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Abstract
A two-dimensional constitutive model was developed to simulate grain boundary motion in polycrystalline titanium exposed 
simultaneously to magnetic field and elastic strain based on the thermodynamic laws. The multi-scale coupled finite element 
and multi-phase-field simulations were used to investigate the simultaneous effects of the driving forces arising from the 
magnetic field and elastic strain energy on microstructure evolution of titanium bicrystalline and polycrystalline samples. 
The multi-phase-field approach was employed to implement the kinetic relations of grain boundary migration at the mes-
oscale level. On the other hand, the equilibrium equations were implemented on a macroscale level by the finite element 
method. Based on the simulation results, the magnetically induced driving force overrides the elastic strain driving force and 
causes texture evolution toward orientations that contain less magnetic stored energy when the microstructure is exposed to 
a magnetic field of sufficient strength. Additionally, applying an elastic strain before annealing reduces the time required for 
magnetic field annealing by accelerating the microstructure evolution. The mean grain size and desired texture grow rapidly 
when the magnetic field strength and elastic strain are simultaneously increased.
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1  Introduction

According to research, the microstructure of a material 
affects its mechanical behavior [1, 2]. Grain size, grain 
orientation, and grain boundary (GB) misorientation dis-
tribution are decisive parameters in determining the mate-
rial properties at the macroscale [1, 3–9]. For instance, the 
performance properties and reliability of thin films in mag-
netic and electronic components significantly depend on the 
grain morphology, grain size distribution (GSD), and grain 
orientations [10]. The control of microstructural evolution 

is therefore crucial for fabricating materials with optimal 
magnetic and mechanical properties.

A variety of thermodynamic forces drive microstructural 
evolution in polycrystalline materials. These driving forces 
are caused by various factors such as stored deformation 
energy due to the dislocation structure, GB energy, chemi-
cal potential, surface energy, magnetic field, elastic strain 
energy, and temperature gradient [11–14]. The GB motion 
can be influenced by elastic strain energy as well as magnetic 
field driving force originated from a magnetic field by the 
magnetic susceptibility anisotropy.

Numerous experimental and numerical studies have been 
conducted regarding the effect of magnetic fields on grain 
growth [15–25]. The effect of the magnetic field on the GB 
migration was first reported by Mullins [17]. Molodov et al. 
[19–21] investigated the effect of magnetic field on grain 
growth in polycrystalline materials, titanium, and zirconium. 
The main result of their study was that grain growth kinetics 
depends on magnetic field direction. Moreover, the grains 
with energetically preferred orientation grow faster and 
their volume fraction becomes larger compared with grains 
with disfavored orientation. He et al. [26] studied the effect 
of an intense magnetic field on copper. The experimental 
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results showed that the effect of an external magnetic field 
is a proper strategy to control polycrystalline microstructural 
evolution in non-ferromagnetic materials. Rezaei et al. [28] 
examined the microstructure evolution of titanium polycrys-
talline subjected to an external magnetic field through the 
multi-phase-field (MPF) method. A columnar microstructure 
was used to simulate grain growth in titanium bicrystalline 
and polycrystalline, and the simulation results were verified 
with Molodov's experimental results [15, 19]. There have 
also been several studies on the effect of elastic strain on GB 
motion [3, 27, 29, 30]. As far as the authors know, no study 
has been conducted to evaluate the simultaneous influences 
of magnetic field and elastic strain energy on microstructural 
evolution by grain growth. Therefore, a constitutive theory 
is developed based on the MPF approach to examine the 
simultaneous effect of these driving forces.

Today, the MPF theory is widely employed for modeling 
and simulating the microstructure evolution. Based on the 
diffuse GB description, this model is used to explore the 
microstructure evolution under the influence of several driv-
ing forces [31–34]. Kim et al. [35] developed a computa-
tional model for MPF simulations of grain growth to apply 
orientation variables with computationally high potency 
without restriction. Researchers have used the MPF model 
to quantitatively and qualitatively predict microstructural 
evolution under elastic and plastic deformation [36–38]. Roy 
[39] studied the effect of the interfacial stress on microstruc-
tural evolution in NiAl alloys using the phase field approach 
and showed that interfacial stress affected the stress distribu-
tion at interfaces and the phase field solution significantly. 
In another study, Roy [40] investigated the formation and 
stability of a nanosized propagating intermediate melt dur-
ing � ↔ � phase transformation in an HXM nanocrystal. 
According to this study, the intermediate melt solution can 
either be continuous reversible or jump-like first-order dis-
continuous transformation with hysteresis. Jamshidian et al. 
[4, 11] examined the stressed grain growth using the MPF 
approach as well as the effect of the representative volume 
element (RVE) size and microscopic boundary conditions 
on microstructure evolution.

The aim of this study is to develop a constitutive model 
based on thermodynamic laws to simulate the grain growth 
kinetics within a polycrystalline microstructure under the 
simultaneous impact of a magnetic field and elastic strain. 
The constitutive model is developed based on our previous 
works [2, 28] in Sect. 2 to describe the GB migration in 
polycrystalline RVE under the simultaneous effects of mag-
netic field and elastic strain on titanium polycrystalline. The 
thermodynamically consistent framework has been used in 
our previous works for stressed grain growth, strain-induced 
grain boundary migration, and magnetic field-induced grain 
boundary migration separately. The novelty of the present 
work is using such a description for magnetic field energy 

and elastic strain energy in a thermodynamically consist-
ent framework to develop the multiphase field constitutive 
theory, which explains the simultaneous effect of magnetic 
field and elastic strain energy on the grain growth. In Sect. 3, 
numerical simulations are performed for the microstructure 
evolution of titanium bicrystalline and polycrystalline to pre-
dict the crystallographic texture and grain size evolution, 
and the conclusions are given in Sect. 4.

2 � Theory

2.1 � Constitutive theory on mesoscale

Thamburaja and Jamshidian [2] developed mesoscale con-
stitutive equations based on crystal elasticity and finite 
deformation to describe grain growth due to elastic defor-
mation in polycrystalline cubic metals. In this section, these 
mesoscale constitutive equations are further developed to 
model GB migration under the simultaneous influences of 
magnetic field and elastic strain. The constitutive theory has 
been developed through the basic thermodynamics laws and 
micro-balance theory [41].

The current constitutive framework is developed under 
constant temperature and without flux/heat sources. In addi-
tion, each unique single-crystal orientation is considered a 
species in which P denotes the number of unique species in 
the polycrystalline body.

∇,Div, and∇2 represent the gradient, divergence, and 
Laplace operators in the reference configuration, respec-
tively. The governing variables in the constitutive equations 
are (a) magnetic permeability coefficient (�0) , (b) magnetic 
field strength (H) , (c) difference in magnetic susceptibil-
ity (∆X), (d) Helmholtz free energy per reference volume 
(� ), (e) deformation gradient tensor (F with J = det� > 0) , 
(f) absolute temperature ( 𝜃 > 0 ) (g), Cauchy stress (T that 
� = �

�) due to angular momentum balance; (h) second 
Piola–Kirchhoff stress ( �∗ = J�−1

��−T ), (i) volume frac-
tion (VF) of species i, �i ( 0 ≤ �i ≤ 1 with i = 1, 2,… ,P , and ∑P

i=1
�i = 1). The value �i = 0 indicates no species i at that 

material point on the mesoscale, while �i = 1 indicates only 
species i at that material point. The material point on the 
mesoscale, which includes two or more species, indicates a 
point in the GB interface, (j) the micro-stress vector �i meas-
ured per unit area in the reference body, which operates in 
response to changes in the VF of species i with i = 1, 2,… ,P

The MPF variables lists that contain the VF of species 
and their spatial gradients, are shown with � = (�1, �2,… , �P) 
and � = (�1,�2, ...,�p) , respectively, where �i = ∇�i with 
i = 1, 2,… ,P . Using the previous works [33, 35–37], the 
Helmholtz free energy per unit volume in reference configu-
ration, � = �̂(�, �,�, �,H) is expressed as follows:
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The first part on the right side of Eq. (1) expresses the 
composite free energy owing to the existence of several spe-
cies at the mesoscale material point, where �i = �̂i

(
�i, �,H

)
 

represents the intrinsic free energy of the species i with the 
scalar interpolation function g

(
�i
)
= �2

i

(
3 − 2�i

)
 . The free 

energy of microstructure, �m , is given by:

Here, the first and second terms indicate the free exchange 
energy and the gradient-free energy, respectively. ��

is
 and ϵ�

is
 

are the MPF model parameters [4, 33]. The intrinsic free 
energy of species i, �i , is expressed as follows:

where �e
i
= �̂

e

i
(�, �) and ��

i
= �̂

�

i
(�) are, respectively, the 

thermo-elastic free energy and purely thermal free energy, 
calculate for species i according to the following equations 
[41]:

Here, �0 is the reference temperature. Ci , �i, and ci are 
material constants, which indicate symmetric fourth-order 
elastic modulus tensor, thermal expansion coefficient, and 
specific heat for the species i, respectively. Due to the cubic 
symmetry, Ci is defined by the crystallographic orientation of 
species i and three elastic constants C11 , C12 , and C44.

Following the efforts of Molodov et al. [16, 19], the mag-
netic free energy, �M

i
= �̂M

i

(
H, �i

)
 is calculated according to 

the following equation for species i:

where, ΨM
i

 depends on the magnetic field strength (H), and 
the orientation of the magnetic field relative to the principal 
axis (c-axis) of grain. �0 denotes the magnetic permeability 
coefficient, and �

�
 presents the magnetic susceptibility of 

the grain i, which is determined based on the experimental 
work as follows [15, 22]:

where the quantity of Δ� is the difference between the values 
of the magnetic susceptibilities parallel (�∥) and perpendicu-
lar (X

⟂
) to the principal axis of each grain ( Δ� = �∥ − �

⟂
) . 

(1)� =

�∑P

i=1
g(�i)�i

∑P

i=1
g(�i)

�
+ �m.

(2)�m =
(
1

2

) P∑

i=1

P∑

s≠i

�
�

is
�i�s −

(
1

4

) P∑

i=1

P∑

s≠i

�
�

is
�i.�s.

(3)�i = �e
i
+ ��

i
+ �M

i
,

(4)�e
i
=
(
1

2

){
� − �i

(
� − �0

)
�} ∶ Ci

[
� − �i

(
� − �0

)
�
]
,

(5)��
i
= ci

[(
� − �0

)
− � ln

(
�∕�0

)]
.

(6)�M
i

=
1

2
�0H

2Xi.

(7)Xi = X⊥ + Δxcos2γi,

�i is the angle between the principal axis of the grain i, Ci , 
and the magnetic field vector (H), which is calculated based 
on defining dot product as follows [25]:

According to Fig. 1, the vectors �
�
 and H are defined as 

follows:

As shown in Fig. 1, H is demonstrated in terms of the 
angles α and β, where α indicates the angle between the 
magnetic field vector and the normal direction (ND), and 
β denotes the angle between the rolling direction (RD) and 
the projection of H onto RD-TD plane with TD denoting 
transverse direction. In addition, �

�
 is displayed according 

to Euler angles definition for grain i as 
{
�1i,Φi,�2i

}
 [25].

Replacing Eqs. (9) and (10) in Eq. (8) yields:

Given the standard thermodynamic arguments and micro-
force equilibrium theory [42], the constitutive equations are 
as follows:

(8)cos(�i) =
�

�
.�

||��
|||�|

.

(9)
� =

[
C sin (Φ) sin

(
�1

)
,−C sin (Φ) cos

(
�1

)
,C cos (Φ)

]
,

(10)� = [H sin (�) cos (�),H sin (�) sin (�),H cos (�)].

(11)
cos(�i) = sinΦi sin�1i sin � cos � − sinΦi cos�1i sin � sin �

+ cosΦi cos �.

(12)�
∗ =

∑p

i=1
g
�
�i
�
Ci
�
� − �i

�
� − �0

�
�
�

∑p

i=1
g
�
�i
� ,

Fig. 1   Magnetic field direction and c-axis with respect to RD, TD, 
and ND
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Equation (12) is the stress–strain constitutive relationship, and 
Eq. (13) is the constitutive relationship for micro-stress vectors.

In addition, the kinetic relationship for the MPF variables 
is given by [2] under the physical constraint 

∑P

i=1
�i = 1 and 

correspondingly 
∑P

i=1
𝜉̇i = 0:

where, R =
{
i, ||∇𝜉i|| > 0

}
 is the set of species at the mate-

rial point with P* members interacting with each other. Lis 
is a parameter indicating the MPF mobility for transform-
ing species i ↔ s . The thermodynamic driving force ( f �

i
 ) 

for the evolution of species i is given through the following 
equation:

where f m
i

 shows the curvature driving force:

and f e
i
 expresses the elastic strain driving force:

and f �
i
 represents the driving force originated from the het-

erogeneity in the purely thermal free energy:

Finally, f M
i

 presents the magnetic-induced driving force:

The MPF model parameters of �is , κis, and Lis for the 
species transformation (i ↔ s ) are defined based on diffuse 
GB width ( l�

is
 ), GB energy (��

is
) , and GB mobility ( m�

is
) , as 

follows [12, 33]:

(13)�i =
��

��i

= −

P∑

s≠i

�
�

is

2
�s, i, s = 1, 2,… , p.

(14)
��i
�t

=
2

P∗

∑

j∈R

Lis
(
fi − fs

)
for i ∈ R,

(15)f
�

i
= f m

i
+ f e

i
+ f �

i
+ f M

i
,

(16)f m
i
= −

P∑

s≠i

�
�

is

2
∇2�i −

P∑

s≠i

�
�

is
�s,

(17)f e
i
=

g�
�
�i
��∑P

s=1
g
�
�s
��
�e
s
− �e

i

��

�∑P

s=1
g
�
�s
��2 ,

(18)f �
i
=

g�
�
�i
��∑P

s=1
g
�
�s
��
��
s
− ��

i

��

�∑P

s=1
g
�
�s
��2 ,

(19)f M
i

=
g�
�
�i
��∑P

s=1
g
�
�s
��
�M
s
− �M

i

��

�∑P

s=1
g
�
�s
��2 .

(20)�
�

is
=

4�
�

is

l
�

is

, �
�

is
=

8

�2
�
�

is
l
�

is
, L

�

is
=

�2

8

m
�

is

l
�

is

.

2.2 � Computational homogenization

The developed constitutive equations are applied in multi-
scale Taylor computations following the efforts of Jam-
shidian et al. [1, 2]. For computational homogenization, 
the macroscale domain is discretized using finite elements, 
where each finite element integration point represents a 
macroscopic material point. The macroscopic material point 
behavior is supposed to be acquired from the homogenized 
response of the attached RVE. The RVE should have enough 
grains for a macroscopic material point in the numerical 
analysis. The MPF approach is employed to implement the 
kinetic relations of GB migration in the RVE at the mes-
oscale level. The same RVE is attached to each finite ele-
ment integration point in the multi-scale model of coupled 
finite element and MPF. The equilibrium equations are 
implemented on a macroscale level by the finite element 
method in Abaqus standard software. It is assumed that the 
deformation gradient tensor at the mesoscale across the 
RVE is identical to the macro-deformation gradient tensor, 
F ̅, applied to the macroscale material point. Moreover, it is 
assumed that the temperature on the mesoscale level across 
the RVE is equivalent to the macroscale temperature. The 
RVE is divided into Ω sub-volumes with equal volumes to 
perform the mesoscale MPF calculations.

The macroscale Cauchy stress T is obtained according 
to the following Equation at the integration point of finite 
elements using the Taylor model [2]:

where Tk represents the Cauchy stress tensor in the kth sub-
volume within the RVE. The reader is referred to the Appen-
dix for more details on the computational method of the 
coupled MPF and finite element.

3 � MPF simulations

The developed constitutive model is used to simulate the 
simultaneous influences of magnetic field and elastic strain 
on microstructure evolution in titanium bicrystalline and 
polycrystalline samples. The elastic constants for titanium 
are C11 = 97.7GPa , C12 = 82.7Gpa , and C44 = 37.5GPa at 
1000 ℃ according to Ledbetter et al. [43].

3.1 � Titanium bicrystalline

Numerical simulations were performed on titanium bic-
rystalline to achieve a deeper insight into the competition 
between the magnetic driving force and elastic strain driv-
ing force for microstructure evolution. For this purpose, a 
bicrystalline sample with a flat GB is considered, and the 

(21)� =
1

Ω

Ω∑

k=1

�
k, k = 1, 2,… ,Ω,
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orientations 
(
180, 35, �2

)
 and 

(
0, 35, �2

)
 are selected for 

the grains as the main orientations for the rolled texture of 
titanium. Simulations were performed for these orientations 
with different �2 to examine the competitive effect of these 
driving forces on grain growth. The proposed multi-scale 
coupled MPF and finite element computational method 
are used to simulate titanium bicrystalline. A simple cubic 
geometry is used at the macroscale level with a four-node 
rectangular element and reduced integration. As shown in 
Fig. 2, a bicrystalline RVE which includes 200 × 200 grid 
points in the directions RD and TD, respectively, with a 
uniform grid spacing of Z = 1 μm is considered. The value 
of GB width is lξ = 6 µm for all simulations in this section. 
The RVE is subjected to a simple tensile loading. Therefore, 
an axial displacement in the TD direction is applied to the 
samples.

Supposing isotropic GB properties and using Eq. (20), 
the parameters L = 0.7511m3J−1s−1 , � = 0.2MJm−3 , and 
� = 1.46 μJm−1 are obtained using the GB energy for tita-
nium �� = 0.3 Jm−2 [19]. Finally, the values of the magnetic 
field parameters are �0 = 1.26 μNA−2 and Δx = 11.8 × 10

−6.
The elastic stored energy within each grain depends on 

the angle �2 , while the magnetic stored energy within each 
grain depends on the angle�2 . For this reason, the simu-
lations are performed for different �2 = 0, 10, 60

◦ with 
�1 = 0, 180 and Φ = 35. As illustrated in Fig. 3, simula-
tions for titanium bicrystalline are accomplished for dif-
ferent strain values of ε = 0.002, 0, and different magnetic 
field strength values of H = 0, 60 MAm−1 for different�2 . 
Regardless of the applied strain ε = 0, the magnetic field 
causes the GB to move away from the grain with less stored 
energy with orientation 

(
180, 35, �2

)
 toward the grain with 

more stored energy with orientation 
(
0, 35, �2

)
 as depicted 

in Fig. 3a. Moreover, it has been shown that the changes of 
�2 have no effect on the GB motion for this state.

The simulation results for the applied strain ε = 0.002 are 
displayed in Fig. 3b without considering the magnetic field. 

As illustrated in Fig. 3b, the GB migration depends on the 
angle �2 . When the zero value is considered for �2 , the elas-
tic stored strain energy is identical for both grains, and the 
GB has no motion. While the GB moves from the grain with 
orientation (0, 35, 10) towards the grain with orientation 
(180, 35, 10) for �2 = 10 . For �2 = 60 , the GB moves away 
from the grain with orientation (180, 35, 60) with less stored 
elastic strain energy toward the grain with orientation (0, 35, 
60) with more stored elastic strain energy.

The final state of the simulation is performed by consider-
ing magnetic and elastic strain driving forces. The magnetic 
field with strength H = 60 MAm−1 and elastic strain with 
the value of ε = 0.002 are applied to the RVE. The driving 
force due to the magnetic field alone causes the GB motion 
by considering �2 = 0 because the driving force resulting 
from the elastic strain does not affect the GB migration. 
This result is like case (a). There is a competition between 
the two driving forces for �2 = 10 . The GB motion amount 
for the grain (0, 35, 10) is lesser compared to the case (b) 
because the driving force caused by the magnetic field is 
trying to move the GB towards the grain (0, 35, 10) in the 
opposite direction of the elastic strain driving force. Finally, 
for �2 = 60 , both driving forces cause the GB migration 
away from the grain with orientation (180, 35, 60) towards 
the grain with orientation (0, 35, 60).

Moreover, the simulations were also performed for 
�2 = 20, 30, 40, 50 . Therefore, the GB motion is like the 
case with �2 = 10 considering �2 = 20, 30, 40 , but occurs 
at a lower speed. In addition, the boundary migrates like 
the case with �2 = 60 for �2 = 50 , but the GB migration 
is slower.

Fig. 2   The RVE of titanium bicrystalline for numerical simulation

Fig. 3   The simulation results for bicrystalline sample under the 
simultaneous influences of magnetic field and elastic strain for differ-
ent �2 a ε = 0 and H = 60 MAm−1, b H = 0 and ε = 0.002, c H = 60 
MAm−1 and ε = 0.002
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3.2 � Titanium polycrystalline

This section investigates the microstructure evolution for 
titanium polycrystalline under the simultaneous effects of 
a simple tension loading and magnetic field. In a titanium 
polycrystalline sample, the interaction between elastic strain 
driving force, magnetic driving force, and curvature driving 
force is studied. A simple cubic geometry with an integra-
tion point in its center is used at macroscale, and a uniaxial 
tensile loading is applied in the TD direction. The directions 
ND, TD, and RD relative to the applied magnetic field on 
the titanium sheet are according to Fig. 4a. As shown in 
Fig. 4b and c, an RVE is attached to the integration point 
of the finite element at the macroscale level. This RVE 
includes 2000 × 2000 elements in the directions RD and 
TD, respectively, and a uniform grid with spacing Z = 1 µm. 
The diffuse GB width is six grids spacing (L = 6 µm) for all 
simulations performed in this section. The RVE displayed in 
Fig. 4c includes 2632 grains with an initial mean grain size 
of 39 μm. According to Fig. 4c, the initial polycrystalline 
texture consists of grain sets with orientations 

(
0, 35, �2

)
 

and 
(
180, 35, �2

)
 with corresponding percentages of 50% 

and 48%, respectively. The orientations �1 of the remaining 
grains are random. As shown in Fig. 4d, the initial GSD of 
the RVE is log-normal. This texture is similar to the tex-
ture of commercially pure titanium polycrystalline used 
in the experimental study of Molodov et al. [19]. All the 

magnetic field and GB parameters are considered according 
to Sect. 3.1.

The curvature driving force and the mean grain diameter 
are inversely proportional. Moreover, grain orientation does 
not affect the curvature driving force [44]. In addition, the 
elastic strain driving force depends highly on the initial grain 
orientations and is independent of the mean grain diameter 
value. The magnetic field driving force strongly depends on 
the magnetic field strength and orientations of the grains 
relative to the magnetic field. The simulations are performed 
for two case studies. The first case study simulations are 
conducted for constant magnetic field strength and different 
applied strains, while different magnetic field strengths and 
constant applied strain are considered for the second case 
study.

The effect of different applied strains on the microstruc-
ture evolution of a titanium polycrystalline is investigated as 
follows. Simulations are carried out for three different values 
of applied strain ( � = 0.0005, 0.001 and 0.002 ) at a constant 
magnetic field with the strength of H = 13.5 MAm−1. Dif-
ferent values of strain and magnetic field strength, the GB 
width and the final times when the simulations are stopped, 
are given in Table 1.

The simulation ceases at final time tf  when the 
mean grain diameter is twice the initial mean diameter 
(D = 2.8D0). The results of MPF simulations for the micro-
structure evolution, VF and mean grain size for different 

Fig. 4   a The schematic of ND, TD and RD directions concerning the applied magnetic field on the titanium sheet, b a continuum body at macro-
scale level under a simple tensile loading, c the RVE at the mesoscale level attached to that macroscopic material point, d the initial normal GSD
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values of applied strain are shown in Figs. 5, 6, 7. Param-
eters D , D1 , D2 , V1 , andV2 are the mean diameter of all 
grains, grain set 

(
180, 35, �2

)
 , grain set 

(
0, 35, �2

)
 , VF 

of grain set 
(
180, 35, �2

)
, and VF of grain set 

(
0, 35, �2

)
 , 

respectively.
The microstructure evolution for different values of strain, 

i.e., � = 0.0005, 0.001, and 0.002 , and constant magnetic 
field with a strength of H = 13.5 MAm−1 are illustrated in 
Fig. 5 at the times t = 0.5 tf and t = tf . The grains with ran-
dom �1 disappear by applying strain, and only grains with 
orientation 

(
180, 35, �2

)
 and 

(
0, 35, �2

)
 remain within the 

microstructure. The reason is that the grain sets 
(
0, 35, �2

)
 

and 
(
180, 35, �2

)
 have the minimum stored elastic strain 

energy, while the grains with random �1 possess a higher 
amount of stored elastic strain energy, which eliminates 
these grains. It can be observed that the driving forces owing 
to the magnetic field, elastic strain, and GB curvature do not 
lead to a significant change in the morphology of the grains 
in the microstructure.

The mean diameter of grain sets 
(
0, 35, �2

)
 and (

180, 35, �2

)
 for different values of strain are investigated 

during grain growth to quantify the microstructure evolution 
of titanium polycrystalline. As Fig. 6 depicts, the time that 
the mean grain diameter reaches 2.8 times the initial mean 
grain diameter is t = 91.1, 66.9, and 38.1 min for the applied 
strains � = 0.0005, 0.001, and 0.002 , respectively. There-
fore, the mean grain size grows more rapidly by increasing 
the applied strain. In other words, as applied strain increases, 
there will be a greater difference in the stored elastic strain 
energy across the GB. Moreover, Fig. 6b–d illustrate that 
the difference in the mean grain size in the 

(
0, 35, �2

)
 and (

180, 35, �2

)
 grain sets is insignificant for different strains 

ε = 0.0005, 0.001, and 0.002 because the stored elastic strain 
energy for grain sets 

(
0, 35, �2

)
 and 

(
180, 35, �2

)
 is almost 

equal.
The VF evolution of grain sets 

(
0, 35, �2

)
 and (

180, 35, �2

)
 subjected to a magnetic field with 

strength H = 13.5 MAm−1 and under different strains 
ε = 0.0005, 0.001 and 0.002 are depicted in Fig. 7 during the 
annealing time. The stored elastic strain energy for grain sets (
0, 35, �2

)
 and 

(
180, 35, �2

)
 depends on the angle �2 . Since 

�2 is randomly distributed for both grain sets, the stored elas-
tic strain energies for 

(
0, 35, �2

)
 grains and 

(
180, 35, �2

)
 

grains are almost identical. Therefore, no significant change 
is observed in the texture, which is also seen in the simula-
tion results for the bicrystalline RVE.

The effect of magnetic field strength is investigated for 
constant applied strain ε = 0.002 on microstructure evolution 
in titanium polycrystalline RVE. The simulations are per-
formed for different magnetic field strength values including 
H = 13.5, 30, and 60 MAm−1. Based on the previous simu-
lations, the magnetic field is applied in the same direction. 
Table 2 shows the different values of magnetic field strength, 
MPF parameters, and final times when the simulations are 
stopped. The simulation ceases at the final time (tf ) when the 
mean grain diameter is twice the initial mean grain diameter 
(D = 2.6D0).

The simulation results for the microstructure evolution, 
mean grain size, and VF for different magnetic field strength 
values are shown in Figs. 8, 9, 10, respectively. Figure 8 
displays the microstructure evolution for H = 13.5, 30, and 
60 MAm−1 and constant strain ε = 0.002 at the times t= tf 
and t = 0.5 tf . As the magnetic field strength increases, the (
180, 35, �2

)
 grains, that are preferred by the stored mag-

netic energy, prevail over other grains during the annealing 

Table 1   Different values of applied strain in simulating microstructure evolution in titanium polycrystalline, magnetic field strength, correspond-
ing values of GB width, MPF parameters, and final times when the simulations are stopped

Case of simulation D0 [µm] z [µm] l [µm] � H [MAm
−1] tf [min]

1 39 1 6 0.0005 13.5 91.1
2 39 1 6 0.001 13.5 66.9
3 39 1 6 0.002 13.5 38.1

Fig. 5   The simulation results of microstructure evolution of tita-
nium polycrystalline subjected to a magnetic field with a strength 
of H = 13.5 MAm−1 with strains a ε = 0.0005, b ε = 0.001, and c 
ε = 0.002 at t = 0.5t

f
 and t = t

f
.
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time. In other words, the magnetic driving force overcomes 
the elastic strain driving force under the sufficient strength 
of the magnetic field. Grains with random �1 are eliminated 
due to the presence of elastic strain energy driving force.

Figure 9 demonstrates the mean grain size evolution 
for grain sets 

(
0, 35, �2

)
 and 

(
180, 35, �2

)
 as well as all 

grains. As shown in this figure, the time when the mean 
grain diameter reaches 2.6 times the initial mean grain 
diameter is t = 36.4, 35.4, and 32.8 min for the applied 
magnetic field with strengths of H = 13.5, 30, and 60 
MAm−1, respectively. This observation indicates that the 
magnetic field strength has little effect on the grain growth 
rate. This result is consistent with the experimental results 
of Molodov et al. [19]. As the magnetic field strength 
increases, the 

(
180, 35, �2

)
 grains with less magnetic 

energy than other grains grow faster than the 
(
0, 35, �2

)
 

grains. In the case where the magnetic field is the highest, 
this difference is most apparent.

To quantify the evolution of grain VF, the VFs of two 
grain sets 

(
0, 35, �2

)
 and 

(
180, 35, �2

)
 for different mag-

netic field strength values are examined during microstruc-
ture evolution as depicted in Fig. 10. The VF of grain 
set 

(
180, 35, �2

)
 increases and VF of grain set 

(
0, 35, �2

)
 

decreases by increasing the magnetic field strength. Hence, 
the grains of set 

(
180, 35, �2

)
, which are preferred by pos-

sessing less stored magnetic energy than other grains, con-
sume other grains. Therefore, increasing the magnetic field 
strength can intensify the preferential texture.

The simulation results for the four cases with minimum 
and maximum magnetic field strength and applied uniaxial 
strain are shown in Fig. 11 to further investigate the effects 
of driving forces arising from the magnetic field, elastic 
strain, and GB curvature on the grain growth in titanium 
polycrystalline. Figure 11 demonstrates the microstructure 
evolution subjected to the magnetic field with a strength of 
H = 0, 60 MAm−1 and applied strains ε = 0, 0.002. When 
the zero value is considered for magnetic field strength and 

Fig. 6   The evolution of mean grain size a for all grains subjected to 
a constant magnetic field with a strength of H = 13.5 MAm−1 and dif-
ferent strains, and the evolution of mean grain size for all grains, D, (
0, 35,�2

)
 grains, D1, and 

(
180, 35,�2

)
 grains, D2, subjected to a con-

stant magnetic field with a strength of H = 13.5 MAm−1 and different 
strains b ε = 0.0005, c ε = 0.001, and d ε = 0.002 during the annealing 
time
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strain, the only driving force affecting the GB motion is 
the curvature driving force, which causes normal growth 
of grains. Thus, the texture does not change without 
elastic strain and magnetic field, H = ε = 0. However, the 
preferential growth of 

(
180, 35, �2

)
 grains occurs during 

microstructure evolution by increasing the magnetic field 
intensity (H = 60) and without the applied strain (ε = 0). 
Moreover, the grains with random �1 are not completely 
consumed.

On the other hand, the main texture in the microstruc-
ture does not change during grain growth by increasing the 
elastic strain and in the absence of a magnetic field. How-
ever, the microstructure evolution rate increases. Under 
sufficient magnetic field and elastic strain, the magneti-
cally induced driving force overcomes the elastic strain 
driving force as illustrated in Fig. 11d. This leads to the 
growth of grain set 

(
180, 35, �2

)
 and the removal of other 

grains.

Fig. 7   The VF evolution of grain sets 
(
0, 35,�2

)
 , v1, and 

(
180, 35,�2

)
 , v2, subjected to a magnetic field with strength of H = 13.5 MAm−1 and 

different strains a ε = 0.0005, b ε = 0.001, and c ε = 0.002, over the annealing time

Table 2   Different strengths of the applied magnetic field in simulating microstructure evolution in titanium polycrystalline, applied strain value, 
corresponding values of GB width, MPF parameters, and final times when the simulations cease

Case of simulation D0 [µm] z [µm] l [µm] � H [MAm
−1] tf [min]

1 39 1 6 0.002 13.5 36.4
2 39 1 6 0.002 30 35.4
3 39 1 6 0.002 60 32.8
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Figure 12a and b display the mean grain size evolution 
and VF for the four simulation cases. As these figures show, 
no change in the VF is observed when the magnetic field 
and strain are both zero. The VF of 

(
180, 35, �2

)
 grains 

grows quickly for the magnetic field strength H = 60 without 
applied strain, whereas the mean grain size evolution experi-
ences a small change compared to the case with H = 0 and 
ε = 0. The mean grain size increases rapidly with the applied 
strain ε = 0.002 without the magnetic field. In this case, the 
primary texture persists during microstructure evolution. 
When both the strain and magnetic field are applied, there 
is a rapid increase in the mean size of grains as well as the 
growth of the preferential texture. Therefore, the obtained 
results express that applying slight strain to the sample 
before the magnetic field annealing significantly changes 
the grain growth rate, and the required time for magnetic 
annealing decreases.

Figure 13 shows the GSD histograms for different mag-
netic field strengths and applied strains. The GSD histo-
grams remain log-normal as in the initial state by applying 
a sufficient magnetic field, but the heights of the histogram 
bars decrease. Therefore, the magnetic driving force acceler-
ates the growth of the desired grains but does not affect the 
GSD. On the other hand, the heights of the histogram bars 
decrease significantly by increasing the applied strain, and 
the graphs deviate from the initial log-normal distribution, 
indicating that the elastic strain driving force changes the 
GSD histograms.

4 � Conclusion

A 2D constitutive model was presented for simulating GB 
migration affected by elastic strain and magnetic field based 
on thermodynamic laws. The developed constitutive equa-
tions were implemented in a semi-concurrent multi-scale 
framework utilizing the Taylor homogenization method. The 
stress–strain response of the structure was modeled through 
the finite element method at the macroscale, while the grain 
growth kinetics in a polycrystalline RVE subjected to strain 
and magnetic field was performed by MPF simulation.

The simulations were carried out on pure titanium bic-
rystalline and polycrystalline according to the experimental 
work of Molodov [19]. The simultaneous effects of applied 
elastic strain and magnetic field were investigated on the 
microstructure evolution. Generally, the following results 
were obtained:

•	 The elastic strain driving force had an outstanding effect 
on the grain growth rate, which increased by raising the 
applied strain at a constant magnetic field.

•	 The magnetic field driving force had no significant effect 
on the grain growth rate, which experienced no signifi-
cant changes by increasing the applied magnetic field at 
a constant applied strain.

•	 Applying elastic strain to the microstructure before the 
magnetic field annealing decreased the required time for 
the annealing.

•	 Increasing the magnetic field strength caused the (
180, 35,φ2

)
 orientation to become the dominant texture.

•	 The driving force owing to the elastic strain had a signifi-
cant effect on the GSD than the driving force originated 
from the magnetic field.

Appendix: Numerical implementation

A semi-concurrent multi-scale time-integration method was 
used for the numerical implementation of the constitutive 
equations using Thamboraja and Jamshidian [2]. This multi-
scale coupled MPF and finite element computational method 
is implemented in Abaqus standard finite element software 
by writing a UMAT subroutine. The details of the numerical 
algorithm for the time integration method are as follows:

The index λ represents the integration point of finite ele-
ments, where � = 1, 2,… , �el and �el represent the total num-
ber of integration points of the finite elements. The index 
k = 1, 2,… ,Ω is used to represent the grid points of RVE, 
where Ω represents the total number of grid points.

The quantity of a variable at the grid points of the RVE is 
the mesoscale quantity, whereas a quantity at finite element 
integration points is a macroscale quantity. The quantity # 

Fig. 8   The simulation results of microstructure evolution for titanium 
polycrystalline with constant strain ε = 0.002 and different magnetic 
field strengths of a H = 13.5 MAm−1, b H = 30 MAm−1, and c H = 60 
MAm−1 at times t = 0.5t

f
 and t = t

f
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at the integration point of elements λ is represented as #λ . 
The quantity # is displayed as #�,� in the K-the point of the 
grid from the RVE attached to the integration point of the 
λ finite elements.

In the numerical algorithm process, we only track species 
at a grid point at that grid point and its nearby vicinity [2, 
44]. The Ap list represents a set containing species, which 
satisfy condition 0 < 𝜉i ≤ 1 at the grid point and its nearest 
neighboring points. In addition, each member of the Ap set 
is unique.

In this paragraph, the discussion is limited to the RVE 
attached to the integration point of the finite elements λ. The 
grid point number K in the RVE is labeled asG�,� , which is 
in position (x1, x2, x3) in the reference configuration. Grid 
points  in  posi t ions (x1 + z, x2, x3) ,  (x1 − z, x2, x3) , 
(x1, x2 + z, x3)  ,  (x1, x2 − z, x3),  a n d (x1, x2, x3 + z)  , 
(x1, x2, x3 − z) are known in the reference configuration as the 
neighboring grid points of G�,� where Z represents the uni-
form spacing of the grid. The grid point index for each of the 

neighboring grid points of G�,� is a member of the Z�,� set. 
Thus, the set Z�,� has six members, and the member number 
J from the set Z�,� with J = 1, 2,… , 6 is represented asZ�,�

j
 . 

Labels for each grid point, their coordinates in the reference 
configuration, and tags for their neighboring grid points are 
obtained from an external file.

In the time marching method, t donates the current time 
and Δt > 0 presents the time step and τ = t + ∆t. The Euler 
method is used to temporally integrate the grain growth 
equations.

The algorithm used for the time integration method is 
as follows:

Start the loop on all points of finite element integration 
points � = 1, �el.

•	 G i v e n  m a c r o s c a l e  q u a n t i t i e s : 
�
�
(t),�

�
(�), �

�
(t), �

�
(�),�

�
(t) , H.

•	 Macroscale quantities to be updated: 
{
�
�
(�)

}
.

Fig. 9   The mean grain size evolution a for all grains with constant 
strain ε = 0.002 and magnetic field with strengths of H = 13.5, 30, 
and 60 MAm−1, and the evolution of mean grain size for all grains, 

(
0, 35, �2

)
 grains and 

(
180, 35, �2

)
 grains for constant strain value 

ε = 0.002 and magnetic field with strengths of b H = 13.5 MAm−1, c 
H = 30 MAm−1, and d H = 60 MAm−1 over the annealing time
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	   Start the loop on all points of the grid of k = 1,Ω.
•	 Given mesoscale quantities: 

{
��,k
i
(t),A�,k

p
(t), Z�,�

}
.

•	 Mesoscale quantities to be updated: 
{
��,k
i
(�),A�,k

p
(�)

}
.

Step 1: Determining the deformation gradient tensor at the 
mesoscale F(t) and F(τ):

Step 2: Specifying the temperature on the mesoscale θ(t) 
and θ(τ)

Step 3: Calculating the strain tensor at the mesoscale �i(t) 
and �i(�) for each i�A� species:

�(t) = �
�
(t) and �(�) = �

�
(�).

�(t) = �
�
(t) and �(�) = �

�
(�).

�i(t) =
1

2

{(
�i(t)

)T
�i(t) − �

} ,

�i(�) =
1

2

{(
�i(�)

)T
�i(�) − �

} .

Fig. 10   The simulation results for the VF evolution of grain sets 
(
0, 35, �2

)
 and 

(
180, 35, �2

)
 for constant strain ε = 0.002 and magnetic field 

with strengths of a H = 13.5 MAm−1, b H = 30 MAm−1, and c H = 60 MAm−1 over the annealing time

Fig. 11   The simulation results of microstructure evolution for tita-
nium polycrystalline for different strains ε = 0, 0.002 and magnetic 
field with strengths of H = 0, 60 MAm−1 at times t = 0.5t

f
 and t = t

f
.
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Step 4: Determining the set A� of species, which are pre-
sent at the grid point and its immediate neighbors:

A� = 1 indicates no inter-species exchange or transfer and 
therefore step 11 should be performed after updating the 
set A�,k

p
(�) = A�,k

p
(t) in ��,k

i
(�) = ��,k

i
(t) for all i ∈ A�,k

p
(t) 

species.
Step 5: Calculating the free energies �e

i
(t)، �M

i
(t)، ��

i
(t) 

on the mesoscale for each i�A� species:

A� =

[
∪6

j=1
A
�,Z�,k

j

p (t)

]
∪ A�,k

p
(t).

�e
i
= 1∕2�i ∶ ci

[
�i

]
,

Step 6: Calculating the driving forces for f �
i
(t) inter-spe-

cies exchange for each i�A� species:

�M
i
(t) =

1

2
�0H

2Xi,

��
i
(t) = ci

[(
�(t) − �0

)
− �(t) ln(�(t)∕�0

]
.

f
�

i
(t) = f m

i
(t) + f e

i
(t) + f �

i
(t) + f M

i
(t),

f m
i
(t) = −

∑

s∈A�

�
�

is

2
∇2��,k

i
(t) −

∑

s∈A�

�
�

is
��,k
s
(t) with s ≠ i,

Fig. 12   a the mean grain size evolution for all grains; b the VF evolution of 
(
0, 35, �2

)
 grains and 

(
180, 35, �2

)
 grains for different strains ε = 0, 

0.002, and applied magnetic field with strengths of H = 0, 60 MAm−1 over the annealing time

Fig. 13   The simulation results of GSD for different strains ε = 0, 0.002, and magnetic field with strengths of H = 0, 60 MAm−1 over the anneal-
ing time
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It is worth noting that ��,k
s
(t) = 0 if i ∉ A�,k

p
(t) . The finite 

difference method is used to calculate the second-order 
gradient of the MPF variables ∇2��,�

s
(t) [44].

Step 7a: Calculating the total driving force for the inter-
species exchange ( fpq(t)) for the species p, q ∈ A� with 
p < q:

Step 7b: Calculating the inter-species transfer rate Δ�pq 
for p, q ∈ A� species with p < q:

If |||fpq(t)
||| > f 𝜉,c

pq
, then, we have:

where the coefficients of mobility L̂
�

pq
(�(t)) = L�

pq
(t).

If |||f pq(t)
||| < f �,c

pq
 , then, we have:

The set A� contains the quantities Δ�pq ≠ 0 for the species 
p, q ∈ A� with p < q. If A� = ∅ , then ��,k

i
(�) = ��,k

i
(t) for 

each species is i�A�,k
p
(t) ; then, the set A�,k

p
(�) = A�,k

p
(t) is 

updated and then we proceed with step 11.
Step 8: Updating the VF of the species ( ��,k

i
(�)) for each 

species i ∈ A�:

If 𝜉𝜆,k
i
(𝜏) > 1 , then ��,k

i
(�) = 1 and if 𝜉𝜆,k

i
(𝜏) < 0 , then 

��,k
i
(�) = 0.

Step 9: Updating the set A�,k
p
(�) of the species, which 

satisfy the following conditions:

f e
i
(t) =

g�
�
��,k
i
(t)
��∑

s∈A�
g
�
��,k
s
(t)
��
�e
s
(t) − �e

i
(t)
��

�∑
s∈A�

g
�
��,ks (t)

��2 ,

f �
i
(t) =

g�
�
��,k
i
(t)
��∑

s∈A�
g
�
��,k
s
(t)
��
��
s
(t) − ��

i
(t)
��

�∑
s∈A�

g
�
��,ks (t)

��2 ,

f M
i
(t) =

g�
�
��,k
i
(t)
��∑

s∈A�
g
�
��,k
s
(t)
��
�M
s
(t) − �M

i
(t)
��

�∑
s∈A�

g
�
��,ks (t)

��2 .

∇2��,�
s

(t) =

�
∑6

j=1
�
�,z�,�

j

s (t)

�
− 6��,�

s
(t)

z2
.

fpq(t) = f �
p
(t) − f �

q
(t).

Δ�pq = L�
pq
(t)fpq(t)Δt.

Δ�pq = 0.

𝜉𝜆,k
i
(𝜏) = 𝜉𝜆,k

i
(t) +

∑

p<q

KipqΔ𝜉pq, p, q ∈ A𝜉 .

Step 10: Ensuring that the constraint 
∑

i�A�,k
p (�) �

�,k
i
(�) = 1 

is always satisfied by substituting:

Step 11: Updating Cauchy stress at mesoscale, T�,k(�):

where T∗(�) is the second Piola- Kirchhoff stress on the 
mesoscale:

The end of the loop is on all grid points of the RVE.

Step A: Updating Cauchy stress at macro scale using 
Eq. 19:

Step B: Determining the Jacobin matrix for the finite-
element code Abaqus/Standard for Newton–Raphson 
iterations [2, 44].

The end of the loop is on finite element integration points.
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will provide the datasets that support the findings of the current study.
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