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Abstract—Accurate estimation of the speed-of-sound (SoS)
is important for ultrasound (US) image reconstruction tech-
niques and tissue characterization. Various approaches have been
proposed to calculate SoS, ranging from tomography-inspired
algorithms like CUTE to convolutional networks, and more
recently, physics-informed optimization frameworks based on
differentiable beamforming. In this work, we utilize implicit
neural representations (INRs) for SoS estimation in US. INRs are
a type of neural network architecture that encodes continuous
functions, such as images or physical quantities, through the
weights of a network. Implicit networks may overcome the
current limitations of SoS estimation techniques, which mainly
arise from the use of non-adaptable and oversimplified physical
models of tissue. Moreover, convolutional networks for SoS
estimation, usually trained using simulated data, often fail when
applied to real tissues due to out-of-distribution and data-shift
issues. In contrast, implicit networks do not require extensive
training datasets since each implicit network is optimized for
an individual data case. This adaptability makes them suitable
for processing US data collected from varied tissues and across
different imaging protocols.

We evaluated the proposed SoS estimation method based on
INRs using data collected from a tissue-mimicking phantom con-
taining four cylindrical inclusions, with SoS values ranging from
1480 m/s to 1600 m/s. The inclusions were immersed in a material
with an SoS value of 1540 m/s. In experiments, the proposed
method achieved strong performance, clearly demonstrating the
usefulness of implicit networks for quantitative US applications.

Index Terms—beamforming, deep learning, implicit neural
representations, speed-of-sound, quantitative ultrasound

I. INTRODUCTION

Accurate estimation of the speed-of-sound (SoS) is crucial
in ultrasound (US) imaging. SoS serves as a valuable quan-
titative parameter for tissue characterization, such as in the
assessment of fatty liver disease [[1]]. More importantly, SoS is
central to US image generation techniques, as it is required for
performing high quality beamforming. However, US scanners
typically set the SoS value to 1540 m/s, an average for
soft tissues, for image generation tasks. This approximation
degrades US image quality, ultimately affecting methods that
process the reconstructed data [2].

Various approaches have been proposed for SoS estimation,
ranging from tomography-inspired algorithms like CUTE to
convolutional networks and, more recently, physics-informed
optimization frameworks based on differentiable beamform-
ing [3]-[6]. However, the efficacy of current tomography-

inspired techniques is limited due to the oversimplified phys-
ical models used in their derivation. Deep learning methods,
primarily relying on encoder-decoder convolutional networks,
have been designed to process raw US data for SoS estimation
[6]. However, the diversity of US imaging techniques and
the variability of human anatomy complicate their practical
application. Convolutional networks, pre-trained on simulated
data, may fail when applied to real tissues due to out-of-
distribution and data-shift issues. Additionally, convolutional
networks may generate SoS parametric maps that are implau-
sible from a physical perspective, as the physics is implicitly
injected through the training data rather than a process that
constrains outputs based on specific input RF data. Simson
et al. utilized differentiable beamforming for US autofocusing
(DBUA), in which the SoS estimation task is stated as an
optimization problem [5]]. This framework is based on dif-
ferentiable beamforming, where the initial SoS value is pre-
defined on a fixed grid of coordinates, and directly optimized
with a loss function that associate the spatial SoS distribution
with selected characteristic of the beamformed data, such as
speckle brightness.

Implicit neural representations (INRs) are gaining momen-
tum in biomedical image analysis. INRs are a type of neural
network architecture that encodes continuous functions in the
network’s weights. Recently, these models have been applied
to tasks such as cardiac segmentation [[7], brain image registra-
tion [8], and MRI image enhancement [9]. Unlike traditional
neural networks, INRs do not rely on discrete grid-based data,
but instead represent information implicitly, allowing for more
flexible and adaptable modeling of the target quantity [10].
INRs do not require extensive training datasets since each
implicit network is optimized for a specific data case. This
adaptability makes them well-suited for processing US data
collected from a variety of tissues and across different imaging
protocols. Compared to traditional quantitative US (QUS)
techniques, implicit networks can utilize complex physics-
related objective loss functions during optimization, enabling
them to implicitly code nonlinear relationships that would be
otherwise difficult to model using standard techniques.

In this work, leveraging the differentiable beamforming
framework, we employ implicit networks for SoS estimation in
US. Our method extends the DBUA framework by incorporat-
ing the advantages of INRs, such as their ability to implicitly
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A schematic of the proposed framework for speed-of-sound estimation in ultrasound. An implicit network is trained to produce speed-of-sound

estimates, which are then used for image reconstruction through a differentiable delay-and-sum beamformer. The phase shift error is computed from the
reconstructed data and backpropagated to the implicit network, updating its weights accordingly.

represent nonlinear mappings. Our initial results demonstrate
that INRs can provide accurate and efficient computational
modeling and parameter estimation in QUS.

II. METHODS

A. Implicit networks

An INR is a multi-layer perceptron trained using input data
coordinates to output the target quantity. In this work, we
utilized the SIREN implicit network for SoS estimation. The
SIREN model can be expressed using the following formula:

p(W(l)j‘i’b(l))a =1
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where Z € [0,1]? represents the input coordinates defined
on a normalized 2D grid. The function p(z) = sin(wz)
stands for the point-wise sine activation function, with the
hyperparameter w set to 30, following the original paper [10].
W® and b® correspond to the weight and bias of the I-th
layer, respectively.

B. Speed-of-Sound estimation

In this study, we aim to estimate the spatial distribution
of the speed-of-sound parameter in tissue using implicit net-
works. We formulate the problem as follows:

co(T) = Ac(T) + co(T), 2)

where Ac(z) is represented by a coordinate-wise SIREN
model, and ¢y(Z) denotes the initial SoS spatial distribution
(e.g., set to a constant value of 1540 m/s). In our approach, we

train the implicit network to provide corrections to the initial
estimate of the speed-of-sound distribution. Given the SoS dis-
tribution ¢(Z), we apply delay-and-sum (DAS) beamforming
to compute the time-of-flight values and generate the B-mode
image. As in the DBUA framework, the implicit network is
optimized using the following loss function:

L(2) = Le(C) + aLy () (3)

where Lpe(¢) is the phase shift error loss function, and Ltv(¢)
represents the total variation regularization loss. The regular-
ization weight o was set to 0.01. For a detailed description of
the loss functions, we refer to the DBUA paper [3].

C. Training and Evaluation

Experiments were performed using the us4R-lite US scanner
(us4us, Poland) equipped with a 192-element linear probe
SL1543 (Esaote, Italy) operating at a frequency of 5 MHz. The
synthetic aperture technique was applied to acquire raw US
data from a tissue-mimicking phantom (model 1438, Dansk
Fantom Service, Denmark), containing cylindrical inclusions
(diameter of 1 cm) with SoS values of 1480 m/s, 1510 m/s,
1570 m/s, and 1600 m/s, respectively. All inclusions were
immersed in the material with the SoS value of 1540 m/s.

The proposed approach was compared with the DBUA
method. The collected US data were pre-processed in the same
way as in the DBUA technique to enable the use of the differ-
entiable beamforming framework implemented in Python/JAX
[5], [11]]. For estimation, we used the SIREN model with three
hidden layers, each consisting of 128 units. Both the proposed
method and the DBUA technique were optimized on a physical
grid of 30 mm x 20 mm, corresponding to a 30x20 grid of 2D
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Fig. 2. Qualitative results obtained for the proposed method based on implicit networks. Reconstructed B-mode images and the speed-of-sound parametric
maps were determined for a tissue-mimicking phantom containing inclusions with varying speed-of-sound values.

points used for training. Additionally, the output of the SIREN
was multiplied by a factor of 100 to improve training, as the
original weight initialization scheme favored outputs from a
small interval. The networks were trained for 1000 epochs
using Adam optimizer with learning rate set to 0.001

To evaluate the investigated SoS estimation methods, we
used the root mean squared error (RMSE) metric, with SoS
values provided by the phantom manufacturer serving as the
reference.

III. RESULTS

Results obtained for the inclusion phantom are summarized
in Table The proposed method, based on the implicit
network, outperformed the DBUA technique in three out of
four cases with respect to the RMSE metric. For the phantom
containing the inclusion with an SoS value of 1600 m/s, our
approach performed on par with DBUA. While the DBUA
technique achieved similar scores across all four inclusions,
our method clearly performed better for cases with lower SoS
value differences between the inclusion and the background.
The network struggled with accurately modeling high SoS
variations. However, we believe this issue could be mitigated
by using a nonlinear transformation of the target SoS values,
which we leave for future work.

Fig. 2] shows the reconstructed B-mode images and the SoS
parametric maps determined using our method. The qualitative
results demonstrate that the proposed method performed best

TABLE I
RMSE SCORES WERE CALCULATED FOR BOTH THE PROPOSED METHOD,
BASED ON IMPLICIT NETWORKS, AND THE DBUA TECHNIQUE. THE
RESULTS WERE OBTAINED USING A TISSUE-MIMICKING PHANTOM WITH
INCLUSIONS WITH VARYING SPEED-OF-SOUND VALUES.

Phantom Proposed (INRs) | DBUA
Inclusion, 1480 m/s 154 17.6
Inclusion, 1510 m/s 8.0 15.7
Inclusion, 1540 m/s 6.8 18.2
Inclusion, 1600 m/s 14.8 14.8

for the inclusions with SoS values of 1510 m/s and 1570 m/s.
For the two remaining cases, the method produced less circular
spatial SoS distributions. Additionally, Fig. [3] illustrates the
lateral and longitudinal cross-sections determined with respect
to the centers of the phantom inclusions. Here, we observe
that the implicit network tends to underestimate the target
SoS values. Furthermore, the results obtained for the lateral
dimension were better compared to the longitudinal axis.

IV. DISCUSSION

In this paper, we demonstrated that implicit neural networks
can be effectively used for SoS estimation in US. Our prelim-
inary results indicate that implicit networks offer a promising
framework for calculating quantitative US (QUS) parameters.
Compared to standard QUS estimation techniques, physics-
informed networks are less reliant on assumptions typically
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Fig. 3. The lateral and longitudinal cross-sections of the speed-of-sound
parametric maps were analyzed with respect to the centers of the phantom
inclusions.

required to simplify modeling and formulate equations for
SoS estimation [3]]. Implicit networks present a nonlinear
mapping, which is determined on a per-case basis through
an optimization process driven by a specific loss function.
Well-designed loss functions, inherently related to US physics,
are therefore crucial for developing implicit networks for
QUS parameter estimation. The method proposed in this work
can be seen as a natural extension of the DBUA technique,
where the SoS value was directly optimized on a predefined
grid. In our approach, the use of an implicit network allows
for learning a more representative mapping function for SoS
estimation.

Our approach has several limitations. First, the training of
the implicit network depends heavily on the employed loss
functions. Adjusting the balance between the loss function
components may lead to different outcomes or even cause
divergence during training. However, this is a common is-
sue with physics-informed networks [12]. Similar to instance
segmentation in neural networks, special adjustments may be
needed to fine-tune the loss function to accurately estimate SoS
values for small objects [13]]. Second, we did not evaluate the
proposed method on US data collected from humans, leaving
it uncertain whether the approach can be applied to human
tissues with complex anatomy. Third, while our implementa-
tion followed the DBUA framework, better results might be
achievable through careful optimization of hyperparameters.

In the future, we plan to explore novel loss functions for
training implicit networks. For example, we intend to design
loss functions that jointly address US image reconstruction and
the estimation of other QUS parameters. We also aim to apply
INRs to decompose raw US data into components representing
different physical properties, similar to recent work in texture
separation and image registration in microscopy [14]. Addi-
tionally, we will extend our method to 3D US imaging and

consider applications like temperature monitoring [15]]. The
application of INRs in US represents a promising direction
for further research.
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