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We calculated the structural, electronic, and magnetic properties of FeSe within density-functional theory at
the generalized gradient approximation level. First, we studied how the bandwidth of the d-bands at the Fermi
energy is renormalized by adding simple corrections: Hubbard U , Hund’s J , and by introducing long-range
magnetic orders. We found that introducing either a striped or a staggered dimer antiferromagnetic order brings
the bandwidths—which are starkly overestimated at the generalized gradient approximation level—closer to
those experimentally observed. Second, for the ferromagnetic, the striped, checkerboard, and staggered dimer
antiferromagnetic order, we investigate the change in magnetic formation energy with local magnetic moment
of Fe at a pressure up to 6 GPa. The bilinear and biquadratic exchange energies are derived from the Heisenberg
model and noncollinear first-principles calculations, respectively. We found a nontrivial behavior of the spin-
exchange parameters on the magnetization, and we put forward a field-theory model that rationalizes these results
in terms of two-dimensional spin and orbital fluctuations. The character of these fluctuations can be either that
of a standard density wave or a topological vortex. Topological vortices can result in mesoscopic magnetization
structures.
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I. INTRODUCTION

The structurally simplest quasi-two-dimensional (2D) iron
chalcogenide superconductor (ICS) FeSe [1] is of interest
to the condensed-matter and materials physics community
because of the unconventional superconductivity, the not yet
understood origin of the nematic phase, and the absence of
a long-range magnetic order [2–6]. The electronic structure
and magnetic properties of the parent phase are investigated
intensely, as they may help to explain those exotic properties.

FeSe presents a peculiar electronic structure, which it
shares with other ICSs. The dxy and dxz/yz orbital-derived
bands around the Fermi level all contribute to the relevant
physics of superconductivity, nematicity, and magnetism, for
which ICSs are said to have a multiorbital multiband nature.
This makes the use of effective models more difficult than for
cuprates, for which a single-band effective model is sufficient.
On the other hand, standard density functional theory (DFT)
calculations are known to strongly overestimate—by nearly a
factor 8 and 4, respectively [7]—the bandwidth of the relevant
bands around the Fermi level when compared with angle-
resolved photoemission spectroscopy (ARPES) experiments
[7–9].
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The renormalization of the conventional DFT bandwidth
is the signature of correlation, which is missing at this level
of theory. Calculations including strong local and long-range
electron correlation at different levels of theory [10–16] [the
addition of Hubbard’s U , slave-boson theory, dynamical mean
field theory (DMFT) either on top of conventional DFT, hy-
brid DFT, or quasiparticle GW ] have been performed with
partial success in reproducing the bandwidth of the relevant
bands. A different approach has been taken in Ref. [17],
which applied conventional DFT to a paramagnetic supercell
[18] and found the bandwidth of the dxy and dxz/yz bands
to be strongly renormalized compared to nonmagnetic cal-
culations, in quite good agreement with the ARPES results.
Further, their effective band structure also reproduces the
large broadening of the dxy band around the � point. The
latter work points to a strong interplay between electronic
and magnetic properties and the need to consider the mag-
netic structure of FeSe to reproduce its electronic structure.
Indeed, despite the absence of long-range magnetic order
at ambient pressure, the consensus is that FeSe serves as a
platform for diverse competing magnetic interactions such
as Néel, stripe, or staggered-type antiferromagnetic interac-
tions [19–22]. Applying hydrostatic pressure around 2 GPa
induces stripe-type long-range order into the system [23].
Besides inducing long-range magnetic order into the sys-
tem, the pressure-temperature phase diagram also reveals that
pressure suppresses nematicity while superconducting Tc is
enhanced by factor 4 [23,24]. Both spin and orbital degrees
of freedom are supposed to play a key role in this phase
diagram [25].
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In this work, using DFT, we investigate the coupling of spin
and orbital degrees of freedom, thus the interplay of electronic
structure and magnetic properties of FeSe in its parent phase.
Using field theory, we then consider the implications of such
coupling, seeking to account for the missing correlation in
standard DFT nonmagnetic calculations. This investigation is
articulated in three parts.

In the first part (Sec. III), we systematically study how the
electronic structure from conventional DFT, and specifically
the bandwidths of the dxy and dxz/yz orbital-derived bands, is
modified when adding on-site magnetization, Hubbard U , and
Hund’s J . Remarkably, we find that a reasonable compari-
son with experimental data is obtained for phases hosting a
magnetic order, either striped antiferromagnetic (SAFM) or
staggered dimer (SD). This is in agreement with a finite on-
site magnetization that minimizes the DFT energy. However,
experiments do not support the existence of a macroscopic
spin order at ambient pressure.

In the second part (Sec. IV), we compute within DFT
the magnetic formation energy as a function of the local
magnetic moment for varying pressure, thus we probe the
energy landscape of different magnetic interactions. Since
the local magnetic moment affects orbital occupation, these
calculations provide insight into the role of the orbital degree
of freedom, as highlighted in Refs. [26,27]. We map these
results onto a Heisenberg-like Hamiltonian [28–30] to find a
nontrivial dependence of the spin-exchange parameters on the
local magnetic moments, which points to a strong coupling of
the spin and orbital degrees of freedom.

The implications of this strong coupling are considered in
the third part (Sec. V) at the many-body level, thus including
collective phenomena, using field-theory modeling. We for-
mulate a model that describes the spin and orbital collective
fluctuations as two coupled 2D classical degrees of freedom,
described by Kosterlitz-Thouless-type theories. Our model
can capture highly nonlocal features, and in particular it can
host mesoscopic patterns of orbital configurations, i.e., vor-
tices in Kosterlitz-Thouless language. The motivation of our
study, looking towards mesoscopic domains/patterns, comes
also from recent experimental reports where nanoscopic Grif-
fiths phases were found in FeSe [31]. We then demonstrate
how the model accounts for the difference between the
standard DFT nonmagnetic calculations and experimental
observations.

II. COMPUTATIONAL DETAILS

The plane-wave pseudopotential suite QUANTUM ESPRESSO

[32,33] is used to perform fully self-consistent DFT-based
electronic structure calculations by solving the standard
Kohn-Sham (KS) equations. Ultrasoft pseudopotentials from
the PSlibrary [34] are used for Fe and Se atoms. Kinetic-
energy cutoffs are fixed to 55 Ry for electronic wave functions
after performing rigorous convergence tests.

The electronic exchange-correlation is treated under
the generalized gradient approximation (GGA) that is
parametrized by the Perdew-Burke-Ernzerhof (PBE) func-
tional [35,36]. Hubbard’s parameters used in the DFT + U
calculations are determined from a piecewise linearity condi-
tion implemented through linear-response theory [37], based

on density functional perturbation theory (DFPT) [38] as im-
plemented in QUANTUM ESPRESSO. A dense q-mesh grid of
3 × 3 × 3 is considered for the DFPT calculation. We have
obtained a Hubbard U of 6.90 eV. This is larger than 4.06 eV
previously obtained from the constrained random phase ap-
proximation [39,40].

A supercell of size 2 × 2 × 1 is used to calculate magnetic
moment-dependent energies in different magnetic phases
like ferromagnetic (FM), checkerboard antiferromagnetic
(CAFM), SAFM, and SD. In the CAFM phase, each spin is
surrounded by four nearest neighbors (NNs) of opposite spins.
In the SAFM phase, each spin is surrounded by two NNs of
the same spins and two NNs of opposite spins. On the other
hand, in the SD phase each spin is surrounded by one NN
of the same spin and three NNs of opposite spins. We adopt
the Monkhorst-Pack scheme [41] to sample the Brillouin zone
in k-space with an 8 × 8 × 8 grid. The band-unfolding tech-
nique as implemented in the BandUPpy module was used
to get the primitive cell band structure from the supercell
magnetic lattice [42–44]. The coordinates are optimized for
each magnetic phase. Geometry optimization has been per-
formed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
scheme [45]. The experimental lattice parameters (a, b =
3.7698 Å, c = 5.5163 Å, and zSe = 0.2576) are used as start-
ing values. Convergence thresholds of 10−8 and 10−3 are used
on total energy (a.u.) and forces (a.u.), respectively, for ionic
minimization. High-pressure structures are obtained by en-
thalpy (H = U + PV ) minimization under externally applied
hydrostatic pressure. Fixed volume coordinate optimization
calculation has been performed with long-range magnetic
order at all pressures. The optimal magnetic moments are
obtained from first-principles calculations with long-range
magnetic order.

An energy penalty functional is used to perform the con-
strained magnetic moment calculations. The penalty term is
incorporated into total energy by weight λ as Etotal = ELSDA +∑

i λ(Mi − M0
i )2, where i is the atomic index for Fe atoms,

and M0
i , Mi are the targeted and actual local magnetic moment

at atom i, respectively. The value of λ is fixed to 25 Ry/μ2
B

after performing a convergence test, constraining the magnetic
moment of Fe at a particular value. The angular dependence
of energy is calculated by performing fully noncollinear first-
principles calculations.

III. BANDWIDTH RENORMALIZATION

We present the results for the three t2g orbital-derived bands
dxy, dxz, dxy which are dominant to the holelike bands crossing
the Fermi level around the � point. We employ DFT (without
and with spin polarization), DFT + U , DFT + J , both in the
nonmagnetic (NM) case and assuming SAFM or SD order.
We focus on the band dispersion, along the �-M direction,
and we consider the difference between the maximum and
the minimum band energy (see Fig. 8 and Appendix A),
which in what follows we refer to simply as bandwidth. It has
been observed from ARPES experiments that conventional
nonmagnetic DFT strongly overestimates the bandwidth of
both dxy and dxz/yz bands. Here, we observe the effect of
the on-site Hubbard repulsion, of Hund’s J , which is pre-
dicted to play an important role for FeSe compounds [13,25],
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TABLE I. Approximate values of bandwidth (in meV) along the
�-M direction of the dxy, dxz, dxy orbital derived bands at different
levels of the theory and for different magnetic phases.

Nonmagnetic GGA/GGA+U

Orbital GGA U = 3.45 eV U = 6.90 eV –

dxy 834.8 698.5 565.8 –
dxz/yz 572.8 632.2 681.1 –

Spin-polarized GGA/GGA+U

Orbital GGA U = 3.45 eV U = 6.90 eV –

dxy 645.1 579.8 160.7 –
dxz/yz 436.5 468.0 995.3 –

Spin-polarized GGA+J

Orbital J = 0.05 eV J = 0.10 eV J = 0.20 eV J = 0.35 eV

dxy 621.7 600.6 555.4 454.0
dxz/yz 429.5 426.0 415.5 398.1

Spin-polarized with long-range magnetic order

Orbital SAFM U = 1.0 eV U = 2.0 eV U = 3.4 eV

dxy 227.8 202.9 238.9 430.2
dxz/yz 271.1 476.4 551.7 636.1

Orbital J = 0.05 eV J = 0.10 eV J = 0.20 eV J = 0.50 eV

dxy 272.1 303.8 447.8 712.9
dxz/yz 256.7 274.2 274.6 356.4

and SAFM and SD order. Though FeSe does not present a
long-range magnetic order—contrary to ICSs, which mostly
order magnetically—the SAFM has been observed to be the
dominant magnetic fluctuation in FeSe [20], and SAFM order
appears in the system at higher pressures [24]. We also con-
sidered the SD phase, which has been predicted theoretically
to be slightly lower in energy than SAFM [46]. The results of
the bandwidthof the t2g orbital-derived bands are summarized
in Table I.

NM GGA and GGA + U . The values calculated at the NM
GGA level, 834.8 meV, and 572.8 meV for dxy and dxz/yz,
respectively, are in agreement with [7]. As already reported
[8], the bandwidths of these bands are strongly overestimated
compared to experiments. Next, we add Hubbard U corre-
lation, using for U both the value determined from DFPT
and half of such a value, to study the dependence of the
bandwidthon U . The determined U value for FeSe within
DFPT stands at 6.90 eV, surpassing the 4.06 eV derived
from the constrained random phase approximation [39,40].
The effect of U is strongly orbital-dependent: by increas-
ing U , the bandwidthof dxy decreases, whereas that of dxz/yz

increases compared to NM GGA. This is consistent with
previous LDA + U calculation [11]. The simple mean-field
U correction is insufficient, as may be expected due to the
multiorbital, multiband nature of the system.

Spin-polarized GGA and GGA + U . By just considering
spin polarization, the bandwidthof NM GGA is renormalized
by about a factor 1.3. As in the NM case, U is orbital-selective.
The bandwidthof the dxy derived band is renormalized to

TABLE II. Bandwidth (in meV) calculated within DFT assum-
ing either SAFM and SD long-range magnetic orders, compared
with theoretical (DFT+DMFT) and experimental values from the
literature.

Orbital DFT+DMFTa DFT@SAFM DFT@SD Expt.b

dxy 225.0 227.8 169.8 37.5
dxz/yz 200.0 271.1 367.8 155.0

aReference [12].
bReferences [8,9].

160.7 meV at U = 6.90 eV, while the bandwidthof dxz/yz

increases to the value of 995.3 meV.
Spin-polarized GGA + J: Adding increasing Hund’s J

shows a renormalization of the bandwidthof the t2g orbital-
derived bands. At J = 0.35 eV, the bandwidthof dxy and
dxz/yz is reduced to 454.0 and 398.1 meV, respectively. How-
ever, when further increasing J , the nature of the bands
changes, bringing the calculated band structure in qualitative
disagreement with the experimental observations. The com-
bined addition of Hubbard U and Hund’s J (results not shown)
does not bring any improvement in applying the correction
separately.

Long-range magnetic order GGA, GGA + U, GGA + J:
The bandwidths of both dxy and dxz/yz orbitals are renormal-
ized to 272.1 and 256.7 meV, respectively, in SAFM phase. As
previously observed, the addition of U is orbital-selective, at
least in the case of “small” U . For U = 1 eV, the bandwidthof
dxy decreases to 202.9 eV and the dxz/yz bandwidthincreases
to 476.4 eV. Instead, larger values of U in combination with
magnetic ordering cause an increase of the bandwidthof both
orbitals. The addition of a small Hund’s J (0.05 eV) increases
the bandwidthof dxy slightly to 271.1 meV and decreases
that of dxz/yz to 256.7 meV. As for the Hubbard parameters,
larger values of J in combination with magnetic ordering
cause an increase of the bandwidthof both orbitals. These
results indicate that considering the magnetic ordering also
accounts for most of the effects of adding the Hubbard U and
Hund’s J .

Table II compares the bandwidthwe calculated within the
GGA in the SAFM and SD long-range magnetic order, with
those obtained from DFT + DMFT [12] and experimentally
observed values. The bandwidthof dxy obtained from DFT +
DMFT is 225.0 meV, very close to the value 227.8 meV we
obtained assuming a SAFM magnetic order. The bandwidthis
further reduced to 169.8 meV by assuming the SD magnetic
order. All these values are still too large by a factor 4–6 com-
pared with the value of 37.5 meV extracted from experiments
[8,9].

The calculated bandwidth of the dxz/yz band is 200.0, 271.1,
and 367.8 meV for DFT + DMFT and assuming a SAFM and
SD magnetic order, respectively. This is closer to the value ex-
tracted from the experiment, which is about 155.0 meV. Then,
assuming a long-range magnetic order has a similar effect to
introducing strong electron correlation through DMFT. Both
DFT + DMFT and DFT with long-range magnetic order pre-
dict the bandwidthof the dxy and dxz/yz orbital-derived bands
to be of the same order, thus overestimating by a factor 4–6
the bandwidthof the dxy band.
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FIG. 1. Spin arrangement in FeSe magnetic lattice: (a) CAFM,
(b) SAFM, and (c) SD. The brown and green dots represent Fe and
As atoms, respectively. The black arrows in the lattice represent
up and down spin. The red dashed lines highlight the AFM square
(sub)lattice. The SAFM phase can be imagined as two interpene-
trating AFM square sublattices. J1 and J2 are the NN and NNN
spin-exchange parameters in the Heisenberg model (see Sec. IV B).
The figure has been prepared using crystal visualization software
VESTA [47].

IV. MAGNETIC PROPERTIES

We consider four different magnetic phases: FM, CAFM,
SAFM, and SD. The three antiferromagnetic (AFM) config-
urations are shown in Figs. 1(a)–1(c). In the checkerboard
phase [Fig. 1(a)], the NN spins are antiparallel to each other.
In the striped phase [Fig. 1(b)], sites with the same spin
form a stripe between stripes of opposite spin so that the
next-nearest-neighbor (NNN) spins are antiparallel. In the
staggered dimer phase, as the name suggests, sites with the
same spin form dimers, and NN dimers have opposite spins.
For each phase, at different hydrostatic pressures, we calculate
the dependence of magnetic formation energy on the local
magnetic moment (Sec. IV A). With such calculations, one
can probe the magnetic phase in a high-spin or low-spin state
and identify possible metastable states within the subspace of
a given constrained magnetic moment. Then, we map these
results into a Heisenberg model (Sec. IV B) and study the
dependence of the spin-exchange parameters on the local
magnetic moment at different hydrostatic pressures. Since
changing the local magnetic moment corresponds to changing
the orbital configuration, these calculations allow us to inves-
tigate the coupling of the orbital and spin degrees of freedom.
Finally, we inspect the density of states (DOS) close to the
Fermi energy (Sec. IV C).

A. Magnetic formation energy dependence on magnetization

The magnetic formation energy, �E , of a magnetic phase
is defined as the energy difference per atom between the
system in the magnetic phase (at a magnetic moment M) and
the nonmagnetic phase. A magnetic phase is energetically
favorable when �E < 0. In Fig. 2, we plot the magnetic
formation energy, �E , against the magnetic moment M at
different values of the applied pressure for the magnetic
phases considered. In the following discussion, we distin-
guish a low (0.2 μB � M � 0.6 μB), intermediate (0.6 μB �
M � 1.4 μB), and high (1.4 μB � M � 3.0 μB) magnetiza-
tion region. Similar to these regions, we also refer to
low-spin (LS) and high-spin (HS) states because low val-
ues of Fe local magnetization correspond to a low-spin
state configuration of the Fe atom, whereas high values

(a)

(b)

(c)

(d)

FIG. 2. Dependence of the magnetic formation energy with the
local magnetic moment in (a) at ambient pressure (P), and with
pressure (b) P = 2.0 GPa, (c) P = 4.0 GPa, and (d) P = 6.0 GPa.
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of Fe local magnetization correspond to a high-spin state
configuration.

At ambient pressure [Fig. 2(a)], in the LS state, the FM
and the SD phases are the competing stable phases. At M =
0.2 μB, the FM phase is the only (slightly) energetically fa-
vorable phase (�E = −4.32 meV). As the local magnetic
moment increases, at M � 0.4 μB, a magnetic transition from
FM to SD occurs: the SD phase becomes stable, while the
FM phase becomes unstable. Between 1.0 μB and 1.2 μB, the
other AFM phases become stable and the three AFM phases
are nearly degenerate. In the HS state, the AFM phases are
stable (up to 2.8 μB) and reach their minimum. The energy
minima for SD (�E = −45.72 meV) and CAFM (�E = −
63.5 meV) are found for a magnetization around 2.0 μB.
SAFM is the most stable with �E = −93.2 meV around a
magnetization of 2.3 μB. As these energies are much larger
in absolute value than superconducting transition temperature
[1] (or even room temperature), these calculations predict that
these magnetic phases should be thermally stable. In contrast,
the experimental phase diagram of FeSe at ambient pres-
sure shows no long-range magnetic order phases, although
fluctuations—both of SAFM at (π ,0) and CAFM at (π, π )—
have been observed in neutron scattering measurements over a
wide energy range [20]. Also, the observed magnetic moment
in the experiment is 2.28 μB, which is close to the optimal
magnetic moment of Fe we predict in the SAFM phase. The
relative stability of the phases is similar to that obtained from
calculations on the FeSe monolayer [48].

At a pressure P = 2.0 GPa [Fig. 2(b)], the FM and SD are
unstable at all values of magnetization. Thus, no stable phases
are observed at low spin (though we did not include spin-
orbit coupling, which can potentially stabilize the FM or SD
phase). The magnetic formation energy minima of the CAFM
and SAFM are reduced in absolute value (�E = −29.2 and
−54.1 meV, respectively). According to these calculations
then, the SAFM phase should be stable, in agreement with
what was observed experimentally [23] at low temperatures.
Also, the CAFM fluctuations should thus still be observable
at this pressure. Furthermore, the reduced energy difference
between CAFM and SAFM can allow spin-flip processes be-
tween these two phases.

As the pressure is increased to 4.0 GPa [Fig. 2(c)], the
absolute values of the magnetization formation energy of
CAFM and SAFM are reduced further to �E = − 6.4 and
−32.6 meV. At pressure 6.0 GPa, the CAFM phase is unstable
throughout the range of magnetic moment [Fig. 2(d)]. The
majority of the striped fluctuations are eliminated and the en-
ergy minimum is shifted to �E = −9.3 meV. Consequently,
in agreement with experiments, long-range magnetic order
disappears at about 6.0 GPa. Table III shows how the opti-
mal value of the magnetic moment in the CAFM and SAFM
phases decreases with increasing pressure.

B. Heisenberg model Hamiltonian

We map the total energies for the considered phases into a
Heisenberg-like model including nonlinear terms:

H = J1

NN∑
i j

�Si · �S j + J2

NNN∑
i j

�Si · �S j − K
NN∑
i j

(�Si · �S j )
2, (1)

TABLE III. Calculated optimal local magnetic moment of Fe
(in μB) for the CAFM and SAFM phases for increased applied hy-
drostatic pressure. Here, optimal magnetization is the magnetization
corresponding to the minimum value of the magnetization formation
energy for the given phase. For increasing pressure, the optimal local
magnetic moment of Fe decreases for both phases.

Pressure (GPa) CAFM SAFM

0.0 2.08 2.32
2.0 1.78 1.99
4.0 1.70 1.91
6.0 1.60 1.83

where J1, J2, and K represent NN, NNN, and biquadratic
exchange interaction parameters, respectively. �Si, �S j are spin
magnetic moment at sites i and j, respectively. AFM (FM)
states are defined by positive (negative) J1, J2. We choose
not to include the third-nearest-neighbor term J3 since it was
found to be significantly smaller than J1 (J2 or K) for FeSe
[30]. On the other hand, the biquadratic term is needed to
capture the SD magnetic order (that from Fig. 2 is stable at
ambient pressure) and in general the presence of higher-order
magnetic fluctuations. In fact, this term has been recognized
to be fundamental in modeling magnetic interactions and spin
fluctuations in iron superconductors [28].

The NN and NNN exchange parameters, J1, J2, are calcu-
lated directly from the energies in Sec. IV A: we obtained
J1 by the difference between the energies of the FM and
CAFM phases and J2 by the difference between the energies
of the SAFM and CAFM phases. The biquadratic term, K , is
calculated [19,28] from a series of noncollinear total energy
calculations performed by varying the angle, θ , between the
two magnetic interpenetrating sublattices in the SAFM phase
shown in Fig. 1(b) (see also Fig. 1 of Ref. [28]). The K param-
eter is then extracted by fitting the angular energy dependence
E (θ ) (see Appendix D for details) with

E (θ ) − E (0) = 2K sin2 θ. (2)

Figure 3 presents the dependence of the spin-exchange
parameters on the magnetic moment at different applied hy-
drostatic pressures [49]. Table IV summarizes the results for

TABLE IV. Calculated exchange energy parameters [J1, J2, K in
Eq. (1)] at optimal magnetization (corresponding to HS state) and at
M = 1.0 μB (corresponding to LS state). Here, optimal magnetiza-
tion is the magnetization corresponding to the minimum value of the
magnetization formation energy for all the considered phases. The
ratios J2/J1 and K/J1 are also reported.

P (GPa) M (μB) J1 (meV) J2 (meV) K (meV) J2/J1 K/J1

0.0 2.3 110.82 60.37 34.66 0.54 0.31
2.0 2.0 76.70 41.83 31.88 0.55 0.41
4.0 1.9 70.30 39.04 28.67 0.55 0.40
6.0 1.8 57.94 32.61 25.25 0.56 0.43
0.0 1.0 33.42 16.92 16.99 0.51 0.51
2.0 1.0 23.66 12.91 14.71 0.55 0.62
4.0 1.0 22.02 12.34 13.66 0.56 0.62
6.0 1.0 20.84 11.98 12.54 0.57 0.60
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FIG. 3. Dependence on magnetic moment (M) of the spin-
exchange parameters J1, J2, and K of the Heisenberg-like Hamilto-
nian in Eq. (1) calculated for different applied hydrostatic pressure P
(a) at ambient pressure (P = 0), (b) P = 2 GPa, (c) P = 4 GPa, and
(d) P = 6 GPa. The values of J1, J2 are multiplied by M2.

two values of the magnetization: the optimal magnetization—
defined as the magnetization corresponding to the minimum
value of the magnetization formation energy for all the con-
sidered phases—and M = 1.0 μB—the magnetization close to
which in Fig. 3(a), J1/2 ∼ J2 ∼ K .

For all pressures, J1/2 and J2 change from negative to pos-
itive when M � 0.6 μB (Fig. 3). This corresponds to what is
observed in Fig. 2, where the FM phase is the most favorable
in the LS state and AFM phases for the intermediate and HS
state. For ambient pressure, this is consistent with an FM to
AFM transition (in the SD configuration) as seen in Fig. 2,
while at higher pressure all phases are unstable in the LS state.
J1/2 and J2 have the same behavior and take similar values for
the observed range of magnetization, being nearly degener-
ate for intermediate magnetization values around M = 1.0 μB

(see also Table IV). This corresponds to the near degeneracy
of the CAFM and SAFM phases (and SD at ambient pressure)
in Fig. 2. By increasing the pressure, the range of values that
J1/2, J2 takes when varying the magnetization is reduced. The
region where they are nearly degenerate is also reduced.

At the optimal magnetization (HS state), K (Table IV) is
lower than J1 (J2), but still relatively large, and it supports
different types of magnetic excitation like the SD phase [19].
At M = 1.0 μB, K is very close to J2 and J1/2. In fact, at
ambient pressure and M = 1.0 μB, the SD phase is energeti-
cally more favorable in comparison to other magnetic phases.
The range of values taken by the biquadratic term K shows
relatively little changes with hydrostatic pressure (Fig. 3). For
all pressures, it increases from 5 to 10 meV for the LS state
to 30–35 meV in the HS state. According to the three-orbital
Hubbard model [50,51], a large value of K indicates a large
value of the hopping parameter between unoccupied and occu-
pied orbitals on neighboring magnetic ions. Its dependence on
the ratio of the hopping parameters rather than their absolute
values may explain the relatively little variation in K as a func-
tion of pressure. As a consequence of the little variation with
pressure, while at ambient pressure K is remarkably different
from J1/2, J2—being larger in the intermediate magnetization
and almost half in the HS state—at higher pressures takes
values in a similar range, as can be seen from Table IV. The
relative strength of the NNN and NN exchange couplings
J2/J1 and of the biquadratic and NN exchange couplings K/J1

can help interpret the phase diagram. J2/J1 is a measure for
the competition between the CAFM and SAFM phases. A
high K/J1 value means that the simple Heisenberg model
with only bilinear terms (J1, J2) is insufficient to describe all
magnetically ordered states, and other AFM phases, such as
the SD or the spin trimers, are important and indicate the
presence of higher-order magnetic fluctuations like SD or spin
trimers into the system.

Figure 4(a) presents the dependence of the relative strength
of exchange coupling J2/J1 on pressure and magnetization
for M � 1.0 μB. In the classical 2D mean-field phase dia-
gram, the magnetic interactions J2/J1 ≈ 0.5 correspond to the
boundary between the SAFM/CAFM phases [52]. Within this
framework, the results suggest that a SAFM/CAFM transition
may be possible at ambient pressure and less likely at higher
pressures. On the other hand, from a single-particle thermal
occupancy viewpoint, the region of lower magnetization is
harder to reach at ambient pressure because the depth of

043154-6



FIRST-PRINCIPLES STUDY AND MESOSCOPIC … PHYSICAL REVIEW RESEARCH 6, 043154 (2024)

(a)

(b)

FIG. 4. Dependence on magnetization M of the ratio, (a) J2/J1,
between the NNN and NN spin-exchange parameters, and (b) K/J1,
between the biquadratic and NN spin-exchange parameters in Eq. (1)
for different values of the applied hydrostatic pressure P. P = 0 GPa
corresponds to ambient pressure.

the energy well associated with the AFM phase at ambient
pressure is roughly twice that of the value observed at higher
pressure (Fig. 2). Moreover, as the pressure increases, the
position of the minimum (in Table III) is moving towards
smaller magnetization.

Figure 4(b) presents the dependence of K/J1 on magnetic
moment and pressure. At ambient pressure, a high value of
K/J1 (≈0.31) in a high spin state means that there is room for
higher-order magnetic fluctuations [19]. At higher pressure,
K/J1 further increases. Considering the concurrent reduction
of the energy difference between magnetic phases, this in-
dicates that magnetic fluctuations are increasingly likely and
strong. As a consequence, the mean-field theory approach is
insufficient and one has to turn to methods that account for
collective phenomena. In Sec. V we build on the DFT results
of this and the previous section using a field-theory approach
to capture the effect of fluctuations.

C. Orbital-resolved density of states

Figure 5 presents the orbital-resolved (spin-)DOS of the
t2g 3d orbitals for the FM and CAFM and SAFM phases for
different applied hydrostatic pressure. These orbitals are those
that contribute the most at the Fermi surface (see Fig. 12). In
the FM phase, the orbital-resolved spin-DOS is calculated at
0.2 μB for which FM is predicted as the most stable phase

dxy

dxy

dxy

dxz/yz

dxz/yz

dxz/yz

(c) (d)

(a) (b)

(f)(e)

FIG. 5. Orbital-resolved spin density of states (DOS) of dxy and
dxz/yz in different magnetic phases. FM (a), (b); CAFM (c), (d);
SAFM (e), (f); respectively, with pressure.

(Fig. 2)—that is, in an LS state. For the CAFM and SAFM
phases, the orbital-resolved DOS is calculated at the phase
optimal magnetization reported in Table III—that is, in an HS
state.

At ambient pressure, the dxy down-spin channel contributes
dominantly to the occupied states near the Fermi level of
the FM phase [Fig. 5(a)]. As pressure is increased, there is
an increase in partial DOS in the up-spin channel. The dif-
ference between up- and down-spin DOS around the Fermi
level decreases at higher pressure. This shift in the peak for
the up-spin channel at increased pressure corresponds to a
reduction in the spin-exchange parameters (see Fig. 3). At
a low spin state there is a small but gradual reduction in
j1 which moves towards zero from a negative value. This
indicates reduced FM fluctuations with increased pressure.
For the dxz/yz [Fig. 5(b)], the up/down channel contribution is
similar at the Fermi level and there are no substantial changes
when pressure is increased.

Figure 5(d) shows that there is a significant contribution
from only the dxz/yz orbital in the partial DOS at the Fermi
level in the CAFM phase at ambient pressure. The partial DOS
of the dxy orbital at the Fermi level is negligible [Fig. 5(c)].
Increasing the pressure does not change the contribution at the
Fermi level substantially. With pressure, the peak below the
Fermi level of dxz/yz is slightly reduced in intensity and shifted
in position to lower energies, and the smaller peak below the
Fermi level for dxy increases.

At ambient pressure, in the SAFM phase, both the t2g and eg

orbitals contribute to the DOS at the Fermi level [Fig. 12(c)].
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The dxz/yz has the highest contribution, whereas the dxy has
the lowest. Increasing pressure, the contribution dxy becomes
roughly equal to that of dxz/yz while the contribution from eg

orbitals is suppressed [Fig. 12(c)].
The overall picture that emerges from the evolution of

the partial DOS with pressure is the exclusivity of the dxz/yz

orbitals in the CAFM phase, and conversely the key role
played by the dxy orbital in the FM and SAFM. In particular,
the enhanced dxy partial DOS with pressure correlates with
the reduction of FM fluctuations in the LS phase and the
emergence of long-range SAFM order in the HS state.

V. 2D EFFECTIVE FIELD-THEORY MODEL

In this section, starting from the DFT results obtained
and their discrepancies with experiments, we construct an
effective theory for relevant collective degrees of freedom.
By studying the instabilities of such field theory, we aim to
understand the phase diagram of FeSe.

Experimentally, long-range spin order is observed between
2 and 6 GPa. While the DFT calculations correctly predict the
disappearance of long-range magnetic order around 6 GPa,
they showed a propensity towards the formation of SAFM
order below 2 GPa in contrast with the experimental findings
[23]. In particular, DFT results indicate that (i) the bandwidth
of the dxy, dxz, dyz orbitals is the closest to the experiment
when long-range magnetic order is considered, and (ii) the
values of spin-exchange parameters J1,2 are larger while K/J
is smaller at zero than at finite applied pressure. In what
follows, we put forward a classical 2D spin model to reconcile
the DFT results with the experimental findings.

Using a 2D model is justified by FeSe being a layered
material, with a strong anisotropy of the spin-exchange pa-
rameters J , which is reflected in the spin anisotropy (see
Figs. 3 and 10 in Appendix C). The classical treatment of
the spin degrees of freedom is justified because, due to its
multiorbital nature, FeSe is neither fully itinerant nor fully
spin-localized. Then, a fraction of spin is localized, but spins
can gradually change their amplitude and orientation due to
free flow back and forth into the itinerant bath, which can
be described classically [53]. From the results of the previous
section, one may infer that at ambient pressure, the system is
closer to the quantum critical point between the CAFM and
SAFM phases since J2/J1 → 0.5 (but only for LS). However,
this is not the case because according to the Mermin-Wagner
theorem due to fluctuations there is no long-range magnetic
order (and thus no critical point) in a 2D classical system with
J1, J2 interactions. The magnetic long-range order is frustrated
even extending the 2D mean-field picture to 3D [54] and in-
cluding quantum corrections in the HS state. Decisively, from
the results in Ref. [55], one can deduce that the J2/J1 ratio
we obtained at optimal (HS) magnetization, at a temperature
∼100 K, corresponds to a thermal—thus classical rather than
quantum—critical regime. Then, the classical treatment of the
system in the model is justified.

A. Hamiltonian for the orbital degrees of freedom

The DFT calculations show a strong dependence of the
spin-exchange parameters on the local on-site magnetization,
which points to a strong coupling between the spin and

orbital degrees of freedom: varying the on-site magnetization
is equivalent to selecting the spin configurations (high-spin
or low-spin) of the Fe d-orbitals. To model the high-spin or
low-spin dependence into the effective low-energy theory, we
introduce a Hamiltonian for the d orbital degrees of freedom.
We take fermionic annihilation operators cσξ (i) at a site i
with spin σ and orbital ξ indexes, and we notice that the
fluctuation of orbital content by analogy with spin space oper-
ators will correspond to a bosonic operator defined as bi =
c†
σξ (i)c−σξ±1(i). We take fermionic annihilation operators

cσξ (i) at a site i with spin σ and orbital ξ indexes, and we no-
tice that the fluctuation of orbital content by analogy with spin
space operators, namely S = c†

σξ (i)c−σξ (i), will correspond

to a bosonic operator defined as bi = c†
σξ (i)cσξ±1(i) (see

Appendix F). From Fig. 2, we observe that the energy differ-
ence between the lowest magnetic and the nonmagnetic con-
figuration can be fitted as a cosine of the spin-magnetization
|S|, −WL cos(δ|S|) with δ|S| = |S| − |S|0 (see Appendix C).
Remarkably, WL strongly depends on pressure, with WL at
ambient pressure being approximately twice the WL at 2 GPa.

We then consider a basis of on-site localized bosonic states
associated with the d-orbital fluctuations, and we define the
following Hamiltonian in terms of creation and annihilation
operators bi, b†

i :

Horb = −WL

∑
i

(b†
i bi+1 + H.c.) + JH

∑
i

b†
i bib

†
i bi, (3)

with a next-neighbor hoppinglike term [56] WL and a quadratic
JH Hund’s exchange term [13]. In this simple tight-biding
model, the hopping parameter is exactly the high-spin/low-
spin energy difference that can be fitted from the curves in
Fig. 2. The cosine fit works well (Fig. 10), so we can restrict
ourselves to the nearest-neighbor tight-binding approxima-
tion, although in principle field theory does not require it.

Instead of working with bosons, b†, we further simplify the
problem and work with O(2) rotors: we define the angle θ

as the ratio of occupancies of the dxy orbital with respect to
the dxz and dyz orbitals. Since orbital fluctuations are confined
to the 2D plane and can be assumed as continuous, classical
variables, we follow Villain [57] to rewrite the Hamiltonian in
terms of bosonic angular fields:

Horb =
∫∫

dx dy(WL(∇θL )2 + JH (∇φL )2 + yL cos φL ), (4)

where θL(x, y) is the orbital field, related to the local density of
b-bosons, ∇xθL ∝ b†(x)b(x), φL(x, y) is the canonically con-
jugated field, and yL is the fugacity. The fugacity parameter,

yL = exp(−εβWL ), (5)

is related to the temperature T = 1/β and the low-spin/high-
spin energy difference WL [58]. The factor ε is the analog
of the relative permittivity in 2D electric gas. The key dif-
ference with the usual Villain Hamiltonian is that due to the
presence of strong correlations, the fluctuations of canonically
conjugated φL field appear, which modifies the value of ε

[59]. Namely, in the original Kosterlitz and Thouless picture
ε = π2/2, including vortex screening [60] gives ε = 3/π ,
while including the canonically conjugated term, one that is
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FIG. 6. Shaded blue-to-red surface shows, for JH = 0.6 eV, the
orbital vortex fugacity yL , Eq. (5), as a function of the orbital
fluctuations’ bandwidth WL and temperature T . Green and magenta
surfaces are the lower and upper limits of the vortex crystal phase,
respectively. We show the location of P = 0 (red dot) and P � 2 GPa
(black dot). The red dot is just below the green plane hence in the
regime where bound pairs of vortices exist but become dilute in
the thermodynamic limit (x, y → ∞), while the black dot is well
inside the vortex crystal phase where topological orbital excitations
are ordered and their number is constant.

proportional to JH , gives an extra factor (WL/JH +
2)/[2(WL/JH + 1)] to ε. The cosine term in Eq. (4) has been
introduced in the 2D context by Villain [57] to capture low-
energy large-angle fluctuations. Because of the latter term, the
Hamiltonian hosts vortex excitations. The vortex excitations
manifest physically as regions of gradually lower spin mag-
netization in an overall high-spin background. Vortexes of the
size ∼10 nm have been reported in experimental studies in
FeSe [61].

The value of yL [Eq. (5)] determines the system’s behavior
[62,63]. This is illustrated in Fig. 6 for JH = 0.6 eV—which
was calculated for FeSe—[13] where yL is shown as a function
of the temperature 1/β and WL. In the region below the green
plane (yL = 0.054), the system is below the vortex regime and
physics is dominated by density waves. Above yL = 0.054,
in the region between the green and the magenta surfaces,
the vortex system undergoes a crystallization transition. Long-
range magnetic order is then allowed in the high-spin regions
between vortices. Beyond the magenta surface, vortices move
freely and static long-range magnetic order is destroyed. Ex-
tracting the values of WL from Fig. 2, we found that slightly
above 100 K, FeSe is in the density wave region at P = 0 GPa,
while at P = 2 GPa it is in the vortex crystal phase. At larger
pressure and lower WL, the system is in the free vortex regime.

This result from the model agrees with the experimental
observation of long-range magnetic order being observed in
FeSe for intermediate pressures, while absent at ambient pres-
sure and above 6 GPa [23]. Further, the above model provides
a rationale for the tendency in the DFT results to long-range
magnetic order at ambient pressure, which is not observed
experimentally. The long-range magnetic order is suppressed
by the orbital vortex formation because of the coupling of
the spin with “randomness” present in the orbital degrees of

freedom. Figure 6 shows that this randomness is present at
ambient pressure, while at higher pressure the orbital sector
is inside the vortex phase and becomes ordered. The suppres-
sion of the long-range spin order by vortex formation cannot
be captured in standard DFT calculations on a (magnetic)
unit cell, and the long-range magnetic order is favored over
the nonmagnetic configuration both energetically and when
considering the electronic structure close to the Fermi level.
On the other hand, when DFT on large supercells is used,
it has been shown [17] that random-spin configurations are
energetically more favorable than the nonmagnetic ordered
ones, in agreement with the model above.

B. Hamiltonian for the spin degrees of freedom

As noticed previously, the strong dependence on the
spin-magnetization of the spin-exchange coefficients of the
reduced Heisenberg Hamiltonian in Eq. (1) indicates a strong
coupling of the spin and orbital degrees of freedom. Con-
sidering the above model for the orbital degrees of freedom
[Eq. (4)], the local variations of ∇φL modify the local param-
eters of spin fluctuations, namely on the site xi: 〈∇φL(xi )〉 �=
0 ⇒ δJ (xi ) and hence the local energy of the spin system. In
a mean-field picture, we have

J (x, y)S(xi, yi )S(xi±1, yi ) ≈ J̄ S(xi, yi )S(xi±1, yi ) (6)

+ δJ (x, y)S(xi, yi )〈S(x, y)〉
[where J̄ is the spatial average of J (x, y)]. The spin-exchange
parameters J result by averaging over the orbital degrees
of freedom, and the variations of ∇φL(x, y) (as shown in
Figs. 2 and 3) result in an effective magnetic field h(x, y) =
δJ (x, y)〈S(x, y)〉. Then, the Hamiltonian for the spin degrees
of freedom coupled with the orbital degrees of freedom con-
sists of a Heisenberg-like model, including a quadratic term
[similar to Eq. (1)], and an additional term depending on
h(x, y):

Hs(+L) =
∑

i j

Ji j �Si · �S j − K
∑

i

(�Si · �Si±1)2 (7)

+ h(x, y)[Sx (x, y) + Sy(x, y)].

The spatial distribution of h(x, y) in Eq. (7) may be either ran-
dom (for the orbital density fluctuation regime at P = 0 GPa)
or periodic (for vortex crystal, P � 2 GPa). In the latter case,
one expects the opening of Bragg-minigaps in the spin excita-
tion spectrum at appropriate magnetic reduced Brillouin zone
boundaries. In the former case, one expects rare, randomly
positioned areas of the low-spin state which will induce a
variation of J (nL ), hence disorder-induced localization. This
is true not only when the potential associated with h changes
abruptly and thus the long-range spin-order is destroyed by
backscattering, but also for a sufficiently smooth potential,
such that forward scattering dominates. It can be shown [64]
that h(x, y) introduces an exponential decay prefactor in front
of any spin-spin correlation functions, and thus only a short-
range spin-order is possible.

From Fig. 2, we also observe that for the lowest on-site
magnetization, i.e., the largest distortion of the orbital vari-
able, magnetic phases other than the SAFM can become
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dominant, namely the FM phase. This phase can stabilize the
topological excitations and also lead to local time-reversal
symmetry breaking. In fact, time-reversal symmetry breaking
has been detected experimentally in FeSe [65,66], and topo-
logical objects that do locally break time-reversal symmetry
have been recently observed experimentally [67].

A more advanced and quantitative treatment of spin
and orbital fluctuations based on the full solution of the
renormalization-group equation is postponed to further study.

C. Renormalization of the electronic structure

The orbital fluctuations from Eq. (4) couple with the elec-
tronic degrees of freedom and can renormalize the electronic
structure (e.g., from DFT calculations) by reducing the band
dispersion. The coupling, gel-L, between a propagating elec-
tron and a boson describing local fluctuation of orbital content
can be treated like any electron-boson coupling. To estimate
the band renormalization, we use the results obtained for
polarons in the context of the well-studied electron-phonon
coupling. Thus, we follow the standard Feynman path integral
prescription to compute the renormalization coefficient for the
velocity [68] αv due to polarons:

α−1
v (ω, ḡel-L ) =

(
1 + ḡel-L

6
+ 0.025ḡ2

el-L

)
1

1 + (ω/WL )2
.

(8)

In Eq. (8), the velocity renormalization in the weak-coupling
limit [68] is weighted by a Lorentzian depending on ω, the
energy difference with respect to the chemical potential. We
added this energy-dependent factor to the original expression
in Ref. [68] to take into account that bosons cannot, because
of their energies, perturb all bands but they act only close to
the Fermi energy [69]. The dimensionless coupling, ḡel-L, is
defined as ḡel-L = gel−L/

√
telWL. We take the unknown ampli-

tude of electron-boson coupling, gel-L, as a free parameter and
we use WL = 150 meV for the dispersion of the orbital fluctu-
ations [introduced in Eq. (3)] and tel = 1 eV for the dispersion
of the electronic band. The latter values are estimates of the
order of magnitude for those quantities. Then, we consider
the reduction of the electron velocity αV (thus a reduction of
the band curvature) as a function of gel-L. In principle, the
coupling, thus the renormalization, can be determined from
first-principles following Ref. [70], though here we only aim
to roughly estimate the range of renormalization.

The renormalization of the electron’s velocity from Eq. (8)
is plotted in Fig. 7 as a function of the coupling parameter and
the distance from the chemical potential. Close to ω = 0 eV,
the observed velocity can be reduced by 30% for gel-L ∼ 0.2
[71]. As one moves away from the Fermi energy, the renor-
malization factor goes to 1—no renormalization. The strong
energy dependence implies that the effect should be distin-
guishable from the Hubbard U mechanisms of bandwidth
renormalization and that care needs to be taken if one attempts
to infer the bandwidth from a partial dispersion relation.

We expect the renormalization to be larger for the band
with dxy character because of concurrent effects. First, this
band has the smallest DFT dispersion, and the dispersion
enters into the denominator of the dimensionless coupling

FIG. 7. Renormalization factor αv of an electron’s velocity, from
Eq. (8), as a function of coupling between single carriers and orbital
fluctuations gel-L and distance from the chemical potential ω.

∝ gel-L. Second, by construction, the orbital field θL in Eq. (4)
is zero at high spin and maximum at the low spin state when
the occupancy of the dxy orbital changes from 1 to 0 (while
the occupancy of the degenerate dxz,yz changes by a fraction
between 1 and 2). Then, dxy is most affected by orbital fluctua-
tion, and as such we expect a larger reduction in the bandwidth
than for dxz,yz. This is consistent with what was observed in
ARPES experiments.

For the above-given renormalization effect, we only con-
sidered the first two terms in Eq. (4), i.e., orbital occupancy
density waves. In principle, also electrons couple to the vor-
tices described by the last term in Eq. (4). The reason we did
not consider this last term is that a theory for such coupling is
not available, although one can anticipate that the coupling is
the largest for electron dispersion close to the � point (due to
the k-dependence of the Fourier-transform of a solitonic wave)
and that there are several satellites separated by ∼0.1 eV [72],
which may be visible in experimental spectra.

VI. CONCLUSIONS

Using DFT at the generalized gradient approximation
level, we calculated the dependence of the magnetic formation
energy of FeSe on the local magnetization for different mag-
netic phases, and we mapped the results into a Heisenberg-like
Hamiltonian with two main outcomes. First, we observed a
strong dependence of the spin-exchange parameters extracted
from the Heisenberg-like Hamiltonian on the local on-site
magnetization, which points to a strong coupling between
spin and orbital degrees of freedom. Second, we obtained
stable antiferromagnetic orderings at ambient pressure. The
latter result is consistent with the results we obtained for
the electronic structure, where assuming an antiferromagnetic
ordering renormalizes the bandwidth of the d-bands, bring-
ing it closer to the ARPES results. On the other hand, this
propensity towards an antiferromagnetic phase is in disagree-
ment with experimental results where magnetic ordering is
observed only for a pressure of 2 GPa or larger.

We argued that though a thermodynamically stable long-
range magnetic order at ambient pressure has not been
detected, the DFT results, together with classical field theory
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arguments, may indicate the existence of a short magnetic or-
der convoluted with slow variations of spin amplitude at long
range. Such an inhomogeneous spin pattern would emerge
from the strong coupling between the spin and orbital fluc-
tuations and from the quasi-2D nature of FeSe. Indeed, we
showed that the DFT results can be reconciled with the ex-
perimental observations within a 2D effective field theory,
which admits nontrivial, spatially extended topological vortex
states. According to the model, the formation of vortices both
suppresses the antiferromagnetic phase at ambient pressure
and plays a role in renormalizing the bandwidth of d-band.
The existence of mesoscopic structure such as vortices is
comforted by the recent observation of Griffiths phases [31]
in FeSe1−xSx.

This 2D effective field-theory model implies the impos-
sibility of capturing the bandwidth renormalization of FeSe
close to the Fermi energy uniquely by improving the descrip-
tion of electron correlation beyond DFT, and instead points
to the need to account for spin and orbital fluctuations at the
mesoscopic scale. Our DFT results for the electronic structure
hint that to partly reproduce such an effect—without resorting
to large supercells as in Ref. [17]—a “poor man’s” approach
would be to assume an antiferromagnetic ordering. A more
sound approach is to account for the interaction between
electrons and the fluctuations via a polaronic-like model. Our
preliminary results show that the electronic structure obtained
with DFT can indeed be renormalized up to 30%, and the most
affected band would be that with dxy character.

Finally, the 2D effective field-theory model presented
here—or rather a refined version of it based on the full so-
lution of the renormalization-group equation—together with
the results on the existence of an SD magnetic ordering—
which we found to be energetically favored for intermediate
magnetization—can be used to investigate the origin of the
nematic phase in FeSe.

The data that support the findings of this article are openly
available at repository for research data MaterialsCloud [80].
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APPENDIX A: DEFINITION OF BANDWIDTH

As discussed in the main text, in this manuscript we refer
to the difference between the maximum and the minimum
band energy of the band dispersion along the �-M direction
as “bandwidth.” This is depicted schematically in Fig. 8.

FIG. 8. Dispersion of dxy (red dot) and dxz/yz (blue dot) in the
M-�-M direction obtained from DFT calculations. The bandwidth
(BW) is defined as the difference between the maximum and the
minimum band energy.

APPENDIX B: EVOLUTION OF STRUCTURAL
PARAMETERS WITH PRESSURE IN DIFFERENT

MAGNETIC PHASES

The evolution of different structural parameters such as
the internal z position of Se (zSe), the c/a ratio, and the
height of the Se-atom from the Fe-plane (hSe), is presented
in Fig. 9. A comparison of our DFT calculated structural
parameters with experiment is presented in Table V. A lin-
ear increase in zSe with pressure in nonmagnetic phase and
with different long-range magnetic order is very much evident
from Fig. 9(a). At ambient pressure, the calculated value in
nonmagnetic phase is very close (slightly underestimated)
to the experimental as well as the DFT + DMFT calculated
value [73–75]. Introducing long-range order into the system
slightly overestimates the value. At higher pressures (4 GPa),
the experimental zSe is very close to the calculated value
with SAFM long-range order. Looking at the lattice param-
eters reveals a decreasing trend in the c/a ratio with pressure
[Fig. 9(b)], which is consistent with experiments. Calculated
c/a at ambient pressure is overestimated by 2% with respect
to the experimental value and very close to DFT + DMFT
results. The lattice parameters are kept fixed for the calcula-
tions with long-range magnetic order. Anion height (hSe) has
been found to be an important factor controlling magnetism
as well as superconductivity in iron-based superconductors
[76]. Therefore, it is worth investigating the variation of hSe at
different magnetic phases with external hydrostatic pressure.
Figure 9(c) shows the variation of hSe with pressure. The
variations in NM, CAFM, and SAFM phases are presented
with blue, green, and red, respectively. If we look at the NM
phase, it is conspicuous that there is a gradual increase in hSe

with pressure. A steep increase is evident at lower pressure
values, which ultimately reaches almost saturation at pressure
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TABLE V. Comparison of structural parameters.

Structural parameters DFT (NM) DFT+CAFM DFT+SAFM Experiment

zSe (0 GPa) 0.2550 0.2697 0.2726 0.2660
zSe (4 GPa) 0.2673 0.2790 0.2823 0.2915
c/a (0 GPa) 1.4900 – – 1.4580
c/a (4 GPa) 1.4583 – – 1.4215
hSe (Å) (0 GPa) 1.3927 1.4734 1.4891 1.4502
hSe (Å) (4 GPa) 1.4107 1.4725 1.4904 1.4233

greater than 5.0 GPa. Magnetic interactions seem to increase
hSe to a great extent. The calculated value of hSe at ambient
pressure with optimized structure is 1.3927 Å in nonmagnetic
phase. The value is underestimated by nearly 4% in compar-
ison to experiments. hSe is increased to 1.4734 and 1.4891
Å in CAFM and SAFM phase, respectively. The situation

(a)

(b)

(c)

FIG. 9. Variation of (a) zSe, (b) c/a, and (c) hSe with pressure in
nonmagnetic (NM), checkerboard/Neél antiferromagnetic (CAFM),
and striped AFM (SAFM) phase.

improves as long-range order is introduced into the system,
and the value is within 2% of overestimation. The variation in
CAFM phase is marked by an increase in hSe at P = 1.0 GPa,
beyond which it is decreased gradually. The rate of decrement
is faster at pressure greater than 4.0 GPa. In the case of SAFM,
the nature of variation is somewhat different in comparison to
CAFM. A sudden increase in hSe is followed by a plateau up to
pressure 3.0 GPa. A gradual reduction in hSe just like CAFM
is observed beyond 3.0 GPa. From the above discussion, it is
evident that the structural parameters calculated via our DFT
approach exhibit strong agreement with experimental results,
both in nonmagnetic and long-range magnetic ordered FeSe.

APPENDIX C: COSINE FITS J1,2

Interestingly, the data for the effective J1, J2 can be
well-fitted (Fig. 10) with a cosine-like function of the mag-
netization: w[− cos(aM + α) + c], where w is the “width”
and c is the “offset” of the fitted curve (Table VI). The ab-
solute value of the parameter w decreases with an increase in
pressure. This denotes decreased Jeff with increased pressure.
On the other hand, the parameter c favors AFM over FM. A
gradual increase in the absolute value of c is observed with
increased pressure. This indicates possible FM fluctuation at
ambient pressure and higher stability of the AFM state at
higher pressure in FeSe.

APPENDIX D: BIQUADRATIC K FROM NONCOLLINEAR
CALCULATION

As discussed in the main text, the biquadratic exchange K
is obtained by performing total-energy noncollinear calcula-
tions on magnetic unit cells obtained by rotating the angle θ

between the two interpenetrating magnetic sublattices shown
in Fig. 1(b). The difference �E (θ ) between the total energy
at a given θ and the energy of the SAFM phase (θ = 0)

TABLE VI. Fitting parameters.

Parameters P = 0 GPa P = 2 GPa P = 4 GPa P = 6 GPa

w( j1/2) −34.43 −26.51 −23.89 −21.57
a( j1/2) −1.15 1.14 1.15 1.16
α( j1/2) 15.44 3.42 3.39 3.38
c( j1/2) −0.63 −0.60 −0.63 −0.66
w( j2) −38.90 −32.41 −29.93 −27.78
a( j2) 1.05 0.98 0.98 0.98
α( j2) 6.62 3.60 3.59 3.60
c( j2) 0.60 −0.52 −0.54 −0.56
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FIG. 10. J1/2 (red dots) and J2 (black dots) values as a function
of the magnetization and the corresponding cosine fit (red dashed for
J1/2 and black dashed for J2). The coefficients of the fit are given in
Table VI. See the text for details.

is presented in Fig. 11 at different magnetic moments and
pressure. The value of K at each magnetic moment has been
extracted by fitting Eq. (2) with a simple least-squares fitting

FIG. 11. The variation of total energy by changing the angle θ

between the magnetic sublattices with respect to the energy in the
SAFM phase (θ = 0), calculated at different pressures and magnetic
moments. In the legend, we report, in parentheses, the magnetic
moment and the K biquadratic exchange parameter extracted by
fitting the curve. See the text.
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(a) FM (b) CAFM (c) SAFM

FIG. 12. Variation of spin-resolved partial DOS of all the Fe-3d orbitals with pressure in different magnetic phases.

method. From Fig. 11, one can see that a better fit is obtained
for high spin states than for the low spin ones.

APPENDIX E: SPIN-RESOLVED PARTIAL DOS

Spin-resolved DOSs of t2g and eg orbitals are presented in
Fig. 12. A higher partial DOS of t2g in comparison to eg around
the Fermi level is conspicuous in FM and CAFM at ambient
pressure. All five d-orbitals have a finite contribution near
the Fermi level in the case of SAFM. Even dx2−y2/dz2 have
a greater contribution in comparison to dxy around the Fermi
level. As soon as external pressure is applied on the system,
the partial DOS of the eg states is observed to be quenched.

APPENDIX F: ORBITAL FLUCTUATIONS
AS BOSONIC OPERATORS

The model Hamiltonian for the fermions can be written as

Hf = K + V, (F1)

i.e., the sum of a kinetic part, K , and a potential part, V . The
kinetic part maps the Kohn-Sham results in a tight-binding

Hamiltonian,

K =
∑

ξ

εξ

∑
iσ

c†
σξ (i)cσξ (i) − tξ

∑
i j,σ

c†
σξ (i)cσξ ( j), (F2)

where i, j indicate the unit cell, σ ∈ {↑,↓} indicates the spin,
and ξ indicates the band index. εξ and tξ are, respectively,
the on-site and hopping constants for each band ξ . c†

σξ (i)
and cσξ (i) denote the creation and annihilation operator for
a fermion at unit cell i, with spin σ and band ξ .

The potential part V accounts for the electron-electron
interaction, which has not been accounted for within the ef-
fective single-particle Kohn-Sham picture,

V =
∑
i, j

∑
pqrs

Vpq;rs(i j)c†
p(i)cq(i)c†

r ( j)cs( j), (F3)

where Vpq;rs is the matrix element of the effective interaction
between fermions, usually originating from Coulomb interac-
tion. Here, for simplicity, we use pqrs as collective indexes
for the band and spin. Since Vpq;rs = Vrs;pq, V has a quadratic
form in c†

p(i)cq(i) and it can be transformed into the normal
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form,

V =
∑

α

λα (i j)ρ2
α (i j), λα ∈ R, (F4)

where ρα is given by some linear combination of c†
p(i)cq(i),

i.e., we made a decoupling in a particle-hole channel.
Treating exactly the Coulomb part is extremely cumber-

some and only possible for systems with few electrons.
Furthermore, since part of the correlation is accounted for
within the Kohn-Sham scheme, Vpq;rs is generally unknown.
Here, we determine an approximation for V by choosing ρν

so as to select the density fluctuations that are most rele-
vant to describe the physics of the system. In particular, we
consider here only the t2g bands with orbital character dxz,yz

corresponding to |Lz| = 1 and dxy corresponding to |Lz| = 2.
We introduce L̃, an effective pseudospin operator (|L̃| = 1/2)
with components,

L̃j = c†
σξ ν̂

j
ξξ ′cσξ ′ , j = x, y, z,

defined though the Pauli matrices in orbital space, ν̂j (here,
we illustrated again the spin and orbital indexes). Since L̃ is a
linear combination of c†

p(i)cq(i), L̃(i) · L̃( j) can be identified
with ρ2

α (i j). We can then apply a usual Holstein-Primakoff
transformation [77], and express the pseudospin raising, L̃+,
and lowering, L̃−, operators in terms of boson b†, b, re-
spectively [in the large |L| limit, the formula L̃+(i) ≈ b†(i)
becomes exact]. These operators define density fluctuations
between dxz,yz and dxy, and they correspond to the creation
and annihilation, b†

i , bi, of a boson at the site i. Thus, let-
ting ξ ∈ (1, 2) indicate |Lz| corresponding to the orbital, the
bosonic operators can be written in terms of the fermionic
operators as

bi = c†
σξ (i)cσξ±1(i), ξ ∈ {1, 2}.

Working in analogy with spin, where the Heisenberg-like
Hamiltonian models the spin-dynamics, one can thus intro-
duce a model Hamiltonian to model the dynamics of the
orbital fluctuations, as we do in Eq. (3).
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