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Droplet microfluidics

24 hr observation of Cancer cells + NK cells 
encapsulated in droplets. 

A droplet generator “cross-junction”

60 um

90 μm

Continuos phase, CP 

Continuos phase, CP 

a technique that involves the generation, manipulation, and analysis of small 
droplets, usually ranging from picoliters to nanoliters, in a continuous fluid flow.

Example:
using droplets as cell incubator

The videos are my (remained) unpublished results.
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𝑙𝐷 almost 
independent to Ca
(typical working 
regime)

extreme increase of 
𝑙𝐷 at decreasing Ca

𝑙𝐷 linearly 
dependent to 𝑞

1. Varying, 𝑞, while setting Ca constant:

2. Varying Ca, while setting q constant:
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Let’s observe experiment 
result based on the variation 
of two parameters:

1. Flow rate ratio

=
viscous forces

surface tension forces

2. Capillary number



Let’s see another data sets…
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Additionally: the elongation of neck prior to 
pinch-off also observed at the very low Ca.



If we neglect the very low Ca droplets for a while..

𝑙𝐷 ∝ 𝑞1
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Neglecting these for a while…

𝑙𝐷 = 𝑎 + 𝑏 𝑞 *

* First proposed in Garstecki (2006) with a= 1 and b~1 , verified experimentally using T-junction.  

• But if we include the very low Ca droplets, the 
scaling law breaks. 

• Either one or both parameters 𝑎, 𝑏 are not 
constant anymore 

• 𝑎 and 𝑏 are geometrical constants, not related 
to flow conditions.

• The relation can be quite simple because of 
the squeezing rather than the shearing act of 
the CP against the DP that forms the droplet.

• It is known as the squeezing droplet 
formation. 



𝑉𝐷 = 𝑉0 + 𝜏𝑄𝐷

Let’s back to the original assumption:  

𝑄𝐷
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• If all CP flows to the necking area, 𝜏 = 𝑉𝑁0

𝑄𝐶
, where 𝑉𝑁0 is the total DP volume 

displaced during the necking, which leads to the original squeezing equation, 𝑉𝐷 =
𝑉0 + 𝑉𝑁0𝑞.

• However, in the very low Ca flow, only a fraction of CP flows to the necking area, 
𝑄𝑁 such that 𝜏 = 𝑉𝑁0

𝑄𝑁
.

• Defining 𝑞𝑁 = QN/QC and 𝑣𝑁0 = 𝑉𝑁0/𝐻𝑊
2, then:

• Leaking flow has been described previously in T-junction device as 𝑞𝑁 =

1 +
𝛽

𝑞𝐶𝑎

−1
, (Korczyk et. al., Nat. Commun., 2019). 
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Leaking flow

𝑸𝑵

𝑙𝐷 = 𝑙0 + 𝜏∗𝑞

In dimensionless form: A general form of the 
scaling law which does 
not assume 𝑙0 and 𝜏∗ as 

constants

𝜏∗ =
𝑣𝑁0

𝑞𝑁

What is 𝜏∗?

Droplet volume Initial volume

Necking duration 

DP flow rate



Neck evolution
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1. Assume the droplet edge as 2D neck profile and it has a shape 
following a sinusoidal shape.
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3. Equation of motion:
• We focus on the motion of two parameters of 𝐴 and Ω.
• In majority of necking process, the profile evolves in self-

similar shape:  we assume 𝑑Ω/𝑑𝑡 ∝ 𝑘 𝑑𝐴/𝑑𝑡, with 𝑘 as a 
constant

• With the viscous forces 𝜇𝐶 𝑑Ω/𝑑𝑡 balanced by the surface 
tension effect, governs by the instantaneous profile 
curvature ~γ 𝐴

Ω2.

2. Conservation of mass:
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Put together:
𝜇𝐶: viscosity of CP, 
Ξ , Λ are the constant parameters with dimension of [L]
𝛾: interfacial tension 
W: Width of channel

Neck profile:

Volume under the neck:

Planar 
Curvature:

(1)

(2)

𝑑𝐴Ω

𝑑𝑡
=
𝑄N
𝐻



Relaxation rate of the neck The stop-flow experiment:
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*in non-dimensional form with 𝑉N(𝑡) = 𝑉0, λ = Λ/𝑊, ξ = Ξ/𝑊, 𝑣0 =
𝑉0
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The solution*  is:

• We cannot solve the previous set of equations: 
two equations vs three unknowns (𝐴,Ω, and 𝑄N)

• We can design a special  experiment of which 
𝑄N = 𝑄C = 0. And so we can solve the 
equations:

• ξ and 𝜆 s the fitting parameters
• 𝑎0 and 𝜔0 are the initial conditions. 

𝐴
Ω

𝑎 = 𝑎0𝜔0/𝜔( ǁ𝜏)

1. Fill channel with DP, stationery,
2. Start necking (CP flow) and stop the flow (t= 

0 s) before the breakup then observe.



Why the neck becomes wider as Ca 
decreases? 

• The neck becomes wider due to:
• Necking process ∝ 𝑑𝐴

𝑑𝑡

• The relaxation of the surface, which we 
shown to be proportional to 𝛾 𝐴

Ω2.

• So, the slower the necking process 
(due to low Ca + leaking effect), the 
more time for the neck to relax, 
causing the widening of neck and the 
increase of 𝜏∗.

the elongation of neck prior to pinch-off also observed at the very 
low Ca.



Conclussion
• Further analysis using the proposed equation of motions 

and other relations has shown the proportionality of 𝜏∗ ∝
1/ Ca.

• 𝜏∗ ∝ 1/ Ca correctly predicts the experimental 
measurement using variuos cross-junction device and 
different liquid pairs. The relation is an important 
milestone to generalize the equations of 𝑙𝐷 = 𝑙0 + 𝜏∗𝑞. 

• The complete story can be found in Kurniawan et. al. (J. 
Chem. Eng. ,2023). 

• From simple model and special-tailored experiment, we 
can understand the elongation of neck during its 
evolution is due to the surface tension effect, which is 
proportional to the 𝛾 𝐴

𝛺2.
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Thank you for your attention!
Hopefully it is something that catch your interest!
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