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We present a nonlinear finite element analysis to investigate the buckling
and post-buckling behaviour of functionally graded material (FGM) plates resting
on the elastic foundation. The material properties are assumed to vary gradually
across the thickness according to a power law distribution. The starting point of
the investigation is the generalized third-order plate theory and the Vlasov model
of elastic foundation having properties varying throughout the depth. The plates
are subjected to bending to verify the formulation and compression loads including
buckling and post-buckling analysis to investigate the influence of various parameters
on the structural response.
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1. Introduction

Functionally graded materials (FGMs) are inhomogeneous composite
materials in which the volume fraction of two components varies smoothly and
continuously across the given direction. FGMs aremixtures of ceramics andmetal,
where external ceramic layers due to large thermal resistance are exposed to
high temperatures, while internal metallic constituents, owing to their stronger
mechanical performance, are able to reduce the possibility of fracture. Manufac-
turing techniques must guarantee controlled changes in composition and density,
so that the product will have a required structure and properties along the given
direction, typically across the plate thickness. In recent years many articles con-
cerned with the mechanics of functionally graded plates have been published.
Usually new analysis methods are developed to handle the continuous variation
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in material properties through the thickness of the plate and extensive results
are presented.

Various aspects of behaviour of the FGM plates have been studied by many
researchers as reported by Swaminathan et al. [1, 2] while the review of the
buckling and postbuckling of FGM plates can be found in [3] and [4].

Javaheri and Eslami [5] investigated the buckling of functionally graded
plates under in-plane compressive loading. Shariat and Eslami [6] studied the
buckling of thick functionally graded plates under mechanical and thermal load-
ing. Prakash et al. [7] used an eight-nodded C0 shear flexible quadrilateral plate
element to study the nonlinear bending/pseudo-post-buckling behaviour of FGM
plates based on the Mindlin formulation under thermo-mechanical load and con-
cluded that temperature dependent material properties overestimates the ther-
mal postbuckling resistance. Later, Prakash et al. [8] extended their investiga-
tions to study the influence of the position of the neutral surface on the stability
behaviour of FGM plates. The conditions for the bifurcation-type buckling were
examined by Aydogdu [9]. He observed that this type of buckling occurs when
the plate is fully clamped while for simply supported plate edges the condition
is to apply the loading at the neutral surface. Lee et al. [10], based on the first-
order shear deformation plate theory (FSDT), studied the postbuckling behavior
of unstiffened FGM plates under edge compression and temperature field condi-
tions using the element-free kp-Ritz method. Zenkour and Sobhy [11] studied
the thermal buckling of functionally graded material plates using the sinusoidal
shear deformation plate theory. Duc and Van Tung [12] analytically investi-
gated buckling and post-buckling behaviour of thick functionally graded plates
resting on elastic foundations and subjected to in-plane compressive, thermal
and thermomechanical loads. Their formulations were based on the higher order
shear deformation plate theory taking into account the von Kármán nonlinearity,
initial geometrical imperfection and the Pasternak type elastic foundation.

Bodaghi and Saidi [13] used the neutral surface based-CPT to study the
buckling of FG plates resting on an elastic foundation under non-uniform com-
pression. Based on the third-order shear deformation theory, Akbarzadeh
et al. [14] obtained the results for the behaviour of FGM plates under lateral
thermal shock using the couple thermoelastic assumption.

A similar approach was applied by Kowal-Michalska and Mania [15] who
investigated the static and dynamic buckling of FG plates subjected to a simul-
taneous action of one directional compression and thermal loadings. Zhang [16]
used the Ritz energy method to study the nonlinear post-buckling, nonlinear
bending and vibration of FGM plates based on physical neutral surface and
Reddy’s third-order shear deformation. Latifi et al. [17] used the classical plate
theory based on physical neutral surface expanding the displacement functions
in the double Fourier series to investigate the buckling behaviour of FGM plates
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subjected to proportional biaxial compressive loadings. Thai and Uy [18] applied
the refined plate theory to derive analytical solutions for the buckling load of FG
Levy-type plates based on the neutral surface. Mansouri and Shariyat [19]
analysed thermo-mechanical buckling of the orthotropic auxetic plates in the hy-
grothermal environments solving the high-order shear-deformation governing dif-
ferential equations using the new differential quadrature method. Han et al. [20]
investigated the dynamic instability analysis of S-FGM (sigmoid FGM) on an
elastic medium using the third-order shear deformation theory. Lee et al. [21]
analysed the thermal buckling behaviour of functionally graded plates based on
FSDT and neutral surface of structures. Fan and Wang [22] investigated non-
linear bending and post-buckling behaviour of a hybrid laminated plate resting
on the Pasternak elastic foundation in thermal environments. The plate was
composed of conventional fiber reinforced composite (FRC) layers and carbon
nanotube reinforced composite (CNTRC) layers. Chikh et al. [23] presented an
analytical formulation based on both hyperbolic shear deformation theory and
stress function to study the nonlinear post-buckling response of symmetric func-
tionally graded plates supported by elastic foundations and subjected to in-plane
compressive, thermal and thermo-mechanical loads.

Shams et al. [24] analysed the buckling behaviour of functionally graded car-
bon nanotube-reinforced composite (FG-CNTRC) plates resting on the Winkler–
Pasternak elastic foundations under in-plane loads for various temperatures using
the element-free Galerkin (EFG) method based on the first-order shear defor-
mation theory (FSDT). Yu et al. [25] studied the buckling and postbuckling
behavior of a sandwich plate with a homogeneous core and graphene-reinforced
composite face sheets resting on an elastic foundation in thermal environments
using the higher order shear deformation plate theory and the von Kármán-
type kinematic nonlinearity to derive the governing equations accounting for the
plate-foundation interaction and the thermal effects and a two-step perturbation
technique for solution. Cong et al. [26] presented an analytical approach to in-
vestigate buckling and post-buckling behavior of the FGM plate with porosities
resting on elastic foundations and subjected to mechanical, thermal and ther-
momechanical loads. The formulations are based on Reddy’s higher-order shear
deformation plate theory taking into consideration the von Kármán nonlinearity,
initial geometrical imperfections, and the Pasternak type of elastic foundations.
Shahrestani [27] investigated elastic buckling of square and skew thin function-
ally graded material (FGM) plates with a cutout resting on an elastic foundation
simulated by the Winkler and two-parameter Pasternak using the isoparamet-
ric spline finite strip method. Gupta and Talha [28] investigated the static
and stability characteristics of the geometrically imperfect functionally graded
material (FGM) plate with a microstructural defect (porosity) resting on the
Pasternak elastic foundation. Moita et al. [29, 30] presented the formulation for
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linear buckling and for the geometrically nonlinear analysis of laminated com-
posite and functionally graded material (FGM) plates under mechanical uniaxial
in-plane uniform loads and thermal loads. Do and Lee [31] presented an iso-
geometric analysis (IGA) for investigating the buckling behavior of functionally
graded material (FGM) plates in thermal environments using the new n-th order
shear deformation theory with the von Kármán type of geometric nonlinearity
with the optimum order number to best approximate the thermal buckling prob-
lem. Sobhy and Zenkour [32] developed a new quasi-3D refined plate theory
to study mechanical buckling and free vibration analyses of double-porous func-
tionally graded (FG) nanoplates embedded in the elastic foundation. Singh and
Harsha [33] investigated buckling responses of the functionally graded material
(FGM) plate subjected to uniform, linear, and non-linear in-plane loads devel-
oping a new nonlinear in-plane load models based on the trigonometric and
exponential function.

Do et al. [34] introduced a mesh-free approximation based on the radial
point interpolation method (RPIM) to predict the post-buckling responses of
FGM plates in mechanical edge compression using the higher-order shear de-
formation theory in which a new hybrid type transverse shear function was in-
corporated. Liu et al. [35] analysed thermo-mechanical buckling of porous FGM
beams with the porosity caused by manufacturing defects based on the neu-
tral surface. Zenkour and Radwan [36] investigated the effect of exponential
temperature and moisture concentration on the bending and buckling analysis
of functionally graded plates resting on two-parameter elastic foundations via
a four-variable exponential shear deformation theory using the Navier method.
Taczała, Buczkowski and Kleiber have already investigated stability of the FGM
plates in the elastic [37, 38] and elastic-plastic range [39].

In the present paper we develop a procedure for the buckling and postbuck-
ling analysis of the FGM plates resting on the two-parameter Vlasov elastic
foundation using the third order plate theory originally formulated by Reddy
and Kim [40] and modified by Taczała et al. [41]. A key parameter govern-
ing the behaviour of the elastic foundation is evaluated iteratively, following the
iterative method given by Vallabhan and Daloglu [42].

2. Mathematical formulation

2.1. General third-order plate theory

Various deformation theories have been developed for plates. The drawbacks
of the classical plate theory and the first-order shear deformation theory (FSDT)
are well-known and have been thoroughly discussed in the literature. These prob-
lems can be overcome applying higher-order shear deformation plate theories
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(HSDT) which offer accurate solutions and allow to avoid problems related to
first-order theories. The HSDT use higher order polynomials in the expansion
of the displacement components through the thickness of the plate allowing for
warping of the cross section. Unlike the FSDT, the HSDT require no shear
correction factors. Examples here are the general third-order theory with tan-
gential traction free surfaces or the Reddy third-order theory. These theories,
however, have certain drawbacks related to the fact that their formulations re-
quire the C0-interpolation for um, vm, θx, θy and the Hermite interpolation for
wm, θz, ϕz. Moreover, in some cases these theories result in unsymmetrical finite
element stiffness matrices even for a linear case [40]. The problem related to
various interpolations was addressed by Pandya and Kant [43] who proposed
a method of developing an isoparametric displacement finite element formula-
tion including the conditions for vanishing of the transverse shear partly during
defining the displacement field as well as when formulating the shear rigidity
matrix and used it for the laminated composite plates. Reddy and Kim [40]
proposed the formulation free from the described limitations. The displacement
field for the general third-order plate theory (GTPT) is:

(2.1)

u(x, y, z) = um(x, y) + zθx(x, y) + z2ϕx(x, y) + z3ψx(x, y),

v(x, y, z) = vm(x, y) + zθy(x, y) + z2ϕy(x, y) + z3ψy(x, y),

w(x, y, z) = wm(x, y) + zθz(x, y) + z2ϕz(x, y).

Assuming the in-plane displacements u, v in the form of the cubic polynomial
and the out-of-plane displacement w in the quadratic polynomial with respect
to z we obtain a quadratic variation of the transverse shear in this direction
with all the displacements contributing to this distribution. The formulation
was employed to derive the equations of motion with the use of the modified
couple stress theory for FGM plates. The same formulation was also presented
for the analysis of the bending deflections of FGM plates [44]. In both cases the
von Kármán nonlinear strains were considered. A similar approach has also been
proposed by the other authors [45, 46].

In Eq. (2.1) we have eleven generalized displacements: displacements at the
mid-surface um, vm, wm, rotations of the transverse normal θx, θy as well as higher
order displacements which have more complex physical interpretation θz, ϕx, ϕy,
ϕz, ψx, ψy. For instance, θz is a constant term in the expression for strain εz
(and the total strain at the mid-surface):

(2.2) εz =
∂w

∂z

∣∣∣∣
z=0

= θz,

while ϕz is a multiplier of the linear term of the strain variation

(2.3)
∂εz
∂z

=
∂2w

∂z2
= 2zϕz.
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The assumed displacement field given by Eq. (2.1) allows for the parabolic
variation of transverse shear strains. The cubic variation of in-plane displace-
ments causes the transverse normal to deteriorate from the straight form
while the quadratic variation of out-of-plane displacement implies extension
through the thickness thus leading to varying thickness of the plate and emerging
direct stresses in the direction of z coordinate.

2.2. Modelling of FGM plates

The FGM plate with a top ceramic surface (c) and a bottom metal (m)
surface is assumed. The continuous change of volume fraction of ceramic Vc and
metal Vm through the plate thickness is described by the power law

(2.4) Vc =

(
1

2
+
z

t

)n
(n ≥ 0),

where n is the power-law exponent and z ∈
[
− t

2 ,
t
2

]
is a coordinate in the thick-

ness direction. Gradation is modelled by an appropriate choice of exponent n;
assumption of n = 0 gives the fully ceramic fraction and n→∞ gives the fully
metal fraction.

The rule of mixture is used to calculate the effective Young modulus Ef (z)
in the lamina of FGM

(2.5) Ef = EmVm + EcVc,

where Ec and Em are the material properties of ceramic and metal constituents,
respectively. The constant value of the Poisson ratio ν is assumed, since the effect
of its variation on the results is negligible [47].

2.3. Modelling of FGM plates

In analysis of structures resting on the elastic foundation, the Winkler model
is introduced in which it can be modelled by the row of elastic springs which do
not affect each other. Only one parameter k0 is used to describe the foundation
behaviour. Filonenko-Borodich [48] and Pasternak [49] managed to do
Winkler model a more realistic postulating a two-parameter model. Their model
takes into account the effect of shear interaction. In this model the shear pa-
rameter has to be determined experimentally. Vlasov and Leontiev [50] have
introduced another arbitrary parameter, γ, dependent on foundation material
and thickness of the foundation layer and suggested an approximate value of γ
between 1 and 2. However, they did not report the method of determining this
parameter. In the paper of Vallabhan and Daloglu [42], it has been shown
how the foundation parameter, γ, can be estimated iteratively.
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Two foundation models can be formulated: linear and quadratic. For the first
case, the elastic foundation modulus EF (z) is a linear function of the through-
thickness coordinate z

(2.6) EF (z) = EF1 + (EF2 − EF1)
z

h
,

where EF1 and EF2 are the elasticity modules at the top and bottom of the
foundation, respectively, and h is the foundation thickness.

In the paper of Celik and Omurtag [51] a quadratic version of elasticity
modulus EF (z) is formulated

(2.7) EF (z) = EF1 + (EF2 − EF1)
z2

h2
.

The two parameters k0 and k1 in terms of the elastic constants and the dimen-
sions of the foundation have been introduced by Vlasov and Leontiev [50].
These parameters applied to a foundation with a finite depth of foundation, h,
are defined by:

(2.8) k0 =
E0

1− ν2
0

h∫
0

ψ′(z)2 dz

and

(2.9) k1 =
E0

2(1 + ν0)

h∫
0

ψ2(z) dz

with the mode function ψ(z) which can be obtained using variational principles
and applying the proper boundary conditions, such as ψ(0) = 1 and ψ(h) = 0
as shown in [52], where the following mode function was proposed:

(2.10) ψ(z) =
sinh γ h−zh

sinh γ
.

The generalized modulus of elasticity, E0, and the Poisson ratio, ν0, are defined
by:

(2.11) E0 =
EF

1− ν2
F

, ν0 =
νF

1− νF
,

where EF and νF are the modulus of elasticity and the Poisson ratio of the
foundation, respectively. If the elasticity modulus ES(z) is constant through
the thickness of the foundation and using the mode function ψ(z) as given
in Eq. (2.10), the foundation parameters k0 (Eq. (2.8) and k1 (Eq. (2.9)) become:
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(2.12) k0 =
EF (1− νF )

8h(1 + νF )(1− 2νF )

2γ sinh(2γ) + 4γ2

sinh2 γ

and

(2.13) k1 =
EFh

16γ2(1 + νF )

2γ sinh(2γ)− 2γ2

sinh2 γ
.

However, these parameters also depend on a coefficient γ, which represents the
rate of decrease of the displacement and the normal stresses in the vertical di-
rection in the foundation. According to [52] the parameter γ can be evaluated as

(2.14) γ2 = h2 1− νF
2(1− νF )

∫ +∞
−∞

∫ +∞
−∞

{(∂w(x,y)
∂x

)2
+
(∂w(x,y)

∂y

)2} dx dy∫ +∞
−∞

∫ +∞
−∞ w2(x, y) dx dy

,

which can be calculated using an iterative computational process as it is depen-
dent on displacements.

For the foundation in which the modulus EF can vary linearly in the vertical
direction from E1 at the top (z = 0) to E2 at the bottom (z = h) – Eq. (2.6),
expressions for the foundation parameters k0 and k1 can be modified to the
following form:

k0 =
1− νF

8h(1 + νF )(1− 2νF )
(2.15)

× [E1(2γ sinh(2γ) + 4γ2) + (E2 − E1)(cosh(2γ)− 1 + 4γ2)]

sinh2 γ

and

k1 =
h

16γ2(1 + νF )
(2.16)

× [E1(2γ sinh(2γ)− 2γ2) + (E2 − E1)(cosh(2γ)− 1− 2γ2)]

sinh2 γ
.

When the elasticity modulus EF (z) changes quadratically through the depth of
the foundation – Eq. (2.7), the parameters k0 and k1 change to:

k0 =
1− νF

24hγ(1 + νF )(1− 2νF )
(2.17)

× 3[E2 + E1(2γ2 − 1)] sinh(2γ) + 2γ[E2(4γ2 − 3) + E1(3 + 2γ2)]

sinh2 γ

and

k1 =
h

48γ3(1 + νF )
(2.18)

× 3[E2 + E1(2γ2 − 1)] sinh(2γ)− 2γ[E2(4γ2 + 3) + E1(2γ2 − 3)]

sinh2 γ
.
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2.4. Derivation of incremental finite element equations

Nonlinear finite element equations in the incremental formulation are derived
using the principle of virtual work which for increment t+ ∆t and iteration i+ 1
is given by

(2.19) δt+∆t
i+1Wint = δt+∆t

i+1Wext,

where δt+∆t
i+1 Wext is the virtual work of external forces for an increment t + ∆t

and iteration i+ 1

(2.20) δt+δti+1Wext =

∫
V

t+δt
i+1biδ

t+∆t
i+1uidV +

∫
Ω

t+δt
i+1piδ

t+δt
i+1ui dΩ.

In Eq. (2.20) {t+δti+1bi} is the vector of the body forces acting in volume V (in-
crement t+ ∆t, iteration i+ 1), {t+δti+1pi} is the loading distributed over area Ω,
while {t+δti+1ui} denotes the displacement functions dependent on the formulation
corresponding to either the plate theory or the solid formulation.

Virtual work of internal forces (2nd Piola–Kirchhoff stresses) δt+∆t
i+1Wint is the

sum of work for the plate and elastic foundation:

(2.21) δt+∆t
i+1Wint = δt+∆t

i+1W
(P )
int + δt+∆t

i+1W
(F )
int ,

where

(2.22) δt+∆t
i+1W

(P )
int =

∫
V

t+∆t
i+1σijδ

t+∆t
i+1∆εij dV

and, using the model of the elastic foundation

δt+∆t
i+1W

(F )
int =

∫
A

k0
t+∆t
i+1wδ

t+∆t
i+1w dA(2.23)

+

∫
A

k1

[
t+∆t
i+1γxzδ

t+∆t
i+1γxz + t+∆t

i+1γyzδ
t+∆t
i+1γyz

]
dA.

Increments of the Green–Lagrange strains {t+∆t
i+1∆εij} assuming large displace-

ments can be derived using von Kármán nonlinear strain–displacement relations.
Applying the finite element approximation and introducing strain-displacement
matrices, [t+∆t

iB
(1)
ijk] and [t+∆t

iB
(2)
ijkl], the increments of the strains, are given by

(2.24) t+∆t
i+1∆εij = t+∆t

iB
(1)
ijk

t+∆t
i+1∆dk + t+∆t

iB
(2)
ijkl

t+∆t
i+1∆dk

t+∆t
i+1∆dl,
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where {t+∆t
i+1∆dk} are increments of the nodal displacements. We also note that

t+∆t
i+1γxz = 2t+∆t

i+1ε13, t+∆t
i+1γyz = 2t+∆t

i+1ε23, therefore, the expression for the virtual
work can be written in the incremental form as:

δt+∆t
i+1Wint =

∫
V

(
t+∆t

iσij + t+∆t
i+1∆σij

)
δt+∆t

i+1∆εij dV(2.25)

+

∫
A

k0(t+∆t
iw + t+∆t

i+1∆w)δt+∆t
i+1∆w dA

+ 4

∫
A

k1

[
(t+∆t

iε13 + ∆t+∆t
i+1ε13)δ∆t+∆t

i+1ε13

+ (t+∆t
iε23 + ∆t+∆t

i+1ε23)δ∆t+∆t
i+1ε23

]
dA.

The stress increments are evaluated using the constitutive relationship

(2.26) t+∆t
i+1∆σij = t+∆t

iDijkl
t+∆t
i+1∆εkl.

The principle of virtual work using Eqs. (2.20)–(2.26) takes the form:

(2.27)
∫
V

t+∆t
iDijkl

t+∆t
iB

(1)
klq

t+∆t
iB

(1)
ijp

t+∆t
i+1∆dq dV

+

∫
V

t+∆t
iσij

(
t+∆t

iB
(2)
ijpq + t+∆t

iB
(2)
ijqp

)
t+∆t
i+1∆dq dV +

∫
A

k0N3qN3p dA

+ 4k1

∫
A

{[
t+∆t

iB
(1)
13q

t+∆t
iB

(1)
13p + t+∆t

iε13

(
t+∆t

iB
(2)
13pq + t+∆t

iB
(2)
13qp

)]
+ t+∆t

iB
(1)
23q

t+∆t
iB

(1)
23p + t+∆t

iε23

(
t+∆t

iB
(2)
23pq + t+∆t

iB
(2)
23qp

)}
dAt+∆t

i+1∆dq

=

∫
V

t+δt
i+1biNip dV +

∫
Ω

t+δt
i+1piNip dΩ−

[∫
V

t+∆t
iσij

t+∆t
iB

(1)
ijp dV

+

∫
A

k0
t+∆t

iwN3p dA+ 4

∫
A

k1

(
t+∆t

iε13
t+∆t

iB
(1)
13p + t+∆t

iε23
t+∆t

iB
(1)
23p

)
dA
]
,

what can be written as

(2.28)
(
t+∆t

iK
(P−d)
pq + t+∆t

iK
(P−σ)
pk + t+∆t

iK
(F )
pq

)
t+∆t
i+1∆dq = P (P )

p −F (P )
p +F (F )

p ,

where

(2.29) t+∆t
iK

(P−d)
pq =

∫
V

t+∆t
iDijkl

t+∆t
iB

(1)
klq

t+∆t
iB

(1)
ijp

t+∆t
i+1∆dq dV
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is the plate stiffness matrix dependent on displacements (including also the linear
term)

(2.30) t+∆t
iK

(P−σ)
pk =

∫
V

t+∆t
iσij

(
t+∆t

iB
(2)
ijpq + t+∆t

iB
(2)
ijqp

)
t+∆t
i+1∆dq dV

is the plate stiffness matrix dependent on stresses,

(2.31) t+∆t
iK

(F )
pq =

∫
A

k0N3qN3p dA

+ 4k1

∫
A

{[
t+∆t

iB
(1)
13q

t+∆t
iB

(1)
13p + t+∆t

iε13

(
t+∆t

iB
(2)
13pq + t+∆t

iB
(2)
13qp

)]
+ t+∆t

iB
(1)
23q

t+∆t
iB

(1)
23p + t+∆t

iε23

(
t+∆t

iB
(2)
23pq + t+∆t

iB
(2)
23qp

)}
dAt+∆t

i+1∆dq

is the foundation stiffness matrix,

(2.32) P (P )
p =

∫
V

t+δt
i+1biNip dV +

∫
Ω

t+δt
i+1piNip dΩ

is the reference load vector,

(2.33) F (P )
p =

∫
V

t+∆t
iσij

t+∆t
iB

(1)
ijp dV

is the internal force vector resulting from the plate stresses, and

F (F )
p =

∫
A

k0
t+∆t

iwN3p dA(2.34)

+ 4

∫
A

k1

(
t+∆t

iε13
t+∆t

iB
(1)
13p + t+∆t

iε23
t+∆t

iB
(1)
23p

)
dA

is the vector equivalent to an internal force vector, resulting from deflections of
the elastic foundation.

The buckling stress (bifurcation point) is found from the condition

(2.35) det
(
t+∆t

iK
(P−d)
pq + t+∆t

iK
(P−σ)
pk + t+∆t

iK
(F )
pq

)
= 0.

The structural response in the post-buckling regime was analyzed applying the
path-following technique in the form of the Crisfield constant arc-length method
by adopting a constraint condition in addition to the equation set. The con-
straint delimiting the displacement increment in each load step t+∆t

i+1∆dincr is
expressed by

(2.36)
(
t+∆t
i+1∆dincr

)T t+∆t
i+1∆dincr = ∆l2.
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3. Numerical examples

3.1. Verification of the formulation

The presented formulation has been verified comparing the obtained results
with those available in the literature. For the present model of elastic foundation
there are no examples of FGM plates available therefore the example of homoge-
nous plate was used. Çelik and Saygun [53] and Vallabhan et al. [52], and
Buczkowski and Torbacki [54] analysed a plate of size 9.144× 12.192m and
thickness of t = 0.1524m resting on a non-homogeneous layered soil medium
with properties varying linearly in the vertical direction. Their model included
the boundary conditions at the bottom of the foundation and the boundary
conditions resulting from the symmetry of the structure as 1/4 of the over-
all plate and foundation was modelled. The problems of rectangular plate on
two-parameter foundation subjected to uniformly distributed patch loading have
been solved in these references by different methods. Vallabhan et al. [52] de-
veloped a finite element Vlasov model for rectangular plates resting on an elastic
layered soil medium. They performed calculations for different values of E2/E1

(1, 2, 3, 10) where the foundation parameters k0 and k1 are assumed to be de-
pendent on material properties and the depth of the foundation as well as on
the dimensionless parameter γ given by Eq. (2.14).

The same case but for homogenous foundation was also studied by Çelik
and Saygun [53] and Buczkowski and Torbacki [54]. The calculations were
performed for four depths of the foundation, h = 3.048, 6.096, 9.144 and 15.24m,
the Young modulus Ep = 20685000 kN/m2 and Ef = 68950 kN/m2, the Pois-
son ratio νp = 0.20 and νf = 0.25 and for the plate and elastic foundation,
respectively. The finite element model is composed of sixteen 16-noded plate el-
ements, employing the Gauss–Lobatto integration scheme, originally presented

Fig. 1. Finite element model and loading of plate on elastic foundation.
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by Buczkowski et al. [55] and sixteen 32-noded zero-thickness foundation el-
ements, based on the concept developed by Buczkowski and Torbacki [54].
The boundary conditions are applied to the nodes situated at the bottom of the
foundation. The model is presented in Fig. 1 where the nodes coinciding with
the integration points as well as the patch loading are visible. The plates are
represented by the shaded fragment with the applied loading.

The results of the present calculations are compared with those reported by
Vallabhan et al. [52] and Çelik and Saygun [53] (see Table 1) and it can
be concluded that the agreement is good. As seen in the table, the parameter k0

decreases as t increases while the parameter k1 increases with t. We can see that
the plate deflections increase with the depth of the foundation.

Table 1. Vertical displacement at centre of plate for uniformly distributed load.

h [m] Method γ k0 [kN/m3] k1 [kN/m] wCentr [cm]

3.048

Vallabhan et al. [52] 0.5766 27192 26826 0.0853
Çelik and Saygun [53] 0.5724 27206 26904 0.0872
Buczkowski and Torbacki [54],
3 × 3 Gauss 0.5724 27207 26852 0.0871

present 0.5650 27204 26881 0.0873

6.096

Vallabhan et al. [52] 0.9297 13757 50282 0.1524
Çelik, Saygun [53] 0.9194 13757 50410 0.1526
Buczkowski and Torbacki [54],
3 × 3 Gauss 0.9194 13758 50411 0.1530

present 0.9148 13754 50462 0.1521

9.144

Vallabhan et al. [52] 1.2644 9430 69506 0.1890
Çelik and Saygun [53] 1.2064 9377 70586 0.1893
Buczkowski and Torbacki [54],
3 × 3 Gauss 1.2064 9378 50587 0.1896

present 1.1832 9356 71014 0.1853

15.24

Vallabhan et al. [52] 1.9419 6366 94732 0.2070
Çelik and Saygun [53] 1.6193 5964 104664 0.2212
Buczkowski and Torbacki [54],
3 × 3 Gauss 1.6193 5964 104664 0.2205

present 1.4887 5835 108790 0.2067

3.2. Buckling and post-buckling of axially compressed homogenous plates

We begin with the analysis of the bifurcation buckling. To illustrate the buck-
ling and post-buckling a homogenous plate was analysed. The dimensions of the
plate were taken as follows: 800 × 800mm, thickness t = 16mm, elastic foun-
dation 1600× 1600mm, depth h = 50mm. Material properties were the Young
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modulus of the plate Ep = 207780N/mm2, and the foundation Ef = 207.7, the
Poison ratio νp = 0.3177 and νf = 0.25 for the plate and foundation, respectively.
Boundary conditions were taken to model the symmetry of the structure and the
structural response. We note that this condition includes not only translational
displacements and rotations but also components of the displacement functions
of higher orders, not having direct physical interpretation: ϕx, ϕy, ψx, ψy as ex-
plained in the section on the formulation of the applied plate theory. Regarding
the solid elements modelling the foundation the nodes belonging solely to them
have single DOF – vertical displacement. This DOF is blocked at the bottom
of the foundation whereas remains free at the top. Loading is implemented as
mechanical compression of one of the plate edges in the model (Fig. 2).

The response of the plate in the form of loading vs. deflection of the central
node is given in Fig. 3. The buckling mode is presented in Fig. 4.

Fig. 2. Finite element model and compressive loading of plate on elastic foundation.

Fig. 3. Loading of compressed edge vs. deflection of central node for bifurcation buckling.
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Fig. 4. Buckling mode in case of bifurcation buckling.

3.3. Buckling and post-buckling of axially compressed FGM plates

Influence of various parameters on buckling and post-buckling behaviour
of FGM plates positioned on the elastic foundation is presented here for the
square plate having dimensions as previously in the case of homogenous plate;
a × a = 800 × 800mm, elastic foundation 1600 × 1600mm. Material properties
in all cases were taken as the following: the Young modulus of the metallic part
Em = 207780MPa, the Young modulus of the ceramic part Ec = 322270MPa,
the Poisson ratio of both ceramic and metallic parts vc = vm = 0.3177. The
Poisson ratio of the elastic foundation was taken equal to νf = 0.25. Similarly
to the model of the homogenous plate, the boundary conditions were taken to
model the symmetry of the structure and the structural response, as were intro-
duced the boundary conditions for the solid elements modelling the foundation.
All other parameters: the Young modulus of the elastic foundation, exponent
of the power-law, plate thickness, depth of the elastic foundation and type of
the distribution of the foundation modulus throughout the depth – linear and
quadratic vary in the analysed examples. We note, that the behaviour of the
FGM plates subject to the compression applied uniformly on the area delimiting
the plate is similar to the behaviour of the plate with initial deflection that is the
response curve (loading vs. deflection) is smooth and the buckling stress cannot
be unambiguously identified (the effect can be seen in the following Figs. 5–11).
Therefore commenting the results term “buckling stress” is referred to the level of
stress (loading) for the specific value of deflection, to enable comparison between
various curves.
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Fig. 5. Influence of Young modulus of elastic foundation on buckling and post-buckling
behaviour of compressed square plate.

Fig. 6. Influence of exponent in the power law on buckling and post-buckling behaviour
of compressed square plate.

Fig. 7. Influence of plate thickness on buckling and post-buckling behaviour of compressed
square plate.
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In Fig. 5 we can see the influence of the Young modulus of the elastic founda-
tion (constant throughout the depth) for the plate t = 16mm, exponent n = 1,
foundation depth tf = 50mm. The Young modulus of the elastic foundation
varies from 207.7N/mm2 (1/100 of the nominal value equal to 20770N/mm2) to
the nominal value. The influence is significant and the buckling stress increases
in fact proportionally to the increase of the Young modulus of the elastic foun-
dation. Moreover, we can observe different curves for various values of the Young
modulus.

Influence of exponent in the power law n (Eq. (2.4)) is presented in Fig. 6.
This time we can see almost identical values of the buckling stress and similar
behaviour with small difference in maximum deflection of the centre point.

In Fig. 7 we observe an increasing buckling stress with the increasing plate
thickness which is a fairly obvious effect. An unpredictable thing is that the
buckling modes are different – in the positive direction for thinner plates (tp = 10
and 12mm) and in negative for thicker plates (tp = 16 and 20mm).

Explanation of the behaviour of the situation is presented in Figs. 8 and 9
where the buckling modes of plates on the elastic foundation are presented.

Fig. 8. Buckling mode for compressed square plate of thickness tp = 12mm.

Fig. 9. Buckling mode for compressed square plate of thickness tp = 16mm.
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Fig. 10. Influence of foundation depth on buckling and post-buckling behaviour
of compressed square plate.

Fig. 11. Influence of foundation depth on buckling and post-buckling behaviour
of compressed square plate – initial part of response.

Fig. 12. Influence of Young modulus at bottom on buckling and post-buckling behaviour
of compressed square plate for linear type of distribution.
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Fig. 13. Influence of Young modulus at bottom on buckling and post-buckling behaviour
of compressed square plate for quadratic type of distribution.

Fig. 14. Buckling mode for compressed square plate, linear type of distribution of Young
modulus of elastic foundation, Ef1 = 107N/mm2 and Ef2 = 207N/mm2.

Fig. 15. Buckling mode for compressed square plate, linear type of distribution of Young
modulus of elastic foundation, Ef1 = 107N/mm2 and Ef2 = 307N/mm2.

A similar situation is also seen in Figs. 9 and 10 where the structural response
is visualized for various depths of the elastic foundation. This time we receive
positive deflection for tf = 25mm, while for the greater values we have negative.



408 M. Taczała, R. Buczkowski, M. Kleiber

The buckling stress in the case of various depths is reduced with the increase of
the thickness of the elastic foundation.

The influence of the type of the distribution of the Young modulus – value
at the top of the foundation Ef1 = 207N/mm2 and Ef2 ranging from 107 to
407N/mm2 in all cases, the difference is that the linear distribution of the Young
modulus was taken to produce the results presented in Fig. 12 while the quadratic
distribution – in Fig. 13. The curves are similar in both figures except for Ef2 =
407N/mm2 (linear distribution of the Young modulus) as well as Ef2 = 307
and 407N/mm2 (quadratic distribution of the Young modulus) the responses
are entirely different. It is, as in the case of the investigation of the influence of
the plate thickness the reason is in different buckling modes for various Young
modulus of the foundation – Figs. 14 and 15.

4. Conclusions

Analysis of buckling and nonlinear behaviour of functionally graded mate-
rial (FGM) plates resting on the elastic foundation has been presented. The
generalized third-order plate theory and the Vlasov formulation were used for
modelling plates resting on the elastic foundation having properties varying
throughout the depth. The formulation was verified against the results avail-
able in the literature. Several examples presenting influence of various parame-
ters on behaviour of compressed plates – including buckling and post-buckling
– were presented. The following specific conclusions can be formulated based on
the analysis:

1. Buckling stress:

• is strongly dependent on the Young modulus of the elastic foundation,
• is insensitive to the exponent in the power law,
• decreases with an increasing depth of the elastic foundation.

2. The structural response is dependent not only on the material properties
of the plate and elastic foundation but also on the type of distribution of
the Young modulus of the elastic foundation throughout its depth.

Acknowledgements

The work has been performed under the project functionally graded mater-
ials-static and dynamic analyses, financed by the Polish National Science Centre
(NCN) under the contract 2018/29/B/ST8/02723. The support is gratefully ac-
knowledged.



Buckling and post-buckling analysis of FGM plates. . . 409

References

1. K. Swaminathan, D.T. Naveenkumar, A.M. Zenkour, E. Carrera, Stress, vibra-
tion and buckling analyses of FGM plates – A state-of-the-art review, Composite Struc-
tures, 120, 10–31, 2015, doi: 10.1016/j.compstruct.2014.09.070.

2. K. Swaminathan, D.M. Sangeetha, Thermal analysis of FGM plates – A critical review
of various modeling techniques and solution methods, Composite Structures, 160, 43–60,
2017, doi: 10.1016/j.compstruct.2016.10.047.

3. A. Hassan Ahmed Hassan, N. Kurgan, A Review on buckling analysis of functionally
graded plates under thermo-mechanical loads, International Journal of Engineering and
Applied Sciences, 11, 1, 345–368, 2019, doi: 10.24107/ijeas.555719.

4. K. Swaminathan, D.T. Naveenkumar, Higher order refined computational models for
the stability analysis of FGM plates – Analytical solutions, European Journal of Mechanics
– A/Solids, 47, 349–361, 2014, doi: 10.1016/j.euromechsol.2014.06.003.

5. R. Javaheri, M.R. Eslami, Buckling of functionally graded plates under in-plane com-
pressive loading, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 82, 4,
277–283, 2002, doi: 10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO;2-Y.

6. B.A. Samsam-Shariat, M.R. Eslami, Buckling of thick functionally graded plates un-
der mechanical and thermal loads, Composite Structures, 78, 3, 433–439, 2007, doi:
10.1016/j.compstruct.2005.11.001.

7. T. Prakash, M.K. Singha, M. Ganapathi, Thermal postbuckling analysis of FGM skew
plates, Engineering Structures, 30, 1, 22–32, 2008, doi: 10.1016/j.engstruct.2007.02.012.

8. T. Prakash, M. Singha, M. Ganapathi, Influence of neutral surface position on the
nonlinear stability behavior of functionally graded plates, Computational Mechanics, 43,
3, 341–350, 2009, doi: 10.1007/s00466-008-0309-8.

9. M. Aydogdu, Conditions for functionally graded plates to remain flat under in-
plane loads by classical plate theory, Composite Structures, 82, 1, 155–7, 2008, doi:
10.1016/j.compstruct.2006.10.004.

10. Y.Y. Lee, X. Zhao, J.N. Reddy, Post-buckling analysis of functionally graded plates
subjected to compressive and thermal loads, Computer Methods in Applied Mechanics and
Engineering, 199, 25-28, 1645–1653, 2010, doi: 10.1016/j.cma.2010.01.008.

11. A.M. Zenkour, M. Sobhy, Thermal buckling of various types of FGM sandwich plates,
Composite Structures, 93, 1, 93–102, 2018, doi: 10.1016/j.compstruct.2010.06.012.

12. N.D. Duc, H. Van Tung, Mechanical and thermal postbuckling of higher order shear
deformable functionally graded plates on elastic foundations, Composite Structures, 93,
11, 2874–2881, 2011, doi: 10.1016/j.compstruct.2011.05.017.

13. M. Bodaghi, A.R. Saidi, Stability analysis of functionally graded rectangular plates un-
der nonlinearly varying in-plane loading resting on elastic foundation, Archive of Applied
Mechanics, 81, 6, 765–780, 2011, doi: 10.1007/s00419-010-0449-0.

14. A.H. Akbarzadeh, M. Abbasi, M.R. Eslami, Coupled thermo-elasticity of functionally
graded plates based on the third-order shear deformation theory, Thin-Walled Structures,
53, 141–155, 2012, doi: 10.1016/j.tws.2012.01.009.

15. K. Kowal-Michalska, R. Mania, Static and dynamic thermo-mechanical buckling loads
of functionally graded plates, Mechanics and Mechanical Engineering, 17, 1, 99–112, 2013.

https://doi.org/10.1016/j.compstruct.2014.09.070
https://doi.org/10.1016/j.compstruct.2016.10.047
https://doi.org/10.24107/ijeas.555719
https://doi.org/10.1016/j.euromechsol.2014.06.003
https://doi.org/10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO;2-Y
https://doi.org/10.1016/j.compstruct.2005.11.001
https://doi.org/10.1016/j.engstruct.2007.02.012
https://doi.org/10.1007/s00466-008-0309-8
https://doi.org/10.1016/j.compstruct.2006.10.004
https://doi.org/10.1016/j.cma.2010.01.008
https://doi.org/10.1016/j.compstruct.2010.06.012
https://doi.org/10.1016/j.compstruct.2011.05.017
https://doi.org/10.1007/s00419-010-0449-0
https://doi.org/10.1016/j.tws.2012.01.009


410 M. Taczała, R. Buczkowski, M. Kleiber

16. D.G. Zhang, Modeling and analysis of FGM rectangular plates based on physical neutral
surface and high order shear deformation theory, International Journal of Mechanical
Sciences, 68, 92–104, 2013, doi: 10.1016/j.ijmecsci.2013.01.002.

17. M. Latifi, F. Farhatnia, M. Kadkhodaei, Buckling analysis of rectangular function-
ally graded plates under various edge conditions using Fourier series expansion, European
Journal of Mechanics – A/Solids, 41, 16–27, 2013, doi: 10.1016/j.euromechsol.2013.01.008.

18. H.T. Thai, B. Uy, Levy solution for buckling analysis of functionally graded plates
based on a refined plate theory, Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 12, 2649–2664, 2013, doi: 10.1177/
0954406213478526

19. M.H. Mansouri, M. Shariyat, Biaxial thermo-mechanical buckling of orthotropic
auxetic FGM plates with temperature and moisture dependent material properties
on elastic foundations, Composites Part B: Engineering, 83, 88–104, 2015, doi:
10.1016/j.compositesb.2015.08.030.

20. S.-C. Han, W.-T. Park, W.-Y. Jung, Four-variable refined plate theory for dynamic
stability analysis of S-FGM plates based on physical neutral surface, Composite Structures,
131, 1081–1089, 2015, doi: 10.1016/j.ijmecsci.2016.03.001.

21. Y-H. Lee, S-I. Bae, J-H. Kim, Thermal buckling behavior of functionally graded
plates based on neutral surface, Composite Structures, 137, 208–214, 2016, doi: 10.1016/
j.compstruct.2015.11.023.

22. Y. Fan, H. Wang, Nonlinear bending and postbuckling analysis of matrix cracked hybrid
laminated plates containing carbon nanotube reinforced composite layers in thermal envi-
ronments, Composites Part B: Engineering, 86, 1–16, 2016, doi: 10.1016/j.compositesb.
2015.09.048.

23. A. Chikh, A. Bakora, H. Heireche, M.S.A. Houari, A. Tounsi, E.A. Adda Be-
dia, Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak
elastic foundations using hyperbolic shear deformation theory, Structural Engineering and
Mechanics, 57, 4, 617–639, 2016, doi: 10.12989/sem.2016.57.4.617.

24. S. Shams, B. Soltani, M. Memar Ardestani, The effect of elastic foundations on the
buckling behavior of functionally graded carbon nanotube-reinforced composite plates in
thermal environments using a meshfree method, Journal of Solid Mechanics, 8, 2, 262–279,
2016.

25. Y. Yu, H.S. Shen, H. Wang, D. Hui, Postbuckling of sandwich plates with graphene-
reinforced composite face sheets in thermal environments, Composites Part B: Engineering,
135, 72–83, 2018, doi: 10.1016/j.compositesb.2017.09.045.

26. P.H. Cong, T.M. Chien, N.D. Khoa, N.D. Duc, Nonlinear thermomechanical buckling
and post-buckling response of porous FGM plates using Reddy’s HSDT, Aerospace Science
and Technology, 77, 419–428, 2018, doi: 10.1016/j.ast.2018.03.020.

27. M.G. Shahrestani,M.Azhari,H. Foroughi,Elastic and inelastic buckling of square and
skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite
strip method, Acta Mechanica, 229, 2079–2096, 2018, doi: 10.1007/s00707-017-2082-2.

28. A. Gupta, M. Talha, Static and Stability Characteristics of Geometrically Imperfect
FGM Plates Resting on Pasternak Elastic Foundation with Microstructural Defect, The
Arabian Journal for Science and Engineering, 43, 4931–4947, 2018, doi: 10.1007/s13369-
018-3240-0.

https://doi.org/10.1016/j.ijmecsci.2013.01.002
https://doi.org/10.1016/j.euromechsol.2013.01.008
https://doi.org/10.1177/0954406213478526
https://doi.org/10.1177/0954406213478526
https://doi.org/10.1016/j.compositesb.2015.08.030
https://doi.org/10.1016/j.ijmecsci.2016.03.001
https://doi.org/10.1016/j.compstruct.2015.11.023
https://doi.org/10.1016/j.compstruct.2015.11.023
https://doi.org/10.1016/j.compositesb.2015.09.048
https://doi.org/10.1016/j.compositesb.2015.09.048
https://doi.org/10.12989/sem.2016.57.4.617
https://doi.org/10.1016/j.compositesb.2017.09.045
https://doi.org/10.1016/j.ast.2018.03.020
https://doi.org/10.1007/s00707-017-2082-2
https://doi.org/10.1007/s13369-018-3240-0
https://doi.org/10.1007/s13369-018-3240-0


Buckling and post-buckling analysis of FGM plates. . . 411

29. J.S. Moita, A.L. Araújo, V.F. Correia, C.M.M. Soares, Buckling and nonlin-
ear response of functionally graded plates under thermo-mechanical loading, Composite
Structures, 202, 719–730, 2018, doi: 10.1016/j.compstruct.2018.03.082.

30. J.S. Moita, A.L. Araújo, V.F. Correia, C.M.M. Soares, Buckling behavior of com-
posite and functionally graded material plates, European Journal of Mechanics A/Solids,
80, 103921, 2020, doi: 10.1016/j.euromechsol.2019.103921.

31. V.N.V. Do, C.H. Lee, A new nth-order shear deformation theory for isogeometric ther-
mal buckling analysis of FGM plates with temperature-dependent material properties, Acta
Mechanica, 230, 3783–3805, 2019, doi: 10.1007/s00707-019-02480-1.

32. M. Sobhy, A.M. Zenkour, Porosity and inhomogeneity effects on the buckling and
vibration of double-FGM nanoplates via a quasi-3D refined theory, Composite Structures,
220, 289–303, 2019, doi: 10.1016/j.compstruct.2019.03.096.

33. S.J. Singh, S.P. Harsha, Buckling analysis of FGM plates under uniform, linear
and non-linear in-plane loading, Journal of Mechanical Science and Technology, 33, 4,
1761–1767, 2019, doi: 10.1007/s12206-019-0328-8.

34. V.N.V. Do, K.H. Chang, C.H. Lee, Post-buckling analysis of FGM plates under in-
plane mechanical compressive loading by using a mesh-free approximation, Archive of Ap-
plied Mechanics, 89, 1421–1446, 2019, doi: 10.1007/s00419-019-01512-5.

35. Y. Liu, S. Su, H. Huang, Y. Liang, Thermal-mechanical coupling buckling analysis of
porous functionally graded sandwich beams based on physical neutral plane, Composites
Part B-Engineering, 168, 236–242, 2019, doi: 10.1016/j.compositesb.2018.12.063.

36. A.M. Zenkour, A.F. Radwan, Bending and buckling analysis of FGM plates resting
on elastic foundations in hygrothermal environment, Archives of Civil and Mechanical
Engineering, 20, 4, 198–220, 2020, doi: 10.1007/s43452-020-00116-z.

37. M. Taczała, R. Buczkowski, M. Kleiber, Nonlinear free vibration of pre- and post-
buckled FGM plates on two-parameter foundation in the thermal environment, Composite
Structures, 137, 85–92, 2016, doi: 10.1016/j.compstruct.2015.11.017.

38. M. Taczała, R. Buczkowski, M. Kleiber, Nonlinear buckling and post-buckling re-
sponse of stiffened FGM plates in thermal environments, Composites Part B: Engineering,
109, 238–247, 2017, doi: 10.1016/j.compositesb.2016.09.023.

39. M. Taczała, R. Buczkowski, M. Kleiber, Elastic-plastic buckling and postbuckling
finite element analysis of plates using higher-order theory, International Journal of Struc-
tural Stability and Dynamics, 21, 7, 2150095, 2021, doi: 10.1142/S0219455421500954.

40. J.N. Reddy, J. Kim, A nonlinear modified couple stress-based third-order theory of func-
tionally graded plates, Composite Structures, 94, 1128–1143, 2012, doi: 10.1590/S1679-
78252014000300006.

41. M. Taczała, R. Buczkowski, M. Kleiber, Analysis of FGM plates based on physical
neutral surface using general third-order plate theory, Composite Structures, 301, 1–7,
2022, doi: 10.1016/j.compstruct.2022.116218.

42. C.V.G. Vallabhan, A.T. Daloglu, Consistent FEM-Vlasov model for plates on lay-
ered soil, Journal of Structural Engineering – ASCE, 125, 10, 108–113, 1999, doi:
10.1061/(ASCE)0733-9445(1999)125:1(108).

43. B.N. Pandya, T. Kant, A simple finite element formulation of a higher-order theory for
unsymmetrically laminated composite plates, Composite Structures, 9, 3, 215–246, 1988,
doi: 10.1016/0263-8223(88)90015-3.

https://doi.org/10.1016/j.compstruct.2018.03.082
https://doi.org/10.1016/j.euromechsol.2019.103921
https://doi.org/10.1007/s00707-019-02480-1
https://doi.org/10.1016/j.compstruct.2019.03.096
https://doi.org/10.1007/s12206-019-0328-8
https://doi.org/10.1007/s00419-019-01512-5
https://doi.org/10.1016/j.compositesb.2018.12.063
https://doi.org/10.1007/s43452-020-00116-z
https://doi.org/10.1016/j.compstruct.2015.11.017
https://doi.org/10.1016/j.compositesb.2016.09.023
https://doi.org/10.1142/S0219455421500954
https://doi.org/10.1590/S1679-78252014000300006
https://doi.org/10.1590/S1679-78252014000300006
https://doi.org/10.1016/j.compstruct.2022.116218
https://doi.org/10.1061/(ASCE)0733-9445(1999)125:1(108)
https://doi.org/10.1016/0263-8223(88)90015-3


412 M. Taczała, R. Buczkowski, M. Kleiber

44. J. Kim, J.N. Reddy, A general third-order theory of functionally graded plates with
modified couple stress effect and the von Kármán nonlinearity: theory and finite element
analysis, Acta Mechanica, 226, 2973–2998, 2015, doi: 10.1007/s00707-015-1370-y.

45. E. Carrera, Theories and finite elements for multilayered plates and shells: a unified
compact formulation with numerical assessment and benchmarking, Archives of Compu-
tational Methods in Engineering, 10, 215–296, 2003, doi: 10.1007/BF02736224.

46. A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque,
R.M.N. Jorge, C.M.M. Soares, Static, free vibration and buckling analysis of isotropic
and sandwich functionally graded plates using a quasi-3D higher-order shear deformation
theory and a meshless technique, Composites Part B: Engineering, 44, 1, 657–674, 2013,
doi: 10.1016/j.compositesb.2012.01.089.

47. S-H. Chi, Y-L. Chung, Mechanical behavior of functionally graded material plates under
transverse load Part II: numerical results, International Journal of Solids and Structures,
43, 13, 3675–3691, 2006, doi: 10.1016/j.ijsolstr.2005.04.010.

48. M.M. Filonenko-Borodich, Some approximate theories of elastic foundation. Uchenyie
Zapiski Moskovskogo Gosudarstvennogo Universiteta, Mekhanika, 46, 3–18, 1940 [in Rus-
sian].

49. P.L. Pasternak, New Method of Calculation for Flexible Substructures on Two-
parameter Elastic Foundation, Gosudarstvennoe Izdatelstvo Literatury po Stroitelstvu
i Architekture, Moscow, pp. 1–56, 1954 [in Russian].

50. V.Z. Vlasov, N.N. Leontiev, Beams, Plates and Shells on Elastic Foundations,
GIFML, Moskau, 1960, [in Russian] or translated from Russian by Foundation: Israel
Program for Scientific Translations, Jerusalem, 1966.

51. M. Celik, M. Omurtag, Determination of the Vlasov foundation parameters-quadratic
variation of elasticity modulus using FE analysis, Structural Engineering and Mechanics,
19, 6, 619–637, 2005, doi: 10.12989/sem.2005.19.6.619.

52. C.V.G. Vallabhan, W.T. Straughan, Y.C. Das, Refined model for analysis of plates
on elastic foundations, Journal of Engineering Mechanics – ASCE, 117, 12, 2830–2844,
1991, doi: 10.1061/(ASCE)0733-9399(1991)117:12(2830).

53. M. Çelik, A. Saygun, A method for the analysis of plates on a two-parameter foun-
dation, International Journal of Solids and Structures, 36, 19, 2891–2915, 1999, doi:
10.1016/S0020-7683(98)00135-8.

54. R. Buczkowski, W. Torbacki, Finite element modelling of thick plates on two-
parameter elastic foundation, International Journal of Numerical and Analytical Methods
in Geomechanics, 25, 14, 1409–1427, 2001, doi: 10.1002/nag.187.

55. R. Buczkowski, M. Taczała, M. Kleiber, A 16-node locking-free Mindlin plate resting
on two-parameter elastic foundation – static and eigenvalue analysis, Computer Assisted
Methods in Engineering and Science, 22, 2, 99–114, 2015.

Received February 27, 2024; revised version July 8, 2024.
Published online October 8, 2024.

https://doi.org/10.1007/s00707-015-1370-y
https://doi.org/10.1007/BF02736224
https://doi.org/10.1016/j.compositesb.2012.01.089
https://doi.org/10.1016/j.ijsolstr.2005.04.010
https://doi.org/10.12989/sem.2005.19.6.619
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2830)
https://doi.org/10.1016/S0020-7683(98)00135-8
https://doi.org/10.1002/nag.187

