
 

1 of  11 

 DOI: 10.21008/j.0860-6897.2024.3.14 
Vibrations in Physical Systems, 2024, 35(3), 2024314 

Theoretical and numerical studies of low-frequency reverberant 
sound field in coupled rooms 

Mirosław MEISSNER  
 
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw 
 
Corresponding author: Mirosław MEISSNER, email: mmeissn@ippt.pan.pl 

Abstract The paper examines the low-frequency reverberation sound field in coupled-room systems. In 
theoretical model, the modal expansion of sound pressure was applied, while in numerical procedure, the 
discrete Hilbert transform was used to determine the amplitude of decaying sound. Computer simulations 
were performed for a room system consisting of two connected rectangular rooms. Eigenfunctions and 
eigenfrequencies of this system were determined by the finite element method. Simulation results showed 
that for the hard-walled room system the sound decay is almost exponential for frequencies of modes 
localized in one of the subrooms. Acoustical treatment of the ceiling significantly reduced reverberation. 
However, due to beating effects and modal overlap, a large irregularity of sound decay curves has occurred. 
This makes it difficult to correctly qualify the sound decay, because in this case it is practically impossible 
to characterize the reverberation process with only one or at most two decay times.  
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1. Introduction 

Acoustical properties of coupled rooms are of great interest in the context of architectural acoustics, since 
coupled-volume systems, composed of two or more spaces that are connected through acoustically 
transparent openings, can be found in various buildings and constructions. Examples are architectural 
objects such as churches with naves and side galleries, theatres with stage houses, concert halls fitted with 
reverberation chambers, the orchestra pit and balconies in opera houses, and irregularly shaped rooms 
such as L- and T-shaped enclosures. Nowadays, many numerical methods can be used to estimate the sound 
field in coupled rooms, like diffusion-equation models [1,  2], statistical-acoustic models [3,  4], the 
geometrical acoustics [5,  6] and the modal expansion method [7], also known as the eigenmode analysis. 
The geometrical acoustics applies at best to rooms with dimensions large compared to the wavelength. This 
method neglects diffraction phenomena since a propagation in straight lines is its main postulate, therefore, 
the results obtained with such method are inaccurate for coupled rooms and enclosures with complex 
shapes. The modal expansion method is a technique used for vibration analysis of mechanical objects and 
structures, thus, it has been applied in several branches of technical sciences. In room acoustics, this method 
yields the resonant modes of pressure vibrations, and the sound field is expressed as a linear combination 
of the resonant modes. The modal expansion method is more difficult to apply for coupled rooms and 
irregularly shaped enclosures, but it fully describes a wave nature of the sound field as well as creation of 
vortices in the active intensity vector field [8]. The modal expansion approach can be applied in a low-
frequency range, so this method is especially useful to the room systems with dimensions comparable with 
the sound wavelength. 

In the low-frequency range, the coupled-room systems exhibit some interesting effects like: the mode 
degeneration due to modification of the coupling area, confinement of an acoustic energy in a part of room 
system, called the mode localization, and a considerable difference between a rate of sound decay in early 
and late stages of the reverberant process, known as a double sloped decay. These phenomena have been 
investigated by the author in the papers [9-11]. The current work focuses on theoretical and numerical 
predictions of a spatial distribution of the low-frequency reverberant sound field in coupled rooms. The 
research explores the geometry that often occurs in the reality when two rectangular subrooms with the 
same heights are connected to one another. A response of the room system to the sound excitation is 
described by means of a modal expansion of the sound pressure for a lightly damped room system with 
complex-valued boundary conditions on walls. Eigenfunctions and eigenfrequencies for this room system 
were calculated using the finite element method. 
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2. Theoretical analysis 

2.1. Low-frequency room acoustics 

In the low-frequency range, a theoretical method most suitable for modeling a sound field in coupled rooms 
is the modal expansion method. In this method, the sound pressure 𝑝𝑝(𝐫𝐫, 𝑡𝑡) in the field point 𝐫𝐫 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is a 
superposition of responses of acoustic modes excited by a source, so it can be given by 

𝑝𝑝(𝐫𝐫, 𝑡𝑡) = � 𝑝𝑝𝑚𝑚(𝑡𝑡)Φ𝑚𝑚(𝐫𝐫)
∞

𝑚𝑚=1

, (1) 

where 𝑝𝑝𝑚𝑚 are time-dependent modal amplitudes, Φ𝑚𝑚 are eigenfunctions and each of them is related to the 
corresponding eigenfrequency 𝜔𝜔𝑚𝑚. Since the theoretical model is dedicated to lightly damped rooms, the 
eigenfunctions Φ𝑚𝑚 can be approximated by real-valued eigenfunctions determined for the rigid boundary 
surfaces. It should be noted that analytical forms of eigenfunctions Φ𝑚𝑚 are known only for the simplest 
geometry such as a cuboid or cylinder, so for irregularly shaped enclosures such as coupled-room systems, 
the determination of eigenfunctions Φ𝑚𝑚 will require the use of numerical methods. 

The procedure for finding modal amplitudes 𝑝𝑝𝑚𝑚 was presented in [7], and it can be shown that for lightly 
damped room systems, the amplitude 𝑝𝑝𝑚𝑚 is a solution of the following equation: 

𝜕𝜕2𝑝𝑝𝑚𝑚
𝜕𝜕𝑡𝑡2

+ 2𝜉𝜉𝑚𝑚
𝜕𝜕𝑝𝑝𝑚𝑚
𝜕𝜕𝑡𝑡

+ 𝜔𝜔𝑚𝑚2 𝑝𝑝𝑚𝑚 = 𝑐𝑐2 �  𝑞𝑞(𝐫𝐫, 𝑡𝑡)Φ𝑚𝑚(𝐫𝐫)d𝑉𝑉
 

𝑉𝑉
= 𝑠𝑠𝑚𝑚(𝑡𝑡), (2) 

where c is the sound speed, 𝑞𝑞(𝐫𝐫, 𝑡𝑡) is the volume sound source, 𝑠𝑠𝑚𝑚(𝑡𝑡) is a modal source function, V is the 
volume of a room system and the coefficients 𝜉𝜉𝑚𝑚 are determined by 

𝜉𝜉𝑚𝑚 = 𝑟𝑟𝑚𝑚 + j𝜑𝜑𝑚𝑚 =
𝑐𝑐
2
�
Φ𝑚𝑚
2 (𝐫𝐫𝑠𝑠)
𝜁𝜁

d𝑆𝑆
 

𝑆𝑆
, (3) 

where 𝜁𝜁 is the complex impedance on the wall surface S, normalized by 𝜌𝜌𝑐𝑐, 𝜌𝜌 is the air density, 𝐫𝐫𝑠𝑠 is a position 
coordinate on the surface S and j = √−1. In order to solve Eq. (2), the method of variation of parameters 
was employed [12]. Using this method the general solution of Eq. (2) was found as 

𝑝𝑝𝑚𝑚(𝑡𝑡) =
[𝑥𝑥𝑚𝑚(𝑡𝑡)𝑦𝑦𝑚𝑚′ (𝑡𝑡0) − 𝑦𝑦𝑚𝑚(𝑡𝑡)𝑥𝑥𝑚𝑚′ (𝑡𝑡0)]𝑝𝑝𝑚𝑚(𝑡𝑡0)

𝑊𝑊𝑚𝑚(𝑡𝑡0) −
[𝑥𝑥𝑚𝑚(𝑡𝑡)𝑦𝑦𝑚𝑚(𝑡𝑡0) − 𝑦𝑦𝑚𝑚(𝑡𝑡)𝑥𝑥𝑚𝑚(𝑡𝑡0)]𝑝𝑝𝑚𝑚′ (𝑡𝑡0)

𝑊𝑊𝑚𝑚(𝑡𝑡0)  

− 𝑥𝑥𝑚𝑚(𝑡𝑡)�
𝑠𝑠𝑚𝑚(𝜏𝜏)𝑦𝑦𝑚𝑚(𝜏𝜏)
𝑊𝑊𝑚𝑚(𝜏𝜏) d𝜏𝜏

𝑡𝑡

𝑡𝑡0
+  𝑦𝑦𝑚𝑚(𝑡𝑡)�

𝑠𝑠𝑚𝑚(𝜏𝜏)𝑥𝑥𝑚𝑚(𝜏𝜏)
𝑊𝑊𝑚𝑚(𝜏𝜏) d𝜏𝜏

𝑡𝑡

𝑡𝑡0
, 

(4) 

where the functions  𝑥𝑥𝑚𝑚(𝑡𝑡) and  𝑦𝑦𝑚𝑚(𝑡𝑡) having the following forms: 

 𝑥𝑥𝑚𝑚(𝑡𝑡) = 𝑒𝑒−(𝜉𝜉𝑚𝑚+j𝜓𝜓𝑚𝑚)𝑡𝑡 ,      𝑦𝑦𝑚𝑚(𝑡𝑡) = 𝑒𝑒−(𝜉𝜉𝑚𝑚−j𝜓𝜓𝑚𝑚)𝑡𝑡 (5a, b) 

represent a fundamental set of solutions of homogeneous differential equations  

𝜕𝜕2𝑝𝑝𝑚𝑚
𝜕𝜕𝑡𝑡2

+ 2𝜉𝜉𝑚𝑚
𝜕𝜕𝑝𝑝𝑚𝑚
𝜕𝜕𝑡𝑡

+ 𝜔𝜔𝑚𝑚2 𝑝𝑝𝑚𝑚 = 0, (6) 

the function 𝑊𝑊𝑚𝑚(𝑡𝑡) = 𝑥𝑥𝑚𝑚(𝑡𝑡)𝑦𝑦𝑚𝑚′ (𝑡𝑡) − 𝑦𝑦𝑚𝑚(𝑡𝑡)𝑥𝑥𝑚𝑚′ (𝑡𝑡) is the Wronskian of 𝑥𝑥𝑚𝑚(𝑡𝑡) and 𝑦𝑦𝑚𝑚(𝑡𝑡), 𝑝𝑝𝑚𝑚(𝑡𝑡0) and 𝑝𝑝𝑚𝑚′ (𝑡𝑡0) are 
the initial conditions, and 𝜓𝜓𝑚𝑚 is the complex frequency for the mth mode 

𝜓𝜓𝑚𝑚 = 𝛺𝛺𝑚𝑚 + j𝜗𝜗𝑚𝑚 = � 𝑎𝑎𝑚𝑚 + �𝑎𝑎𝑚𝑚2 + 𝑏𝑏𝑚𝑚2  
2

+ j�
 −𝑎𝑎𝑚𝑚 + �𝑎𝑎𝑚𝑚2 + 𝑏𝑏𝑚𝑚2  

2
, (7) 

where 𝑎𝑎𝑚𝑚 = 𝜔𝜔𝑚𝑚2 − 𝑟𝑟𝑚𝑚2 + 𝜑𝜑𝑚𝑚2  and 𝑏𝑏𝑚𝑚 = −2𝑟𝑟𝑚𝑚𝜑𝜑𝑚𝑚. Inserting the functions 𝑥𝑥𝑚𝑚(𝑡𝑡) and 𝑦𝑦𝑚𝑚(𝑡𝑡) in Eq. (4) and 
making some mathematical transformations one can get 

𝑝𝑝𝑚𝑚(𝑡𝑡) =
𝑒𝑒−𝜉𝜉𝑚𝑚𝑡𝑡

2j𝜓𝜓𝑚𝑚
�𝑒𝑒j𝜓𝜓𝑚𝑚𝑡𝑡 � 𝑠𝑠𝑚𝑚(𝜏𝜏)𝑒𝑒(𝜉𝜉𝑚𝑚−j𝜓𝜓𝑚𝑚)𝜏𝜏d𝜏𝜏 −

𝑡𝑡

𝑡𝑡0
𝑒𝑒−j𝜓𝜓𝑚𝑚𝑡𝑡 � 𝑠𝑠𝑚𝑚(𝜏𝜏)𝑒𝑒(𝜉𝜉𝑚𝑚+j𝜓𝜓𝑚𝑚)𝜏𝜏d𝜏𝜏

𝑡𝑡

𝑡𝑡0
 � 

                                  + 𝑒𝑒−𝜉𝜉𝑚𝑚(𝑡𝑡−𝑡𝑡0) �𝑝𝑝𝑚𝑚(𝑡𝑡0) cos[𝜓𝜓𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)] +
𝜉𝜉𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡0) + 𝑝𝑝𝑚𝑚′ (𝑡𝑡0)

𝜓𝜓𝑚𝑚
sin[𝜓𝜓𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)]�. 

(8) 
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The first component on the right-hand side of Eq. (8) describes a modal response of a room system to the 
sound excitation defined by the modal source function 𝑠𝑠𝑚𝑚(𝑡𝑡). Therefore, using this component it is possible 
to analyze low-frequency transients or, in the case of a pure-tone sound source, to study the sound build-
up and the formation of a steady state. The second component on the right-hand side of Eq. (8) describes 
the decay of modal amplitudes when the sound source is turned off, so the modal sound field after this 
moment is determined only by the initial conditions 𝑝𝑝𝑚𝑚(𝑡𝑡0) and 𝑝𝑝𝑚𝑚′ (𝑡𝑡0). It is worth emphasizing that in room 
acoustics it is of particular importance to predict the reverberant sound field after switching off a pure-tone 
excitation. 

2.2. Reverberant sound field 

When in a coupled-room system there is a pure-tone sound source, which operates with constant power, 
energy losses on absorbing boundary surfaces are covered by the source and in the steady-state, which is 
usually reached during short time after a source start, the absorptive power is equal to that produced by 
the source. If the sound source is switched off, the acoustic energy accumulated inside a room system is 
dissipated on boundary surfaces and a reverberant sound field appears due to the common decay of 
acoustic modes. In order to simplify the analysis, it is assumed that the source stops at the time 𝑡𝑡0 = 0, hence 
using Eq. (8) one can obtain the following expression describing a decay of the mth mode: 

𝑝𝑝𝑚𝑚(𝑡𝑡) = 𝑒𝑒−𝜉𝜉𝑚𝑚𝑡𝑡 �𝑝𝑝𝑚𝑚(0) cos(𝜓𝜓𝑚𝑚𝑡𝑡) +
𝜉𝜉𝑚𝑚𝑝𝑝𝑚𝑚(0) + 𝑝𝑝𝑚𝑚′ (0)

𝜓𝜓𝑚𝑚
sin(𝜓𝜓𝑚𝑚𝑡𝑡)�. (9) 

In Eq. (9) the initial conditions 𝑝𝑝𝑚𝑚(0) and 𝑝𝑝𝑚𝑚′ (0) represent the modal amplitude and its time derivate when 
a steady-state in a room system is reached. From theoretical point of view, a steady-state is achieved when 
a time interval between the current time t and a moment of starting a pure-tone source is infinitely long. 
Thus, in Eq. (8) it must be assumed that 𝑡𝑡0 = −∞. Because in this case the initial conditions 𝑝𝑝𝑚𝑚(𝑡𝑡0) =
𝑝𝑝𝑚𝑚′ (𝑡𝑡0) = 0 are met, the formula for a steady-state modal behavior takes the following form 

𝑝𝑝𝑚𝑚(𝑡𝑡) =
𝑒𝑒−𝜉𝜉𝑚𝑚𝑡𝑡

2j𝜓𝜓𝑚𝑚
�𝑒𝑒j𝜓𝜓𝑚𝑚𝑡𝑡 � 𝑠𝑠𝑚𝑚(𝜏𝜏)𝑒𝑒(𝜉𝜉𝑚𝑚−j𝜓𝜓𝑚𝑚)𝜏𝜏d𝜏𝜏 −

𝑡𝑡

−∞
𝑒𝑒−j𝜓𝜓𝑚𝑚𝑡𝑡 � 𝑠𝑠𝑚𝑚(𝜏𝜏)𝑒𝑒(𝜉𝜉𝑚𝑚+j𝜓𝜓𝑚𝑚)𝜏𝜏d𝜏𝜏

𝑡𝑡

−∞
 �. (10) 

If the sound source is located at the point  𝐫𝐫0 = (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) and 𝜔𝜔 is the source angular frequency, the volume 
sound source 𝑞𝑞(𝐫𝐫, 𝑡𝑡) in Eq. (2) has the form: 

𝑞𝑞(𝐫𝐫, 𝑡𝑡) = 𝑄𝑄𝑄𝑄(𝐫𝐫 − 𝐫𝐫0)𝑒𝑒j𝜔𝜔𝑡𝑡 , (11) 

where the factor Q depends on the source power W according to the formula 𝑄𝑄 = �8𝜋𝜋𝜌𝜌𝑐𝑐𝑊𝑊 [13], therefore 
for this source the modal source function 𝑠𝑠𝑚𝑚(𝑡𝑡) can be determined from the following equation: 

𝑠𝑠𝑚𝑚(𝑡𝑡) = 𝑄𝑄𝑐𝑐2Φ𝑚𝑚(𝐫𝐫0)𝑒𝑒j𝜔𝜔𝑡𝑡 . (12) 

After inserting Eq. (12) into Eq. (10), the conditions 𝑝𝑝𝑚𝑚(0) and 𝑝𝑝𝑚𝑚′ (0) for a steady-state can be found as 

 𝑝𝑝𝑚𝑚(0) =
𝑄𝑄𝑐𝑐2Φ𝑚𝑚(𝐫𝐫0)

𝜔𝜔𝑚𝑚2 − 𝜔𝜔2 + 2j𝜔𝜔𝜉𝜉𝑚𝑚
, (13) 

𝑝𝑝𝑚𝑚′ (0) = j𝜔𝜔𝑝𝑝𝑚𝑚(0), (14) 

where the identity 𝜔𝜔𝑚𝑚2 = 𝜉𝜉𝑚𝑚2 + 𝜓𝜓𝑚𝑚2  was applied. Finally, substituting these conditions into Eq. (9) and using 
the obtained result in Eq. (1) yield the following equation: 

𝑝𝑝(𝐫𝐫, 𝑡𝑡) = 𝑄𝑄𝑐𝑐2 �
𝑒𝑒−𝜉𝜉𝑚𝑚𝑡𝑡Φ𝑚𝑚(𝐫𝐫0)Φ𝑚𝑚(𝐫𝐫)
𝜔𝜔𝑚𝑚2 − 𝜔𝜔2 + 2j𝜔𝜔𝜉𝜉𝑚𝑚

∞

𝑚𝑚=1

 �cos(𝜓𝜓𝑚𝑚𝑡𝑡) +
(𝜉𝜉𝑚𝑚 + j𝜔𝜔) sin(𝜓𝜓𝑚𝑚𝑡𝑡)

𝜓𝜓𝑚𝑚
� (15) 

describing a decay of the indoor sound pressure after switching off the pure-tone source. Equation (15) 
enables one to determine various properties of the reverberant sound field. Firstly, using Eq. (15) it is 
possible to predict changes in a spatial distribution of the pressure amplitude with increasing time, and 
secondly, at a given position 𝐫𝐫 of the field point, this equation allows to determine the temporal changes in 
the pressure amplitude and then estimate the reverberation time.  

As follows from Eq. (15), the reverberant sound is a superposition of decaying modal vibrations, which 
means that the pressure amplitude is time-dependent. Therefore, this amplitude is best calculated using the 
discrete Hilbert transform where the processed signal 𝑝𝑝𝑟𝑟(𝐫𝐫, 𝑡𝑡) is the real part of the sound pressure.  
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In a discrete time domain, this pressure signal has a finite length and is digitally sampled, so it is represented 
as a finite sequence of numbers, in which the nth number in the sequence is denoted by 𝑝𝑝𝑟𝑟(𝐫𝐫,𝑛𝑛), where, for 
convenience, it is assumed 𝑛𝑛 = 0, 1, … ,𝑁𝑁 − 1. The discrete Hilbert transform of 𝑝𝑝𝑟𝑟(𝐫𝐫,𝑛𝑛) is given by [14] 

𝐻𝐻𝑑𝑑{𝑝𝑝𝑟𝑟(𝐫𝐫,𝑛𝑛)} =

⎩
⎪
⎨

⎪
⎧

 

 �
𝑝𝑝𝑟𝑟(𝐫𝐫,𝑛𝑛)
𝑛𝑛 −𝑚𝑚

 
𝑁𝑁−1

𝑚𝑚=odd

  for 𝑛𝑛 even,
 

�
𝑝𝑝𝑟𝑟(𝐫𝐫,𝑛𝑛)
𝑛𝑛 − 𝑚𝑚

 
𝑁𝑁−1

𝑚𝑚=even

  for 𝑛𝑛 odd,

 (16) 

therefore, the formula for calculating the pressure amplitude 𝑃𝑃(𝐫𝐫,𝑛𝑛) is as follows: 

𝑃𝑃(𝐫𝐫,𝑛𝑛) = �𝑝𝑝𝑟𝑟2(𝐫𝐫,𝑛𝑛) + 𝐻𝐻𝑑𝑑2{𝑝𝑝𝑟𝑟(𝐫𝐫,𝑛𝑛)}. (17) 

It is worth noting that if we assume that 𝑡𝑡 = 0, then Eq. (15) allows us to predict the steady-state indoor 
sound field for a fixed source frequency. Moreover, using Eq. (15) it is also possible to determine frequency 
response of a room system, defined as the frequency spectrum of the sound pressure signal received at the 
field point r, when the system is excited by a point source with a flat power spectrum. 

3. Numerical study 

The aim of a numerical study is to simulate the reverberant sound field in a room system consisting of two 
adjacent rectangular rooms of the same height. The choice of such an architectural object was dictated by 
the fact that a similar configuration of coupled rooms can be found in many buildings and constructions.  
A schematic view of this enclosure together with the associated coordinate system is shown in Fig. 1. 

l1

h

d2

d3d2

d1

l2

xy

z

 

Figure 1. Room system under consideration consisting of two coupled rectangular rooms. 

Numerical tests were carried out for the following dimensions of the room system: 𝑙𝑙1 = 15 m, 𝑙𝑙2 = 5 m, 
𝑑𝑑1 = 10 m, 𝑑𝑑2 = 2 m, 𝑑𝑑3 = 6 m and ℎ = 4 m. The system was excited by the pure-tone source with the 
power W of 0.001 W located at the point: 𝐫𝐫0 = (2 m, 3 m, 1.6 m). After turning off the source, a decay of 
acoustic energy in the room system is the result of sound absorption on wall surfaces. If 𝜁𝜁𝑟𝑟  and 𝜁𝜁𝑖𝑖  are real 
and imaginary parts of the normalized surface impedance 𝜁𝜁, damping properties of this wall are described 
by the random-incident absorption coefficient 𝛼𝛼 calculated from the formula [15]: 

𝛼𝛼 =
8𝜁𝜁𝑟𝑟
|𝜁𝜁|2 �1 −

𝜁𝜁𝑟𝑟 ln(1 + 2𝜁𝜁𝑟𝑟 + |𝜁𝜁|2)
|𝜁𝜁|2 +

𝜁𝜁𝑟𝑟2 − 𝜁𝜁𝑖𝑖2

𝜁𝜁𝑖𝑖|𝜁𝜁|2 arctan �
𝜁𝜁𝑖𝑖

1 + 𝜁𝜁𝑟𝑟
�� , (18) 

where |𝜁𝜁| = �𝜁𝜁𝑟𝑟2 + 𝜁𝜁𝑖𝑖2 is a magnitude of 𝜁𝜁 and 𝜁𝜁𝑟𝑟  represents the normalized surface resistance, whereas 𝜁𝜁𝑖𝑖  
is referred to as the normalized surface reactance.  
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Figure 2. Distribution of the pressure amplitude P (in Pascals) on the observation plane 𝑧𝑧 = 1.2 m for the 
source frequency f : (a, c, e) 52 Hz, (b, d, f ) 70 Hz, and the time t : (a, b) 0 s, (c, d) 3 s, (e, f) 6 s.  

Hard-walled room system. 
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Figure 3. Temporal changes in the sound pressure 𝑝𝑝𝑟𝑟 and the pressure level 𝐿𝐿𝑤𝑤  at the receiver position 
𝐫𝐫 = (8 m, 7 m, 1.2 m) for the source frequency f : (a, c) 52 Hz, (b, d) 70 Hz. Hard-walled room system. 
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Figure 4. Distribution of the pressure amplitude P (in Pascals) on the observation plane 𝑧𝑧 = 1.2 m for the 
source frequency f : (a, c, e) 103 Hz, (b, d, f ) 120 Hz, and the time t : (a, b) 0 s, (c, d) 3 s, (e, f) 6 s.  

Hard-walled room system. 
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Figure 5. Temporal changes in the sound pressure 𝑝𝑝𝑟𝑟 and the pressure level 𝐿𝐿𝑤𝑤  at the receiver position 
𝐫𝐫 = (8 m, 7 m, 1.2 m) for the source frequency f : (a, c) 103 Hz, (b, d) 120 Hz. Hard-walled room system. 
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As shown by Eq. (15), a computer reconstruction of the reverberant sound field requires knowledge of 
the eigenfunctions Φ𝑚𝑚. Since the considered room system has an irregular shape, analytical determination 
of Φ𝑚𝑚 is not possible, so the finite element method (FEM) was employed to estimate these functions. Shapes 
of Φ𝑚𝑚 were calculated for the first 800 acoustic modes and frequencies 𝑓𝑓𝑚𝑚 = 𝜔𝜔𝑚𝑚 2𝜋𝜋⁄  of these modes are in 
the range 9.14−202.95 Hz. In the FEM procedure, a distance between adjacent nodes was 1 14⁄  m. This 
means that a minimum number of nodes per wavelength is about 24, therefore in the considered frequency 
range this procedure demonstrates high accuracy. Numerical simulations were performed for the room 
system with two different absorption properties. In the first case, all walls were assumed to be hard 
acoustically, which means that a magnitude of the wall impedance 𝜁𝜁 is very large but finite. In the second 
case, simulations were carried out for the room system after its acoustical treatment, which consisted in 
uniform coverage of the ceiling with a sound-absorbing material. In calculations it was assumed that an air 
filling the coupled rooms is characterized by the speed of sound 𝑐𝑐 = 343 m s⁄  and the density  
𝜌𝜌 = 1.21 kg m3⁄ , which corresponds to a 20°C air temperature and 50% relative humidity. 

An example of the hard-walled room system is an enclosure with concrete walls, thus, in numerical 
simulations it was assumed that walls provide uniform sound damping characterized by a real-valued 
surface impedance [16]. The random-incident absorption coefficient 𝛼𝛼 of these walls was fixed to 0.03. In 
the computer algorithm the coefficient 𝛼𝛼 was posited to be an input data, thus, the normalized surface 
resistance 𝜁𝜁𝑟𝑟  of 256.15 corresponding to 𝛼𝛼 equal to 0.03 was found by numerically solving the equation 

𝛼𝛼 =
8
𝜁𝜁𝑟𝑟
�1 −

2 ln(1 + 𝜁𝜁𝑟𝑟)
𝜁𝜁𝑟𝑟

+
1

1 + 𝜁𝜁𝑟𝑟
�,  (19) 

which can be derived from Eq. (18) by setting 𝜁𝜁𝑖𝑖 = 0. Numerical tests were aimed to simulate distributions 
of the pressure amplitude P on the observation plane 𝑧𝑧 = 1.2 m for selected source frequencies at various 
times t from the moment the source was turned off (𝑡𝑡 = 0). Moreover, temporal changes in the sound 
pressure 𝑝𝑝𝑟𝑟 and the pressure level 𝐿𝐿𝑤𝑤  at one receiving position on the observation plane were predicted to 
assess the nature of sound decay at this point. The pressure level 𝐿𝐿𝑤𝑤  was determined from the formula 

𝐿𝐿𝑤𝑤 = 20 log �
𝑃𝑃
𝑃𝑃max

�,  (20) 

where 𝑃𝑃max is the pressure amplitude when the sound source is switched off.  
Distributions of the pressure amplitude P on the observation plane for the source frequency f (in Hz): 

52, 70, 103 and 120, and the time t (in seconds): 0, 3 and 6, are shown in Figs. 2 and 4. These data indicate 
that it takes as much as 6 seconds after the source is turned off for the level of pressure amplitude to drop 
by approximately 40 dB. In the case of hard-walled room system, this is obviously due to the low sound 
damping on room walls. Another interesting thing resulting from these data is that for some cases the 
distribution of P on the observation plane does not change much over time. This effect is visible for the 
frequencies of 52 Hz (Fig. 2a, c, e) and 120 Hz (Fig. 4b, d, f) and is due to the fact that for these excitation 
frequencies there is one dominant mode in the acoustic response of the room system. As follows from  
Eq. (15), in such a case the sound should decay almost exponentially in time. This fact is confirmed by graphs 
in Figs. 3c and 5d showing temporal changes in the sound pressure 𝑝𝑝𝑟𝑟 and pressure level 𝐿𝐿𝑤𝑤 , simulated for 
the frequencies of 52 Hz and 120 Hz at the receiver point r = (8 m, 7 m, 1.2 m). To quantitatively assess the 
sound decay at this point, the reverberation time 𝑇𝑇30 was determined from the sound decay curves using 
the linear regression and its value is 9.42 s for the frequency of 52 Hz and 9.58 s for the frequency of 120 
Hz. Figures 2a, c, e and 4b, d, f also prove that for the frequencies of 52 Hz and 120 Hz the acoustic energy 
is concentrated in a larger subroom having the dimensions 𝑙𝑙1  × 𝑑𝑑1  × ℎ (see Fig. 1). This means that for these 
frequencies, eigenmodes localized in this subroom are excited. In order to recognize the reason of a mode 
localization, the eigenfrequencies 𝑓𝑓𝜅𝜅𝜅𝜅𝜅𝜅 of the hard-walled rectangular room with the same dimensions as 
the larger subroom were computed using the following formula [15]: 

𝑓𝑓𝜅𝜅𝜅𝜅𝜅𝜅 =
𝑐𝑐
2
��

𝜅𝜅
𝑙𝑙1
�
2

+ �
𝜇𝜇
𝑑𝑑1
�
2

+ �
𝜈𝜈
ℎ 
�
2

, (21) 

where the modal indices 𝜅𝜅, 𝜇𝜇, 𝜈𝜈 are non-negative integers and they are not simultaneously equal to zero. 
Table 1 lists frequencies 𝑓𝑓𝑚𝑚 of eigenmodes localized in the larger subroom and frequencies 𝑓𝑓𝜅𝜅𝜅𝜅𝜅𝜅 calculated 
from Eq. (21) for selected modal indices 𝜅𝜅, 𝜇𝜇, 𝜈𝜈. These data indicate that the effect of mode localization is 
caused by a generation of eigenmodes having approximately the same frequency as y-axial eigenmodes 
(κ , ν = 0) in rectangular enclosures with the same dimensions as the larger subroom. 
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Table 1. Frequencies 𝑓𝑓𝑚𝑚 of eigenmodes localized in larger subroom and frequencies 𝑓𝑓𝜅𝜅𝜅𝜅𝜅𝜅  
calculated from Eq. (21), together with corresponding modal indices.  

 
 
 
 
 
 
 

 
For the frequencies of 70 Hz and 103 Hz, large changes in distributions of the pressure amplitude P on 

the observation plane are noted during the sound decay process. In the first case, this is due to the fact that 
at the frequency of 70 Hz there is relatively weak sound excitation, as indicated by clearly smaller maximum 
values of P for subsequent time intervals than those observed for the frequency of 52 Hz (Fig. 2a, c, e). This 
means that at the frequency of 70 Hz several adjacent modes are excited and interact with each other, 
producing strong beating effects (Fig. 3b, d). A different behavior of sound decay occurs for the  frequency 
of 103 Hz because excited adjacent modes have clearly different damping properties, resulting in 
nonlinearity of the pressure level decay curve. Generally speaking, there exist two main types of nonlinear 
sound decay. The convex-curved decay, as in Fig. 5c, is characterized by a slower early decay and a faster 
late decay, while for the concave-curved decay it is the opposite, the initial decay is faster and the late decay 
is slower. This fact is confirmed by the evaluation of decay times from the data in Fig. 5c, as the early decay 
time (EDT) and the reverberation time 𝑇𝑇30 predicted using the linear regression are 10.62 s and 7.31 s, thus, 
the EDT/𝑇𝑇30 ratio becomes 1.45, which indicates a clear ballooning sound decay. 

Acoustics of the hard-walled room system can be improved by placing absorbing materials on walls. 
However, in several situations a use of these materials on a floor or lateral walls is impossible for practical 
reasons, therefore in these cases the acoustical treatment is limited to a ceiling absorber. In the following, 
it will be assumed that the ceiling is uniformly covered with the absorbing material having the surface 
impedance 𝜁𝜁 = 10 + j5.7, corresponding to the absorption coefficient 𝛼𝛼𝑐𝑐 = 0.4, and the remaining walls, as 
previously, are characterized by the normalized surface resistance 𝜁𝜁𝑟𝑟  of 256.15 corresponding to 𝛼𝛼 of 0.03. 
A value of 𝛼𝛼𝑐𝑐  is appropriate to consider the room system as lightly damped, because the average absorption 
coefficient 𝛼𝛼av for the room system after acoustical treatment of the ceiling, given by 

𝛼𝛼av =
𝛼𝛼(𝑆𝑆 − 𝑆𝑆𝑐𝑐) + 𝛼𝛼𝑐𝑐𝑆𝑆𝑐𝑐

𝑆𝑆
,  (22) 

assumes the small value 𝛼𝛼av = 0.141, where S, as before, is a surface of all room walls and 𝑆𝑆𝑐𝑐  is a surface of 
the ceiling. Simulation results for the room system with ceiling treatment are depicted in Figs. 6–9. These 
data show that the acoustical treatment significantly reduced the reverberation because the pressure 
amplitude P decreases by at least 40 dB within 1.2 s of turning off the sound source. Moreover, the effect of 
mode localization is less noticeable due to the overlap of adjacent acoustic modes, and as a result, no 
exponential drop in the pressure level 𝐿𝐿𝑤𝑤  is observed for the frequencies of localized modes (Figs. 7c, 9d).  

4. Concluding remarks 

In this paper, the modal expansion method was applied to determine a low-frequency reverberant sound 
field in coupled rooms. Theoretical study has shown that the reverberant sound that appears after turning 
off a pure-tone source is a superposition of decaying modal vibrations, causing the pressure amplitude to 
be time-dependent. Therefore, the discrete Hilbert transform was used to determine the amplitude of the 
decaying sound. The usefulness of the theoretical model was demonstrated in numerical tests carried out 
for a room system consisting of two connected rectangular rooms of the same height, because a similar 
configuration of coupled rooms can be found in many buildings and constructions. Eigenfunctions and 
eigenfrequencies of this room system were determined using the finite element method.  

Calculation results obtained for the hard-walled room system showed that the source frequency has  
a significant impact on the distribution of pressure amplitude on the observation plane at various times 
after the source was turned off. This influence is the smallest for the frequencies of modes localized in one 
of the subrooms. This is due to the fact that at these frequencies the localized modes represent the modes 
that dominate the sound decay process, therefore the predicted sound decay is almost exponential. For the 
remaining considered source frequencies, this influence is much greater, therefore an irregular sound decay 

m 𝑓𝑓𝑚𝑚 (Hz) 𝜅𝜅 𝜇𝜇 𝜈𝜈 𝑓𝑓𝜅𝜅𝜅𝜅𝜅𝜅 (Hz) 

25 51.93 0 3 0 51.45 

190 120.20 0 5 0 120.05 

381 154.44 0 7 0 154.35 
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resulting from the beating effects and a convex-curved decay characterized by a slower early decay and a 
faster late decay were observed. 

 

  
Figure 6. Distribution of the pressure amplitude P (in Pascals) on the observation plane 𝑧𝑧 = 1.2 m for the 

source frequency f : (a, c, e) 52 Hz, (b, d, f ) 70 Hz, and the time t : (a, b) 0 s, (c, d) 0.6 s, (e, f) 1.2 s.  
Room system with ceiling treatment.  
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Figure 7. Temporal changes in the sound pressure 𝑝𝑝𝑟𝑟 and the pressure level 𝐿𝐿𝑤𝑤  at the receiver position  
r = (8 m, 7 m, 1.2 m) for the frequency f : (a, c) 52 Hz, (b, d) 70 Hz. Room system with ceiling treatment.  
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Figure 8. Distribution of the pressure amplitude P (in Pascals) on the observation plane 𝑧𝑧 = 1.2 m for the 

source frequency f : (a, c, e) 103 Hz, (b, d, f ) 120 Hz, and the time t : (a, b) 0 s, (c, d) 0.6 s, (e, f) 1.2 s.  
Room system with ceiling treatment.  
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Figure 9. Temporal changes in the sound pressure 𝑝𝑝𝑟𝑟 and the pressure level 𝐿𝐿𝑤𝑤  at the receiver position  

r = (8 m, 7 m, 1.2 m) for the frequency f : (a, c) 103 Hz, (b, d) 120 Hz. Room system with ceiling treatment. 
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Numerical simulations have demonstrated that acoustical treatment of the ceiling significantly reduced 
reverberation. Moreover, distributions of pressure amplitude obtained in this case on the observation plane 
showed that for all considered frequencies the sound decay exhibits non-exponential behavior. This is due 
to interactions between acoustic modes that cause beating effects and the modal overlap. It can also be 
stated that the observed large irregularity of sound decay curves makes the proper qualification of sound 
decay very difficult, because in this case a characterization of the decay process by only one decay time or 
at most two decay times is essentially impossible. 
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