Porous magnetic nanostructures for sensing SARS-CoV-2

Njemuwa NWAJI¹, OJodomo ACHADU², Michael GIERSIG¹

¹ Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str.02-106, Warsaw, Poland. nnwaji@ippt.pan.pl ² School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, United Kingdom

biosensor, nanostructure, implanted device

The intelligent engineering of nanostructures by means of appropriate surface or bulk functionalization will endow them with multi-functional capabilities, opening new opportunities in the biomedical field such as biosensing, drug delivery, imaging, medical implants, cancer treatment and tissue engineering. Here we demonstrate a cost-effective design approach for preparing nanostructures that show effective potential in rapid detection of SARS-CoV-2, based on the surface-enhanced Raman scattering (SERS) as well as power source for implanted medical devices. The three-dimensional (3D) porous nanoplatform with plasmonic-active nanostructures provides a high sensitivity for the detection of the virus by means of the remarkable SERS signal collection. The outstanding sensitivity of our SERS biosensor was demonstrated with SARS-CoV-2 at the detection limit of 1 fg mL⁻¹ and 0.1 pg mL⁻¹, respectively. Our work demonstrates a low-cost design approach for targeted functional nanoplatform with potential for applications in biosensing and bioelectronics.

References

OJ Achadu, N Nwaji, D Lee, J Lee, EM Akinoglu, M Giersig, EY Park, 3D hierarchicallt porous magnetic molyndenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2, Nanoscale Adv., 2022, 4, 871-883