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Scaling law for a buckled elastic filament in a shear flow
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We analyze the three-dimensional (3D) buckling of an elastic filament in a shear flow of a viscous fluid at low
Reynolds number and high Péclet number. We apply the Euler-Bernoulli beam (elastica) theoretical model. We
show the universal character of the full 3D spectral problem for a small perturbation of a thin filament from a
straight position of arbitrary orientation. We use the eigenvalues and eigenfunctions for the linearized elastica
equation in the shear plane, found earlier by Liu et al. [Phys. Rev. Fluids 9, 014101 (2024)] with the Chebyshev
spectral collocation method, to solve the full 3D eigenproblem. We provide a simple analytic approximation
of the eigenfunctions, represented as Gaussian wave packets. As the main result of the paper, we derive the
square-root dependence of the eigenfunction wave number on the parameter χ̃ = −η sin 2φ sin2 θ , where η is
the elastoviscous number and the filament orientation is determined by the zenith angle θ with respect to the
vorticity direction and the azimuthal angle φ relative to the flow direction. We also compare the eigenfunctions
with shapes of slightly buckled elastic filaments with a non-negligible thickness with the same Young’s modulus,
using the bead model and performing numerical simulations with the precise HYDROMULTIPOLE numerical codes.
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I. INTRODUCTION

The dynamics of elastic filaments in low-Reynolds-number
fluid flows were recently intensively investigated [1–4]. The
growing interest is related to the progress of experimental
techniques in tracing the behavior of biological micro-objects
such as the flagella of bacteria or algae, chains of diatoms,
actin, and cilia [5–13]. Moreover, the development of modern
technology has led to the production of elastic nano- and mi-
crofibers with controlled length, width, and Young’s modulus
[14–16] with wide possibilities for their application.

Therefore, the motion and typical shape deformations
of elastic fibers have been studied in various fluid flows
[12,17–25], with a special interest in the buckling instability
[10,26–33]. In particular, the buckling of elastic filaments in
a shear flow at low Reynolds number has been extensively
investigated in the literature. In Refs. [34,35], experiments
were performed, and the minimum value of the shear rate
at which thin filaments can buckle was evaluated from the
Euler equation. In Ref. [36], the buckling instability of thin
elastic filaments was demonstrated by solving the spectral
problem for the Euler-Bernoulli beam confined to the shear
plane (i.e., the plane spanned by the flow and the flow gradient
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directions). In Ref. [37], the spectral problem with perturba-
tions out of the shear plane was analyzed, and it was shown
that it is the same as in the compressional flow, as studied ear-
lier in Ref. [38]. In Ref. [39], the three-dimensional buckling
of thick fibers in a shear flow was studied experimentally and
numerically, and it was shown that the buckling is limited to
short times only.

In this work, we investigate the buckling instability of an
elastic slender filament in the shear flow. We linearize the elas-
tica model [36,40] around an arbitrary orientation, solve the
full three-dimensional spectral problem, and derive a scaling
law for the eigenvalues and eigenfunctions. We also compare
the results with our numerical simulations of flexible fibers
with a nonzero thickness.

The plan of this paper is as follows. In Sec. II, the system is
introduced. The elastica equation for a slender elastic filament
in shear flow is linearized. The fully three-dimensional (3D)
spectral problem for the perturbation growth is reduced to
solving a single equation with just one parameter, χ̃ . The
eigenvalues and eigenfunctions are presented. Section III con-
tains a simple analytical approximation of the eigenfunctions
as Gaussian wave packets that is valid for large values of χ̃

(i.e., for highly flexible filaments). Within this approxima-
tion, it is shown that the characteristic wave number of the
most unstable eigenfunctions scales as

√
χ̃ . In Sec. IV, the

dependence of the eigenfunctions on χ̃ is analyzed. The fast
Fourier transform of the filament local curvature is evaluated
for the elastica’s most unstable eigenfunctions. Conclusions
are presented in Sec. V. In Appendix A, the asymptotic expan-
sion is applied to provide the scaling of the eigenvalues and
eigenfunctions in a range of very small values of the arclength
s. In Appendix B, the difference between the wave number
based on shape and its curvature is estimated. In Appendix C,
the thickness of an elastic filament is taken into account within
the bead model and the multipole method, implemented in
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FIG. 1. A schematic of a slender filament in a shear flow.

the HYDROMULTIPOLE numerical code [41,42]. The numeri-
cal simulations are performed, and the shapes of the slightly
buckled filament are shown and compared with the elastica
eigenfunctions.

II. EULER-BERNOULLI BEAM THEORY FOR AN
ELASTIC FILAMENT IN A SHEAR FLOW

A. Stability of a small 3D perturbation from a straight
configuration

We consider an elastic filament of length L and circular
cross section of diameter d under compression of a shear flow

v0 = (γ̇ y, 0, 0) (1)

of a viscous fluid with dynamic viscosity μ. The Reynolds
number Re � 1, and the Péclet number Pe � 1. We assume
that the filament aspect ratio is much smaller than unity,
d/L � 1. The elastic forces along the filament are approx-
imated with the use of the Euler-Bernoulli beam theory, as
in [2,12,36–38,40,43]. The dimensionless evolution equation,
based on resistive force theory [44–46], reads

η(2I − xsxs) · [xt − U (x)] = [T (s, t )xs]s − xssss, (2)

where s ∈ [−1/2, 1/2] is the arclength along the filament
centerline, x(s, t ) is the position of a filament centerline (both
normalized by the filament length L), t is time normalized
by 1/γ̇ , U = v0/(γ̇ L), T (s, t ) is the tension, the filament is
inextensible (i.e., xs · xs = 1), and

η = 2πμγ̇ L4

EI ln(2L/d )
(3)

is the elastoviscous number, where E is Young’s modulus and
I = πd4/64 is the area moment of inertia (see [36]). The elas-
toviscous number η estimates the ratio of the hydrodynamic to
bending forces. Within the adopted model (2), the dynamics of
the filament depends on the aspect ratio and bending stiffness
only through η.

As illustrated in Fig. 1, the fiber is almost straight at an
arbitrary orientation n, determined by the spherical angles

0 < θ < π and π/2 < φ < π (with the zenith axis along z).
There are small perturbations u and v along two unit vectors
perpendicular to n and to each other: λi in the shear plane xy
and λo out of the shear plane, respectively. Therefore,

x = sn + uλi + vλo. (4)

Using the angles, the unit vectors are expressed as

n = (cos φ sin θ, sin φ sin θ, cos θ ), (5)

λi = (− sin φ, cos φ, 0), (6)

λo = (− cos φ cos θ,− sin φ cos θ, sin θ ). (7)

Next, following Ref. [37], we linearize the elastica equa-
tion (2) around the straight shape at the orientation n. In
the zeroth order, the Jeffery equations are recovered [37]. In
the first order, the following system of coupled differential
equations for the small perturbations u and v is obtained [37]:

ussss + 2ηut + η sin(2φ)u + η sin(2φ) sin2 θsus

+ η

4
sin(2φ) sin2θ

(
s2 − 1

4

)
uss = 0, (8)

vssss + 2ηvt − η sin(2φ) cos2θv + 2η cos(2φ) cos θu

+ η sin(2φ) sin2θsvs + η

4
sin(2φ) sin2θ

(
s2 − 1

4

)
vss = 0.

(9)

The filament is infinitely thin, so to leading order, the edges
do not affect the flow. Therefore, the free boundary conditions
at the filament ends are expected [36,37],

uss = usss = vss = vsss = 0 at s = ± 1
2 . (10)

Then, the spectral method is applied for an arbitrary orien-
tation n, assuming that [37]

[u, v] = [�u(s),�v (s)] exp(σ t ), (11)

with �u(s) and �v (s) being the real in-plane and out-of-plane
time-independent shapes and σ being the complex number.

From the linearized equations (8) and (9), the following
3D set of coupled equations for the eigenfunctions �u(s) and
�v (s) is derived [37]:

2ησ

[
�u

�v

]
=

[
αÎ + L̂ 0

β α′Î + L̂

][
�u

�v

]

=
[

α�u + L̂�u

β�u + α′�v + L̂�v

]
, (12)

L̂(χ̃ ) = − ∂4

∂s4
+ χ̃

[
1

4

(
s2 − 1

4

)
∂2

∂s2
+ s

∂

∂s

]
, (13)

with Î being the identity operator and

χ̃ = −η sin(2φ) sin2 θ, (14)

α = −η sin(2φ), (15)

α′ = η sin(2φ) cos2 θ, (16)

β = −2η cos(2φ) cos θ. (17)
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B. Universal character of the spectrum and the eigenfunctions

Equations (12) for the in-plane and out-of-plane perturba-
tions are coupled to each other for β �= 0 and decoupled from
each other for β = 0. Generically, there are two cases. There-
fore, before giving a general solution to Eq. (12) with β �= 0,
we first consider the simpler case with β = 0. It corresponds
to θ = π/2 (i.e., the filament in the shear plane xy, discussed
previously in Ref. [37]) or φ = π/4 or 3π/4 (not discussed
so far). For β = 0, the in-plane and out-of-plane perturbations
are not coupled, and the set of Eq. (12) has the form

2η

[
σu1�u1

σv1�v1

]
=

[
α�u1 + L̂�u1

α′�v1 + L̂�v1

]
, (18)

with separate eigenvalues σu1 and σv1 and separate eigenfunc-
tions �u1 and �v1.

We recall that after adding to an operator L̂ the identity
operator multiplied by any number γ , the eigenvectors �1

remain the same, and γ is added to the eigenvalues λ,1

(L̂ + γ Î)�1 = (λ + γ )�1. (19)

Therefore, we can set �v1 = �u1, and then Eq. (18) can be
rewritten as

(2ησu1 − α)�u1 = L̂�u1 = (2ησv1 − α′)�u1. (20)

In summary, for β = 0, the sets of in-plane and out-
of-plane eigenfunctions are the same, and the in-plane and
out-of-plane eigenvalues are shifted in relation to each other
by α′ − α,

σv1 =
{

σu1 + sin(2φ)
2 for θ = π/2,

σu1 ± (cos2θ+1)
2 for φ = π/4, 3π/4.

(21)

For the unperturbed filament in the shear plane xy, i.e.,
for θ = π/2, the eigenproblem was discussed in Ref. [37].
Reference [37] also pointed out that for θ = π/2, the eigen-
problem in the shear flow, given by Eq. (18), is the same as
that in Ref. [38] for the compressional flow if the parameters
are matched to each other accordingly.

However, the full 3D eigenproblem (12) and (13), with
coupling between the in-plane and out-of-plane perturbations
(i.e., for β �= 0), has not been studied so far.

Therefore, now we move on to the 3D system of Eq. (12)
for β �= 0. In this case, Eq. (12) are coupled with each other.
Moreover, the equations for the in-plane perturbation in the
systems of equations (18) and (12) are identical, and therefore,
σ ≡ σu1, and �u = �u1. Then we check whether a δ exists
such that �u and �v = δ�u are the solution of Eq. (12),
which, after applying Eq. (20), take the form

2ησu1

[
�u1

δ�u1

]
=

[
(α + L̂)�u1

β�u1 + 2ησv1δ�u1

]
. (22)

The second equation gives the following result for δ:

δ = β

2ησu1 − 2ησv1
= β

α − α′ = 2 cos θ

tan(2φ)(1 + cos2 θ )
.

(23)

1By definition, �1 is an eigenvector of an operator L for an eigen-
value λ iff L�1 = λ�1.

Therefore, for a given eigenvalue 2ησ of the operator αÎ + L̂,
the shape of the out-of-plane eigenfunction �v is the same as
the shape of the in-plane eigenfunction �u with the rescaled
amplitude.

C. Discussion of the in-plane and out-of-plane perturbations

We showed that for the unperturbed orientation of the
fiber out of the shear plane [more specifically, for β ≡
−2η cos(2φ) cos θ �= 0], the buckling instability threshold for
the growth of both in-plane and out-of-plane perturbations is
the same: χ̃c = 153.2, and both perturbations increase with
time at the same rate, determined by the same eigenvalue σ .

For β = 0 (i.e., when the unperturbed fiber orientation is
restricted to the shear plane), the in-plane and out-of-plane
perturbations behave differently. The in-plane perturbations
were analyzed in Ref. [36], and the calculated threshold χ̃c

for the instability and the growth rate σ coincide with our
findings for β �= 0. However, for β = 0, the buckling thresh-
old for the out-of-plane perturbations is larger than for the
in-plane ones, χ̃ ′

c = 221.2, and the growth rate is slower,
σ ′ = σ − χ̃/(2η) [37].

D. The basic spectral problem

We now point out that with the explicit form (13) of the
operator L̂, the spectral equation (22) depends only on a single
parameter, χ̃ ,{

− ∂4

∂s4
+ χ̃

[
1

4

(
s2 − 1

4

)
∂2

∂s2
+ s

∂

∂s

]
− χ̃ σ̃

}
�u1 = 0,

(24)
where

σ̃ = −2(σ + sin(2φ)/2)

sin(2φ) sin2 θ
(25)

and we use the free boundary conditions ∂2�u1
∂s2 = ∂3�u1

∂s3 = 0
for s = ±1/2 [see Eq. (10)].

Equation (24) is identical to the spectral equation for the
elastic fiber in a shear flow with only the in-plane perturba-
tions, solved in Ref. [36], and the spectral equation for the
elastic fiber in the compressional flow, solved in Ref. [38], if
the parameters are matched accordingly.

The eigenproblem (24) and (25) was solved with the
Chebyshev collocation method, as described in Refs. [37,47].

The dependence of a few consecutive larger (including
the largest) values of σ̃ on χ̃ is shown in Fig. 2, with an
enlargement given in Fig. 3(a). Red and blue denote odd [i.e.,
�(s) = −�(−s)] and even [i.e., �(s) = �(−s)] eigenfunc-
tions, respectively (compare with the eigenvalues presented in
Refs. [36–38]).

In Fig. 3(b), the local curvature of the eigenfunction cor-
responding to the largest σ̃ is also presented with the use of
different colors. To evaluate it, we first change the normal-
ization of the eigenfunction, by introducing �̃(s) = �(s) ×
10−2. Such a choice takes into account that the perturbation
is much smaller than unity, in agreement with the first-order
expansion. The local curvature is defined in the standard
way, κ (s) = |�̃′′

u1(s)|/{1 + [�̃′
u1(s)]2}3/2, approximated for

small deformations as |�̃′′
u1(s)|. Next, κ (s) is divided by

its maximum value along the filament, i.e., by maxs κ (s).
Discontinuities, which are visible in Fig. 3(b), appear at the
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FIG. 2. Solution of the spectral problem (24), taking into account
no more than the eight most unstable eigenvalues. Eigenvalues for
odd (red) and even (blue) eigenfunctions are shown.

same values of χ̃ for which blue and red lines cross each
other in the Fig. 3(a), which means that the parity of the
most unstable eigenfunction is changed. Such a coupling of
the largest odd and the largest even eigenfunctions motivates
us to investigate, in Sec. IV B, both of them as continuous
functions of χ̃ , similar to what was done in Ref. [38] for the
compressional flow.

Figure 2 illustrates that in most cases, the last and next to
last eigenvalues correspond to eigenfunctions of a different
parity, and therefore, the spectrum degenerates at their cross-
ing point. However, sometimes it happens that the last and
next to last eigenvalues correspond to eigenfunctions of the
same parity, and they tend to coincide when χ̃ goes to a certain
limiting value (e.g., such a branching point is visible in Fig. 2
at χ̃ ≈ 5130).

Those values of 0 � χ̃ � 104 which are the crossing or
branching points described above correspond to the borders
between the consecutive “modes” shown in Fig. 2 of Ref. [36]
for elastica in the shear flow.

The two most unstable eigenfunctions for four different
values of χ̃ are shown in Fig. 4. With the increase of χ̃ , the
characteristic wavelength of the oscillations decreases, and the
damping of the oscillations is localized closer to s = 0.

III. APPROXIMATE ANALYTICAL SOLUTION
AT LARGE VALUES OF χ̃

In this section, we propose a simple analytical approxima-
tion of the most unstable eigenvalues and eigenfunctions in
Eq. (24) for elastica in a shear flow. We assume that a hydro-
dynamic forcing dominates the internal bending stiffness of a
filament and the elastoviscous number η is large. We restrict

FIG. 3. (a) An enlargement of Fig. 2. (b) The most unstable
eigenfunctions. The colors indicate κ (s)/ maxs κ (s), the local cur-
vature of �u1(s). The range of χ̃ in both panels is the same.

FIG. 4. The eigenfunctions �(s) corresponding to the two most
unstable odd and even eigenvalues for four different values of χ̃ .
Values of χ̃ and σ̃ are indicated.
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FIG. 5. The eigenfunction � as a function of s. Here � corresponds to the most unstable eigenvalue for χ̃ = 5.4 × 104. Data depicted by
blue dots are computed using the Chebyshev collocation method, and the red line displays the fitted shape of the Gaussian wave packet.

ourselves to angles θ and φ such that χ̃ = −η sin(2φ) sin2 θ

is also large. We focus on χ̃ � 2.5 × 104 and correspondingly
larger values of η 2.

A. Approximation of the shape

An example of the most unstable eigenfunction acquired
numerically with the Chebyshev spectral collocation method,
as described in Refs. [37,47], is presented in Fig. 5 (blue dots).
The numerically received profile of the elastica resembles the
Gaussian wave packet. In general, eigenmodes �u1 are either
even or odd functions of the argument s. Thus, we propose an
approximate solution �u1 ≈ � in the form

�(s) = sin(ks) eξs2
or �(s) = cos(ks) eξs2

, (26)

with ξ < 0. This choice is convenient thanks to the evident
physical interpretation of parameters k and ξ as a wave num-
ber and a measure of dispersion, respectively. Above k is
normalized by 1/L, and in turn, ξ is measured in units of
1/L2, where L is the length of the fiber. We fit the expressions
(26) to the numerical data obtained via the spectral approach

2Large values of the elastoviscous number are realistic from the
point of view of experiments. For example, for actin with a diameter
of 8 nm studied in Ref. [12], values of η ≈ 2 × 106 were achieved
for actin length L ≈ 20.5 µm.

for a wide range of values of χ̃ � 6 × 104. An example of
the fit for χ̃ = 5.4 × 104 is shown in Fig. 5 by the red line.
Figure 5 illustrates that discrepancies between the exact shape
and its analytical approximation are minuscule, although per-
ceptible close to the ends of the filament. A similar agreement
is observed for the whole range of values 2.5 × 104 � χ̃ �
6 × 104.

B. Scaling of the most unstable eigenfunctions
and eigenvalues with χ̃

Taking advantage of the aforementioned fitting procedure
for the most unstable eigenfunctions, we get k and ξ as a func-
tion of χ̃ using data obtained numerically from the Chebyshev
collocation method (see [37,47]) for χ̃ up to 6.0 × 104. We
present the results in Fig. 6(a). We notice that for large values
of χ̃ , both k and ξ show a linear dependence on χ̃1/2. The
fitting parameters k and ξ are independent. The resulting fits
for the range χ̃1/2 > 160 are

k = K1χ̃
1/2 + K2, (27)

ξ = M1χ̃
1/2 + M2, (28)

with K1 = 0.176 ± 0.001, K2 = −0.249 ± 0.003, M1 =
−0.124 ± 0.001, and M2 = 0.417 ± 0.034.

In Fig. 2, the most unstable eigenvalue σ̃ seems to be linear
in χ̃ for large values of χ̃ . Further examination, illustrated in

FIG. 6. Scaling of k, ξ , and σ̃ with χ̃ . Dots: parameters of the Gaussian wave packet approximation of the eigenfunctions with the most
unstable eigenvalue σ̃ , determined numerically from the Chebyshev collocation method. Dashed lines: fits from Eqs. (27)–(29). (a) The wave
number k (blue) and the measure of dispersion ξ (red) vs χ̃1/2. (b) Dependence of the most unstable eigenvalue σ̃ on χ̃ (black dots and green
dashed line).
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FIG. 7. Local curvature of an elastic filament, normalized by its
maximum value along the filament and shown as different colors.
Theoretical results for the most unstable (a) even and (b) odd eigen-
functions for the linearized elastica equations.

Fig. 6(b), leads to the following fit for χ̃1/2 > 200:

σ̃ = S1χ̃ + S2χ̃
1/2 + S3, (29)

where S1 = (9.765 ± 0.001) × 10−4, S2 = −(3.124 ± 0.004)
× 10−2, and S3 = −0.314 ± 0.031.

Motivation for the scaling (26)–(29) based on the asymp-
totic expansion is presented in Appendix A. The results
obtained from the asymptotic expansion lead to the scaling
[see Eq. (A4)]

k =
√

2

8
χ̃1/2 + O(1), (30)

ξ = −1

8
χ̃1/2 + O(1), (31)

σ̃ = 1

210
χ̃ − 1

25
χ̃1/2 + O(1), (32)

which correctly reproduces the slopes of the curves in Fig. 6.
The reasoning is limited to values of the arclength s close to
the middle of the filament.

IV. THE ELASTICA EIGENFUNCTIONS

A. Local curvature

To analyze the eigenfunctions for the linearized elastica
equation, we use the local curvature κ (s)/ maxs κ (s), defined
in Sec. II D. The reason for this choice is that the local curva-
ture is related to the fiber bending energy.

For a wide range of large values of χ̃ , the local curvature is
shown by different colors in Fig. 7 separately for the even and
odd most unstable eigenfunctions. We observe an increasing
number of local maxima for an increasing value of χ̃ , as in

FIG. 8. Wave number k resulting from the fast Fourier transform
(FFT) of the local curvature of the elastica most unstable (a) even and
(b) odd eigenfunctions vs

√
χ̃ . The colors indicate the FFT intensity,

normalized by its maximum value along the filament. Red line: the
scaling (B5) of the local curvature of the approximate Gaussian wave
packet, α1 ≈

√
2

8

√
χ̃ + 5

√
2

2 , as a function of
√

χ̃ .

Fig. 12 from Ref. [39]. This tendency will be analyzed more
precisely in the next section.

B. Scaling of the characteristic wave number

We now perform the fast Fourier transform of the local
curvature of the most unstable even and odd eigenfunctions,
determined numerically with the Chebyshev spectral collo-
cation method [37,47]. We plot the resulting wave number
k in Fig. 8, now as a function of

√
χ̃ , in a range of χ̃ � 1.

The colors indicate the intensity of the fast Fourier transform
(FFT), divided by its maximum value. For large values of χ̃ ,
we find that k is a linear function of

√
χ̃ .

It seems straightforward to compare this linear relation
with the dependence on

√
χ̃ of the wave vector k in the

Gaussian wave packet approximation to the most unstable
even and odd eigenvalues, determined in Eqs. (27) and (A4).

However, we should keep in mind that there is a small dif-
ference between the dominant wave numbers for κ (s) and the
corresponding eigenfunction �(s). This difference, discussed
in Appendix B, is approximated as a shift up by 2

√
2 from the

wave number in Eq. (A4), corresponding to the Gaussian wave
packet approximation, to the wave number in Eq. (B5), corre-
sponding to the local curvature of the Gaussian wave packet
approximation. Therefore, the red line in Fig. 8 corresponds to
Eq. (B5). This approximation agrees reasonably well the FFT
transform of the local curvature of the numerically evaluated
eigenfunctions, with a small systematic difference.
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In Appendix C, we compare the local curvature of the
eigenfunctions of the elastica linear equation with the numer-
ically found local curvature of an elastic fiber made of beads.
The fiber slightly buckled while moving under compression
of the shear flow in the time-dependent numerical simulations
taking into account the nonzero thickness and hydrodynamic
interactions between all the beads using the multipole method
[41,42]. The profile of local curvature obtained in the simula-
tions (see Fig. 10) qualitatively matches the results presented
in Fig. 7. In particular, we observe an increase in the char-
acteristic wave number with the increase of χ̃ . However, in
the case of simulations, for larger values of χ̃ , the increase is
moderately slower than for the elastica.

V. CONCLUSIONS

We analyzed the stability of small deformations of a slen-
der elastic fiber in the shear flow (1) of a very viscous fluid by
solving the spectral problem for the linearized elastica equa-
tions. The infinitely thin fiber is close to straight at an arbitrary
3D orientation, with the perturbations in two perpendicular
directions. Even though the spectral differential equations for
both perturbations are coupled with each other, we showed
that patterns of 3D buckling of elastica are described by one
ordinary differential equation with a single parameter, χ̃ . It
happens that this equation is the same as that found in [38]
for the pure compressional flow but with shifted and rescaled
eigenvalues and eigenfunctions. We analyzed the eigenvalues
and eigenfunctions for the odd and even modes.

For very flexible fibers, with χ̃ � 1.5 × 104, we proposed
a wave packet approximation to the most unstable eigenfunc-
tions and showed that it is very accurate. We derived the
eigenvalues as linear functions of χ̃ and the wave packet
parameters as linear functions of

√
χ̃ .

We also analyzed the local curvature of the eigenfunctions,
determined numerically by the Chebyshev spectral method
[37,47]. By taking the fast Fourier transform of it, we demon-
strated the linear scaling of the characteristic wave number
with

√
χ̃ .

The scaling of the buckled shapes and of the instability-
growth time derived here might be used to predict and
describe the buckling of elastic microfilaments in fluid flows
[10,26–33], with possible new applications.
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APPENDIX A: MOTIVATION FOR THE SCALING BASED
ON THE ASYMPTOTIC EXPANSION

We can benefit from a fiber shape approximated as a wave
packet to gain some understanding of the scaling presented in
Sec. III. Without loss of generality, we restrict ourselves to the
odd approximated solutions from Eq. (26). We are interested
in a situation where s is small and χ̃ is simultaneously large.

We substitute � = sin(ks) exp(ξs2) on the left side of
Eq. (24) and expand the result in powers of s. The left-hand

TABLE I. Values of parameter mmax as a function of n and N .

n = 1 n = 2 n = 3 n = 4 n = 5 ...

N = 1 2 3 4 5 6 ...
N = 2 5 7 9 11 13 ...
N = 3 10 14 18 22 26 ...
N = 4 20 28 36 44 52 ...

...
...

...
...

...
...

. . .

side of Eq. (24) obtained during this procedure has the form

s

(
−k5 + 20k3ξ − 60kξ 2 + kχ̃ + k3χ̃

16
− 3kξ χ̃

8
− kσ̃ χ̃

)

+ s3

(
k7

6
− 7k5ξ + 70k3ξ 2 − 140kξ 3 − 3k3χ̃

4
− k5χ̃

96

+ 9kξ χ̃

2
+ 5k3ξ χ̃

8
+ k3σ̃ χ̃

6
− kξ σ̃ χ̃

)
+ O(s5). (A1)

Moreover, we postulate that k, ξ , and σ̃ have the following
dependence on χ̃ � 1 [this assumption is guided by the nu-
merical fits in Eqs. (27)–(29)]:

k =
N∑
j=1

Kjχ̃
(2− j)/2, ξ =

N∑
j=1

Mjχ̃
(2− j)/2,

σ̃ =
N∑
j=1

S jχ̃
(3− j)/2, (A2)

where N is the integer at which we truncate the expan-
sions. In the resulting expansion of expression (A1), the
leading terms in χ̃ for the given power of s are propor-
tional to χ̃ (2n+3)/2s2n−1, where n = 1, 2, . . . . On the other
hand, subleading terms are analogously commensurate with
χ̃ (2n+3−m)/2s2n−1, where m = 1, 2, . . . , mmax indexes consecu-
tive terms in the expansion in powers of χ̃−1/2. The parameter
mmax grows with values of n and N (see Table I). The depen-
dence of mmax on n and N can be expressed using the formula

mmax =
{

n + 1, for N = 1,

(2n + 3)2N−2, for N > 1.
(A3)

The parameter mmax indicates the number of subleading terms
for the expansion’s given cutoff value N and the power of s
equal to 2n − 1.

We illustrate the procedure for finding the values of the
coefficients in Eq. (A2) for the truncation at N = 1. The terms
of the expansion for N = 1 are schematically presented in
Table II, e.g., a cell for n = 2 and m = 1 represents the term
for order s3χ̃3, and we similarly interpret other terms.

TABLE II. Terms in the expansion (A2) of expression (A1).

m = 0 m = 1 m = 2 m = 3 ...

n = 1 s1 χ̃ 5/2 χ̃ 2 χ̃ 3/2

n = 2 s3 χ̃ 7/2 χ̃ 3 χ̃ 5/2 χ̃ 2

n = 3 s5 χ̃ 9/2 χ̃ 4 χ̃ 7/2 χ̃ 3 χ̃ 5/2

...
...

...
...

...
...

. . .
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TABLE III. Values of the expansion coefficients for the param-
eters k, ξ , and σ̃ for N = 1, 2, 3, 4 obtained from the asymptotic
expansion. The results are compared with the fitting results from the
Eqs. (27)–(29).

K1 K2

N = 1 0.137
N = 2 0.177 −0.131
N = 3 0.177 0.707
N = 4 0.177 0.707
Fitted values 0.176 −0.249

M1 M2

N = 1 −0.129
N = 2 −0.137 2.929 × 10−3

N = 3 −0.125 −3.5
N = 4 −0.125 −3.5
Fitted values −0.124 0.417

S1 S2 S3

N = 1 8.203 × 10−4

N = 2 9.765 × 10−4 −3.424 × 10−2

N = 3 9.765 × 10−4 −3.125 × 10−2 −1.75
N = 4 9.765 × 10−4 −3.125 × 10−2 −1.75
Fitted values 9.765 × 10−4 −3.124 × 10−2 −0.314

We must find the values of K1, M1, and S1. Thus, we
demand that coefficient for terms of leading orders s1χ̃5/2,
s1χ̃2, and s1χ̃3/2 (n = 1, green online) should identically be
equal to zero, which leads to values of K1 = 1

4

√
3

10 , M1 =
− 1

2
√

15
, and S1 = 21

25600 . When the equation for order s1χ̃5/2 is
satisfied, then the dominant contributions for higher powers
of s, i.e., s3χ̃7/2, s5χ̃9/2, . . . (n > 1 and m = 0, violet on-
line), are vanishing. This is true for any value of N because
these coefficients have the same form as that for order s1χ̃5/2

multiplied by a number and some power of K1. Moreover,
when we restrict ourselves to s = o(χ̃−1) (see, e.g., [48]), all
other terms in the expansion (n > 1 and m > 0, pink online)
asymptotically go to zero.

Similarly, one can obtain more accurate results for trunca-
tion at larger values of N , but it complicates calculations. A
higher value of N allows the application of less restrictive re-
quirements for the asymptotic behavior of s, i.e., s = o(χ̃−ζ ),
where ζ < 1 and ζ → 0+ for N → ∞. In Table III, we
compare the asymptotic expansion results for the parameters
k, ξ , and σ̃ for four successive values of N . Table III also
provides the Gaussian wave packet fitting results discussed in
Sec. III B. We also present a comparison of Eqs. (27), (28),
(29), and (A4) in Fig. 9. The results presented in Table III
show that the values of the expansion coefficients stabilize for
N � 3.

We finally take N = 4 and obtain the following expres-
sions for k, ξ , and σ̃ :

k =
√

2

8
χ̃1/2 +

√
2

2
+ O(χ̃−1/2),

ξ = −1

8
χ̃1/2 − 9

2
+ O(χ̃−1/2),

σ̃ = 1

210
χ̃ − 1

25
χ̃1/2 − 7

4
+ O(χ̃−1/2). (A4)

FIG. 9. Comparison of the parameters k, ξ , and σ̃ as a function
of χ̃ obtained by fitting a Gaussian wave packet [solid line, see
Eqs. (27)–(29) and Table III] and asymptotic expansion with N = 4
[dashed line, see Eq. (A4)]. The analytical results accurately repro-
duce the slopes of the curves.

For N=4, we assume that s = o(χ̃−4/7), which guarantees
that higher order terms in the expansion in powers of s
and χ̃ asymptotically vanish. As one can see by comparing
Eqs. (27)–(29) with Eq. (A4), our analytical coefficients in
Eq. (A4) are approximated with excellent accuracy by the
coefficients K1, M1, S1, and S2 obtained from the numerical
fit in Eqs. (27)–(29).

The asymptotic expansion presented above works for small
values of s. However, the numerical fit demonstrates that the
wave packet (26) with the parameters (A4) well approximates
the eigenfunctions and eigenvalues in the whole range of s.

APPENDIX B: WAVE NUMBERS BASED ON SHAPE
AND CURVATURE

The Fourier transform F (α) of a function f (s) is
defined as

Ff (α) =
∫ +∞

−∞
f (s) exp−isα ds. (B1)

For the wave packet �(s) given by Eqs. (26) and (A4), the
Fourier transform scales as

F�(α) ∝ exp[(α − k)2/(4ξ )], (B2)

with the maximum of F�(α) at

α = α0 = k ≈
√

2

8
(
√

χ̃ + 4). (B3)
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The Fourier transform of the curvature, approximated as
κ ′(s) ∝ −d2�(s)/ds2, scales as

Fκ ′ (α) ∝ α2 exp[(α − k)2/(4ξ )]. (B4)

Calculating zeros of the derivative and using Eq. (A4), we
determine that the maximum of Fκ ′ (α) is located at

α = α1 ≈ k

2

(
1 +

√
1 − 16ξ

k2

)
≈ k − 4ξ

k
≈ α0 + 2

√
2

≈
√

2

8

√
χ̃ + 5

√
2

2
. (B5)

In Eq. (B5), we demonstrate that the wave numbers α0

and α1, based on shape and curvature, respectively, are not
the same and α1 > α0. Within the adopted approximation,
they are both linear functions of

√
χ̃ with the same slope

but shifted with respect to each other. A more precise relation
would be obtained if terms ∝ 1/

√
χ̃ were taken into account.

In this case, α1 would be a nonlinear function of
√

χ̃ .
The curvature κ used earlier is related to κ ′ by the equa-

tion κ = |κ ′|. Therefore, the characteristic wave number for κ

is 2α1.

APPENDIX C: EVOLUTION OF AN ELASTIC FILAMENT
WITH A NON-NEGLIGIBLE THICKNESS

In this Appendix, we compare the local curvature of the
elastica eigenfunctions with the local curvature of an elastic
fiber with a non-negligible thickness, taking into account hy-
drodynamic interactions between all the fiber segments in the
shear flow.

Following previous publications [39,49–51], we use the
bead model. An elastic filament of thickness d is modeled
as a chain of N = 40 identical, spherical, solid beads with
diameter d . Consecutive beads are connected by springs with
the spring constant K, and the equilibrium distance between
the bead centers (the bond length) is equal to �0 = 1.02d .
Consecutive bonds are also connected by springs, with the
bending stiffness

A = Eπd4/64, (C1)

where E is Young’s modulus. At the elastic equilibrium, the
fiber is straight. The stretching and bending potential energies
of the filament are

Es = K
2

N∑
i=2

(�i − �0)2, Eb = A
2�0

N−1∑
i=2

β2
i , (C2)

with �i = |Ri − Ri−1|, where Ri is the position of the center
of bead i and

cos βi = (Ri − Ri−1) · (Ri+1 − Ri )/(�i�i+1). (C3)

Taking d and 1/γ̇ as the length and time units, respectively,
the dimensionless quantities are ri = Ri/d , k0 = K/(πμd γ̇ ),
and A = E/(64μγ̇ ). The filaments are almost inextensible,
k0 = 1000, and their bending stiffness ratio A ∈ [20, 1000].

The dynamics of the no-slip beads are evaluated from the
Stokes equations by the multipole expansion, as in [52,53],
corrected for lubrication and implemented in the precise
HYDROMULTIPOLE numerical code, as described in

Refs. [41,42]. As in Refs. [24,39,51,54], positions ri of
the bead centers satisfy the following equations:

ṙi − v0(ri ) =
N∑

j=1

(
μtt

i j · F j + μtd
i j : E∞

)
, i = 1, . . . , N,

(C4)
where

F j = 1

πμd3γ̇

∂

∂r j
(Es + Eb) (C5)

is the dimensionless elastic force acting on the bead j and

E∞ = 1
2 [∇v0 + (∇v0)T ] (C6)

is the rate-of-strain tensor. The mobility matrices, μtt
i j and

μtd
i j , depend on the positions of all the bead centers and are

evaluated by the HYDROMULTIPOLE program, with the multi-
pole truncation order L = 2. In Ref. [51] the approximation of
L = 2 was compared with the approximations of L = 3 and
L = 4, and it was shown that the difference is of the order of
2%, and therefore, L = 2 is sufficiently accurate (while much
faster than higher values of L).

In Ref. [39] numerical simulations of initially straight
elastic fibers were performed and obtained only odd buckled
shapes. This result is caused by the fiber thickness, which
promotes odd deformation. To observe even shapes, an even
initial perturbation is needed, as in the numerical simulation
in Ref. [12]. Therefore, in this paper, we initially impose a
small, but significant, either odd or even perturbation of the
center of bead i relative to the center of a straight fiber in
elastic equilibrium, oriented at θ0 = 90◦ and φ0 = 160◦. The
perturbation does not depend on A and is restricted to the shear
plane δi(− sin φ0, cos φ0, 0), with

δi = a
5∑

m=1

(−1)qm

(2m)2
sin

[
2mπ

(
i − 1

N − 1
− 1

2

)]
(C7)

for the odd perturbation, where qm are independent random
variables equal to 1 or 2 with a probability of 1/2. Finally,
the positions are shifted to make all the distances between the
bead centers equal to the equilibrium value �0/d = 1.02. The
value of a is chosen so that the maximum distance of a bead
center from the unperturbed filament is dm ≈ 0.076. The even
initial perturbation is constructed similarly, with dm ≈ 0.19.
Both initial perturbations of all the beads are listed in an open
repository [55].

We compare an elastic filament of length L and diameter d ,
made of N = 40 beads, to the elastica with L/d ≈ 40 and the
same value of Young’s modulus E . Therefore, Eq. (3) and the
relation

A = E

64μγ̇
(C8)

determine η as a function of A,

η = 2

ln(2L/d )

(
L

d

)4

A−1 = 1.17 × 106A−1. (C9)

In the simulations, for each A we select the filament shape
at time t = 0.75, sufficient for the development of the buck-
ling instability and small enough for a small change in the
angle φ of the filament principal axis, as shown in Ref. [39]
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in Fig. 13. Then, we compare it with the most unstable eigen-
function of the same parity �u1(χ̃ ), where

χ̃ = −η sin(2φ0) sin2 θ0 = 7.5 × 105A−1. (C10)

To analyze the filament shapes, we use the local curvature.
At the center of bead i = 2, . . . , N − 1 it is given as

κi = 2|(ri−1 − ri ) × (ri − ri+1)|
|ri−1 − ri||ri − ri+1||ri+1 − ri−1| . (C11)

We use si = −0.5 + (i − 1)/(N − 1) as a discrete analog of
the arclength s. Then, si and κi are interpolated, and κi is
normalized by its maximum value along the filament.

The local curvature as a function of si and χ̃ is shown by
different colors in Fig. 10 separately for the even and odd
initial perturbations. We observe that at t = 0.75, the parity
of the filament shapes is the same as the parity of the initial
perturbation. The dependence of the fiber shape on χ̃ , shown
in Fig. 10, is very similar to that in the case of the elastica,
shown in Fig. 7. For large values of χ̃ , the models agree with
each other qualitatively. We observe an increasing number of
the local maxima of the fiber curvature for increasing values
of χ̃ , as in Fig. 12 in Ref. [39], corresponding to the increase
in the characteristic wave number. For large values of χ̃ , the
increase in the wave number of an elastic filament made of
beads is slightly slower than that of the elastica.

FIG. 10. Local curvature of an elastic filament, normalized by its
maximum value along the filament and shown as different colors.
Numerical simulations for the elastic filament made of beads at
t = 0.75 for the initially almost straight configuration oriented at
the angles θ0 = 90◦ and φ0 = 160◦, with (a) even and (b) odd initial
perturbations.
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