monotones and a reality measure can be built by use of infor-
mation theoretic quantities associated with the von Neumann,
Rényi, and Tsallis entropies.

At least two technical questions are left open for future
research. The first one concerns the completion of the last
line of Table II. Indeed, the concept of flagging has been
introduced only recently, and formal results in this regard are
still lacking for the Rényi and Tsallis divergences. Second,
it would be useful, mainly for operational purposes, to have

a picture of whether “metrics” other than the entropic ones,
such as norm-based quantifiers, can be used as sensible reality
monotones. Finally, with regard to resource theories, although
some evidence has been put forward suggesting that the A
irreality, IA(ρ) = ln dA − RA(ρ), can be viewed as a quan-
tum resource [33], it would be interesting to have at hand a
concrete information task wherein this concept configures a
clear advantage in relation to contexts involving the A-reality
state 	A(ρ).
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APPENDIX A: SPECIAL CASES OF THE RÉNYI
DIVERGENCES

The min-relative entropy, as defined by Datta [38], is
the limit of the original Rényi divergence as α → 0. Oper-
ationally, it comes as follows. Consider the spectral decom-
positions ρ = ∑

i ri |λi〉 〈λi| and σ = ∑
j s j |ν j〉 〈ν j |. Since

f (ρ) = ∑
i f (ri ) |λi〉 〈λi|, then we have ρ0 = ∑

i: ri>0 |λi〉 〈λi|,
which is called the projection onto the support of ρ. Thus,
the min-relative entropy is given by D0(ρ||σ ) = − ln Tr ρ0σ .
Explicitly, we have

Dα→0(ρ||σ ) = − ln
∑

j

∑
i: ri>0

s j | 〈λi|ν j〉 |2. (A1)

Note that, the min-relative entropy does not satisfy continuity
nor positive definiteness in ρ and σ , a feature that prevents it
to satisfy Axiom 2. One special case of the sandwiched Rényi
divergence is the collision relative entropy, which was intro-
duced in Ref. [37] in its conditional form as a generalization
of the classical conditional collision entropy to the quantum
theory. It is obtained when we choose α = 2 in (24):

D̃2(ρ||σ ) = ln Tr
[(

σ− 1
4 ρσ− 1

4
)2]

. (A2)
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Another special case of D̃α is obtained as α → +∞, which is
called max-relative entropy [38]:

D̃α→+∞(ρ||σ ) = ln
∣∣∣∣σ− 1

2 ρσ− 1
2

∣∣∣∣
∞. (A3)

Here the operator norm ||�||∞ is given by the maximum
eigenvalue of a density state �.

APPENDIX B: SUBSIDIARY RESULTS

The results presented in this section refers to states such
that ρ ∈ B(HS), with HS = HA ⊗HB, and the unrevealed
measurements map (4).

Theorem 1. Let the unitary evolution Ut be defined by the
Stinespring dilation theorem (7) with ε = 1. It follows that Ut

commutes with 	A(ρ) ⊗ 1E/dE, that is,

Ut
[
	A(ρ) ⊗ 1E

dE

]
U †

t = 	A(ρ) ⊗ 1E
dE

. (B1)

Proof. Take the joint state υ0 = ρ ⊗ |e0〉 〈e0| ∈
B(HS ⊗HE), with dE = dimHE = dimHA. Write the
unitary operator

Ut =
dE−1∑
k=0

Pk ⊗ Tk, (B2)

where Pk = Ak ⊗ 1B is a subspace projector and Tk is a unitary
operator satisfying TkT †

k = T †
k Tk = 1E and 〈e0|T †

j Ti|e0〉 =
δi j . An example of this structure is provided by the
shift operator Tk |ei〉 = |ei+k〉 in the cyclic space with
the boundary condition T1 |edE−1〉 = |edE〉 = |e0〉. Its matrix
representation is given by a power of the generalized Pauli
operator σx,

Tk
·≡

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎠

k

. (B3)

Notice that TiTj = Ti+ j , which renders UtUt = ∑
i Pi ⊗ T2i.

One has υt = Utυ0U
†
t = ∑

i, j PiρPj ⊗ Ti |e0〉 〈e0| T †
j , which

correctly reproduces the Stinespring relation

Tr E(υt ) =
∑

i j

PiρPj 〈e0|T †
j Ti|e0〉 = 	A(ρ). (B4)

The unitary operator (B2) is unique up to a unitary operation
over the environment. Finally, by direct application of Ut we
have Ut (	A(ρ) ⊗ 1E

dE
)U †

t = ∑
ki j PiPkρPkPj ⊗ Ti(1E/dE)T †

j ,
which yields the desired result since Pi is a projector and Ti

is unitary.
As a corollary we have 	A[	A(ρ)] = 	A(ρ). This shows

that once a state of reality is established by the conjugation of
a unitary evolution and a discard, then repeating this operation
is innocuous, as maximum reality cannot be further enhanced.

Lemma 1. For any function f , any quantum state
ρ, and any observable A, one has Tr {ρ f [	A(ρ)]} =
Tr {	A(ρ) f [	A(ρ)]}.

Proof. See the Appendix of Ref. [67].
Lemma 2. Given the reality state 	A(ρ) = ∑

i piAi ⊗ ρB|i,
it holds that D[ρ||	A(ρ)] � S[	A(ρA)] � ln dA.

Proof. From Lemma 1 one can straightforwardly show that
D[ρ||	A(ρ)] = S[	A(ρ)] − S(ρ). Since S(ρ) �

∑
i piS(ρB|i )

(see Lemma 2 of Ref. [68]), we can employ the joint en-
tropy theorem S[	A(ρ)] = H ({pi}) + ∑

i piS(ρB|i ) [57], with
H ({pi}) being the Shannon entropy of the distribution pi, to
finally obtain D[ρ||	A(ρ)] � H ({pi}) = S[	A(ρA)] � ln dA.

Lemma 3. Consider generic observables X,Y ∈ B(HA)
and the von Neumann reality quantifier (39). It follows that
RX (ρ) + RY (ρ) � 2 ln dA, with equality iff ρ = 	X (ρ) =
	Y (ρ).

Proof. By Eqs. (14) and (39) we see that the main claim is
readily satisfied and that the equality holds iff ρ = 	X (ρ) =
	Y (ρ), meaning that ρ must be a state of simultaneous reality
for X and Y . This will certainly be the case when [X,Y ] =
0, for X and Y will share the same set of eigenstates so that
	X = 	Y , but also for ρ = (1A/dA) ⊗ ρB, as can be checked
by direct calculation.

Note that this proof is valid also for a reality quantifier that
is based on any divergence measure that respects the positive
definiteness property [Eq. (14)].

Lemma 4. Consider observables X,Y ∈ B(HA) and the
von Neumann reality quantifier (39). If 	XY = 	Y X , then the
monitoring of Y never decreases the reality of X , that is,

� := RX [Mε
Y (ρ)] − RX (ρ) � 0, ∀ε ∈ [0, 1]. (B5)

Proof. In light of Axiom 5 (mixing) and definition (5),
we find � � ε{RX [	Y (ρ)] − RX (ρ)}, which can be explic-
itly expressed as � � ε{D[ρ||	X (ρ)} − D[	Y (ρ)||	XY (ρ)]],
where 	XY (ρ) ≡ 	X 	Y (ρ). Using the hypothesis and DPI
we can write D[	Y (ρ)||	XY (ρ)] = D[	Y (ρ)||	Y X (ρ)] �
D[ρ||	X (ρ)], which proves that � � 0 ∀ ε ∈ [0, 1], as de-
sired. It is worth noticing that, apart from the trivial scenario
where [X,Y ] = 0, the hypothesis is true also when X and Y
are maximally noncommuting, that is, when their eigenstates
form MUBs satisfying | 〈xi|y j〉 | = 1/

√
dA.

APPENDIX C: PROOF THAT R
α↑
A IS A REALITY

MONOTONE

By construction, Rα↑
A is in harmony with Axiom 1. We

now prove that Rα↑
A (ρ) = Rmax iff ρ = 	A(ρ), as per Axiom

2. The claim is true iff Dα (υt ||σ̄S ⊗ 1E/dE) = ln dE, where
σ̄S is the solution for the minimization and υt = Ut (ρ ⊗
|e0〉 〈e0|)U †

t . Choosing σ̄S = 	A(σ̄S) (an A-reality state),
one can apply Theorem 1 and unitary invariance to obtain
Dα[ρ||	A(σ̄S)] = 0, which can be reached iff ρ = 	A(σ̄S),
meaning that ρ is an A-reality state satisfying 	A(ρ) = ρ.
Axioms 2 and 3(a) are satisfied directly from DPI and the
fact that U ε

t in Eq. (7) commutes with Mε
A and Tr X for

HX ⊆ HB. Provided the optimization is made over σS ⊗ � ∈
B(HS ⊗H�), Axiom 3(b) is trivially satisfied via the addi-
tivity property. Also, because Axiom 2 applies, we can use the
arguments employed for the proof of Lemma 3 to show that
Axiom 4 is also true for Rα↑

A . Finally, the validity of Axiom
5 is immediately verified by the convexity of the conditional
information (29b). Although additivity guarantees the agree-
ment with Axiom 6, the flagging property has not yet been
demonstrated for the quantity (29b), which precludes Rα↑

A to
be promoted to the status of a reality measure for α ∈ (0, 1).
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