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Abstract: In this paper, we demonstrate that torsional surface elastic waves can prop-
agate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a
conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic
compliance s(1)44 (ω), which varies as a function of frequency ω analogously to the dielectric

function ε(ω) in Drude’s model of metals. As a consequence, the elastic compliance s(1)44 (ω)

can take negative values s(1)44 (ω) < 0 as a function of frequency ω. Negative elastic compli-

ance (s(1)44 (ω) < 0) enables the emergence of new surface states, i.e., new types of surface
elastic waves. In fact, the proposed torsional elastic surface waves can be considered as an
elastic analog of Surface Plasmon Polariton (SPP) electromagnetic (optical) waves propa-
gating along a metallic rod (cylinder) embedded in a dielectric medium. Consequently, we
developed the corresponding analytical equations, for the dispersion relation and group
velocity of the new torsional elastic surface wave. The newly discovered torsional elas-
tic surface waves exhibit virtually all extraordinary properties of their electromagnetic
SPP counterparts, such as strong subwavelength concentration of the wave energy in the
vicinity of the cylindrical surface (r = a ) of the guiding rod, very low phase and group
velocities, etc. Therefore, the new torsional elastic surface waves can be used in: (a) near-
field subwavelength acoustic imaging (super-resolution), (b) acoustic wave trapping (zero
group and phase velocity), etc. Importantly, the newly discovered torsional elastic surface
waves can form a basis for the development of a new generation of ultrasonic sensors (e.g.,
viscosity sensors), biosensors, and chemosensors with a very high mass sensitivity.

Keywords: torsional elastic waves; elastic metamaterials; negative elastic compliance;
dispersion curves; phase velocity; group velocity; mass sensitivity; viscosity sensors

1. Introduction
We are currently witnessing a fascinating development of the theory of surface and

bulk acoustic waves. New extraordinary properties in the domain of acoustic waves
appeared with the invention of a new class of materials, i.e., metamaterials. The use of
elastic metamaterials for the construction of ultrasonic waveguides has created a fertile
ground for the discovery of a series of new ultrasonic waves.

As an example of newly discovered elastic surface waves propagating on a flat inter-
face between two elastic half-spaces, one of which is an elastic metamaterial with a negative
elastic compliance, can serve the SH surface acoustic waves discovered by Kiełczyński and
presented in [1,2].

The search for new types of ultrasonic sensors led the authors of this paper to the
discovery of new torsional elastic waves propagating on the curved surface of metamaterial
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elastic cylinders embedded in a conventional elastic medium. These newly discovered
elastic torsional waves can be applied to develop a new generation of acoustic cylindrical
sensors with very high mass sensitivity. Needless to say, such a property of the sensor is of
crucial importance in measurements in many applications in domains, such as medicine,
biology, toxicology, or environmental studies.

In this paper, the authors proved the existence of a new class of elastic torsional surface
waves propagating in cylindrical waveguides with a metamaterial cylindrical rod, with
a negative elastic compliance s44 < 0, embedded in a conventional elastic medium with
s44 > 0. The newly discovered torsional elastic surface waves have only one angular (shear)
mechanical displacement component uθ that is tangential to the cylinder circumference
and depends only on the radial coordinate r.

The curved cylindrical structure of the waveguide offers many advantages in practi-
cal field measurements, e.g., the cylindrical shape of the waveguide supporting the new
torsional elastic surface waves can be beneficial in operation in a liquid environment. Simul-
taneously, we expect that the newly discovered torsional elastic surface waves, propagating
along cylindrical rods, will exhibit very high mass sensitivity.

The main feature of the newly discovered torsional elastic surface waves is their
close affinity with the Surface Plasmon Polariton (SPP) electromagnetic (optical) waves
propagating along the interface between the metallic core cylinder and the dielectric
outer medium [3,4]. In fact, the newly discovered torsional elastic surface waves can
be considered as an elastic counterpart of the electromagnetic SPP waves described in [3,4].

Ultrasonic elastic waves propagating in pure elastic rectangular (flat) and circular
waveguide structures have found applications in sensors of physical quantities, such as
viscosity sensors, to investigate the elastic parameters of surface layers, to investigate the
physicochemical parameters of liquids, etc. [5–14].

Torsional waves propagating in pure elastic cylindrical rods have been mainly used
in viscosity sensors since the 1950s [15]. Classical ultrasonic cylindrical liquid viscosity
sensors are made of conventional elastic materials. These sensors are usually used to
determine the viscosity of liquids in biosensors and chemosensors [16–21].

The mechanical displacement of a torsional wave is tangential to the surface of the
elastic cylinder in which the wave propagates. The cylindrical waveguide is immersed in
a liquid whose material parameters (e.g., density, viscosity) are to be determined. Thus,
the torsional wave generates a shear stress on the cylinder surface and in the surrounding
investigated liquid. The amplitude and speed of propagation of torsional waves change as
a result of the loading of the cylindrical surface by the adjacent liquid. This phenomenon
can constitute the basis for the operation of viscosity sensors using elastic torsional waves.

However, sensors of this type are not free from disadvantages. The main inherent
deficiency of torsional waveguides based on the use of conventional elastic materials is
that the acoustic energy of the torsional wave is distributed over a large volume of the
cylinder. For this reason, the energy density of the wave near the cylindrical surface is
moderate. This results in the mass sensitivity of this torsional wave being moderate. In
conventional torsional wave viscosity sensors, a larger concentration of the wave energy
near the cylindrical surface is impossible due to the diffraction phenomenon. Therefore,
the need to solve this problem arose.

The aim of the authors’ work was to overcome these drawbacks. To solve this problem,
the authors used the extraordinary properties of elastic metamaterials with a negative
elastic compliance s44 < 0.

Employment of the elastic metamaterials was inspired by the fact that the use of
mechanical and optical metamaterials for the construction of the sensors, chemosensors,
and biosensors substantially improved their exploitation characteristics [22–26]. Namely,
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optical Surface Plasmon Polariton (SPP) waves propagating at the interface between a
metallic half-space and a dielectric half-space are characterized by a large concentration of
wave energy near the metal-dielectric interface [27]. A similar large concentration of wave
energy occurs in the case of optical SPP waves propagating in cylindrical waveguides (a
metallic cylinder embedded in a conventional dielectric material) [4].

Using analogies between SPP-type electromagnetic waves and Shear Horizontal (SH)
elastic waves, a new SH-type elastic wave propagating at a flat interface between two
elastic half-spaces, one of which is a metamaterial half-space (s44 < 0), was discovered
by Kiełczyński in [2]. This new elastic surface wave is also characterized by a huge
concentration of wave energy near the interface.

These facts motivated the authors to search for new elastic torsional waves propagating
on the surface of metamaterial cylindrical waveguides. In this paper, the authors describe
a newly discovered torsional elastic wave propagating on the surface of a metamaterial
cylinder (s44 < 0) embedded in a conventional elastic material (s44 > 0).

According to the analysis carried out by the authors in this paper, this newly discov-
ered torsional wave is characterized by a very high concentration of elastic wave energy
near the cylinder surface, which should also result in a very large increase in the mass
sensitivity of the new torsional wave.

We can treat this newly discovered elastic torsional wave as an elastic analog of optical
(electromagnetic) SPP waves propagating on the surface of a metallic cylinder embedded
in a conventional dielectric material described in [4].

The equations of motion written in a cylindrical coordinate system were formulated
and solved. Analytical formulas of (1) the dispersion equation and (2) group velocity were
developed for the elastic torsional wave propagating in layered cylindrical metamaterial
structures in the z-axis direction (see Figure 1).
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Figure 1. Cross-section of the cylindrical waveguide supporting the new torsional elastic surface
waves, propagating along the cylindrical metamaterial rod (0 < r ≤ a), embedded in a conventional
elastic medium (r > a). Mechanical displacement uθ of the new torsional elastic surface wave is
polarized along the angular coordinate θ. The red arrow indicates the direction of propagation.
The dashed (green) lines specify the mechanical displacement of the conventional torsional waves
propagating in a purely elastic cylindrical waveguide. The blue arrows point out the mechanical
displacement of the new surface elastic torsional wave propagating in the elastic metamaterial
cylindrical waveguide.
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The key property of the newly discovered torsional ultrasonic waves is that their
mechanical displacement is concentrated close to the curved surface (r = a) of the cylinder,
which greatly increases the mass sensitivity of the sensors that use the newly discovered
torsional waves.

It should be finally mentioned that the proposed newly discovered torsional elastic
surface waves exhibit virtually all extraordinary properties of their electromagnetic SPP
counterparts, such as (1) strong subwavelength concentration of energy in the vicinity of
the curved cylindrical surface of the guiding rod, (2) very low phase and group veloci-
ties, (3) subwavelength penetration depth, (4) possibility to achieve a resolution below a
wavelength (super resolution), etc.

The layout of this paper is as follows. After the introduction in Section 1, we present the
geometrical structure and material parameters of the cylindrical metamaterial waveguide
supporting the new torsional elastic surface waves in Section 2. In Section 3, we develop
mathematical equations for the mechanical displacement, shear stresses, dispersion relation,
and group velocity for the new torsional elastic surface waves. Section 4 contains numerical
results and figures resulting from the analysis performed in Section 3. Section 5 and 6
contain the discussion and conclusions, respectively.

2. Physical Model
2.1. Geometry and Material Parameters of the Waveguide

The geometry of the waveguide supporting the new torsional elastic surface waves
is presented in Figure 1. The waveguide consists of a metamaterial elastic cylindrical rod
(0 < r ≤ a) embedded in a conventional elastic medium (r > a ). As will be shown explic-
itly in Section 2.2, the elastic compliance of the metamaterial cylindrical rod (0 < r ≤ a)
can exhibit negative values s(1)44 (ω) < 0 in the frequency range adjacent to zero frequency
ω = 0. The remaining material parameters of the waveguide, i.e., the density in the meta-
material rod ρ1 and in a conventional elastic surrounding medium ρ2, as well as its elastic
compliance s(2)44 > 0, are all positive.

2.2. Elastic Compliance s(1)44 (ω) of the Metamaterial Elastic Cylinder 0 < r ≤ a

It is assumed throughout this paper that the elastic compliance s(1)44 (ω) of the meta-
material cylinder (rod), as a function of angular frequency ω, changes analogously to the
dielectric function ε(ω) in Drude’s model of metals [28], namely

s(1)44 (ω) = s0

(
1 −

ω2
p

ω2

)
(1)

where ωp is the angular frequency of the local mechanical resonators in the metamaterial
and s0 is its reference elastic compliance for ω → ∞ .

In Drude’s model of metals the angular frequency, ωp = 2π fp is called the angular
frequency of bulk plasmon resonance [27]. The adjacent medium (r > a) is a conventional
elastic material with a positive compliance s(2)44 > 0 and density ρ2 > 0 that are both
frequency independent.

The physical mechanism that explains the fact that the dielectric constant ε in the
Drude model takes negative values is that the oscillations of free electrons in the metal are
delayed in phase by 180◦ with respect to the phase of the driving electric field. Similarly,
in the case of elastic metamaterials, the vibrations of the local mechanical oscillators are
also delayed in phase by 180◦ relative to the phase of the mechanical displacement of the
driving transverse ultrasonic wave. In this way, the elastic mechanical compliance s44 can
take negative values.
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The vibrations of local electrical resonators and local mechanical resonators are de-
scribed by the same mathematical model. Therefore, the Drude formula, which describes
the vibrational properties of electrical resonators, can also be used to characterize the vibra-
tional parameters of mechanical resonators (e.g., mechanical admittance and impedance).

It should be stressed that according to Equation (1) the elastic compliance s(1)44 (ω) of
the metamaterial rod is negative in the frequency range 0 < ω < ωp. How to realize the

elastic metamaterial with a negative elastic compliance s(1)44 (ω) < 0 was shown in the recent
paper of Kiełczyński [2] in Sections 2.3 and 2.4.

3. Mathematical Model
A unique feature of the new torsional elastic surface waves is the fact that they possess

only one component of the mechanical displacement uθ that is polarized along the angular
coordinate θ, which is tangential to the circumference of the cylinder (see Figure 1).

The mechanical displacement of the new torsional elastic surface wave decays rapidly
with the distance from the surface of the cylinder (r = a) in both directions, i.e., into the
metamaterial elastic cylinder (0 < r ≤ a) and into the adjacent elastic medium (r > a).

3.1. Mechanical Displacement and Shear Stress

The new torsional elastic surface wave propagates along the axis of the cylinder z.
The mechanical displacement u(1)

θ (r, z, t) of the new torsional elastic surface wave in the
metamaterial elastic cylinder 0 < r ≤ a can be expressed in the following generic form:

u(1)
θ (r, z, t) = A· f (r)·exp[j(kz − ωt)] (2)

where the function f (r) depends only on the radial distance r, j =
√
−1 stands for the

imaginary unit, k is the wavenumber of the new torsional elastic surface wave, ω is its
angular frequency, A is an arbitrary real constant, and t stands for time.

By definition, the associated shear stress σ
(1)
rθ (r, z, t) of the new torsional elastic surface

wave in the metamaterial elastic cylinder 0 < r ≤ a is given by

σ
(1)
rθ (r, z, t) =

1

s(1)44 (ω)
r

∂

∂r

(
u(1)

θ (r, z, t)
r

)
(3)

Analogous expressions can be written for the mechanical displacement u(2)
θ (r, z, t) and

the associated shear stress σ
(2)
rθ (r, z, t) in the adjacent conventional elastic medium (r > a),

namely
u(2)

θ (r, z, t) = B·g(r)·exp[j(kz − ωt)] (4)

and

σ
(2)
rθ (r, z, t) =

1

s(2)44

r
∂

∂r

(
u(2)

θ (r, z, t)
r

)
(5)

where the function g(r) depends only on the radial distance r, and B is an arbitrary real
constant.

The functions f (r) and g(r) with a radial argument r describe the change in the
amplitude of the new torsional elastic surface wave inside the cylindrical metamaterial rod
and in the surrounding medium, respectively.

The functions f(r) and g(r)will be given in a closed analytical form by Equations (10) and (11)
and the wavenumber k will be determined from the dispersion relation Equation (14) in
Section 3.5 of this paper.
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3.2. Equations of Motion

The mechanical displacements of the new torsional elastic surface wave: in the meta-
material elastic rod u(1)

θ and in the adjacent conventional elastic medium u(2)
θ satisfy the

following equations of motion, written in the cylindrical system of coordinates:

ρ1s(1)44
∂2u(1)

θ

∂t2 =
1
r2 ·

∂

∂r

(
r3 1

s(1)44

∂

∂r

(
u(1)

θ

r

))
+

∂

∂z

(
1

s(1)44

·
∂u(1)

θ

∂z

)
0 < r ≤ a (6)

and

ρ2s(2)44
∂2u(2)

θ

∂t2 =
1
r2 ·

∂

∂r

(
r3 1

s(2)44

∂

∂r

(
u(2)

θ

r

))
+

∂

∂z

(
1

s(2)44

·
∂u(2)

θ

∂z

)
r > a (7)

where, for the sake of clarity, the arguments in the mechanical displacements u(1)
θ and u(2)

θ

were omitted.

3.3. Explicit Analytical Formulas for the Mechanical Displacements u(1)
θ and u(2)

θ

Substituting Equation (2) for the mechanical displacement u(1)
θ in the metamaterial

rod into the equation of motion Equation (6), we obtain an ordinary differential equation
for the unknown radial function f (r). It can be shown that the solution for this differential
equation takes the following form:

f (r) = I1(γ1r) (8)

where γ1 is the radial wavenumber γ1 =
[
k2 − ω2ρ1s(1)44 (ω)

]1/2
and I1 stands for the

modified Bessel function of the first kind of order 1.
Similarly, substituting Equation (4) for the mechanical displacement u(2)

θ in the adjacent
medium into the equation of motion Equation (7), we obtain an ordinary differential
equation for the unknown radial function g(r), whose solution reads

g(r) = K1(γ2r) (9)

where γ2 is the radial wavenumber γ2 =
(

k2 − ω2ρ2s(2)44

)1/2
and K1 stands for the modified

Bessel function of the second kind of order 1.
Finally, substituting Equation (8) into Equations (2) and (9) into Equation (4), one

obtains
u(1)

θ (r, z, t) = A·I1(γ1r)·exp[j(kz − ωt)] 0 < r ≤ a (10)

u(2)
θ (r, z, t) = B·K1(γ2r)·exp[j(kz − ωt)] r > a (11)

3.4. Boundary Conditions

The mechanical displacement uθ and shear stress σrθ of the new torsional elastic
surface wave must be continuous across the surface of the cylindrical surface r = a of the
metamaterial rod, i.e.,

u(1)
θ

∣∣∣
r=a

= u(2)
θ

∣∣∣
r=a

(12)

σ
(1)
rθ

∣∣∣
r=a

= σ
(2)
rθ

∣∣∣
r=a

(13)
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3.5. Dispersion Equation

In the first step in determination of the dispersion equation for the new torsional
elastic surface waves, we will substitute Equations (2)–(5) into the boundary conditions
Equations (12) and (13). As a result, we will obtain a system of two linear homogeneous
algebraic equations for the unknown constants A and B. Equating the determinant of
this system of equations to zero, we obtain the following dispersion equation of the new
torsional elastic surface waves:

K2(γ2a)
K1(γ2a)

+
s(2)44

s(1)44 (ω)

γ1

γ2

I2(γ1a)
I1(γ1a)

= F(ω, k) = 0 (14)

where I1 and I2 are the modified Bessel functions of the first kind of order 1 and 2, and
similarly, K1 and K2 are the modified Bessel functions of the second kind of order 1 and 2.

The dispersion relation Equation (14) is a transcendental nonlinear algebraic equation
for the wavenumber k at a fixed angular frequency ω, which can be solved numerically
using appropriate numerical procedures, such as, e.g., the iterative Newton–Raphson
method.

3.6. Group Velocity

Group velocity vgr(ω) of the new torsional elastic surface waves was evaluated ana-

lytically using the following formula: vgr(ω) = − ∂F(ω, k)/∂k
∂F(ω, k)/∂ω

, where the function F(ω, k)
represents the dispersion equation (see Equation (14)), which is obviously an implicit
function of the angular frequency ω and wavenumber k. Thus, after lengthy but quite
elementary algebra, we obtain

vgr = −

[
s(1)44 (ω) ∂γ2

∂k + s(1)44 (ω)
(

∂γ1
∂k

γ2
γ1

− 2 ∂γ2
∂k

)]
K2 (γ2 a)
K1 (γ2 a) +

[
s(2)44

∂γ1
∂k + s(2)44

(
∂γ2
∂k

γ1
γ2

− 2 ∂γ1
∂k

)]
I2 (γ1 a)
I1 (γ1 a) +

[
s(1)44 (ω)γ2 a ∂γ1

∂k − s(2)44 γ1 a ∂γ2
∂k

]
I2 (γ1 a)
I1 (γ1 a)

K2 (γ2 a)
K1 (γ2 a) −

[
s(1)44 (ω)γ2 a ∂γ2

∂k − s(2)44 γ1 a ∂γ1
∂k

]
[

∂s(1)44 (ω)
∂ω γ2 + s

(1)

44 (ω) ∂γ2
∂ω + s(1)44 (ω)

(
∂γ1
∂ω

γ2
γ1

− 2 ∂γ2
∂ω

)]
K2 (γ2 a)
K1 (γ2 a) +

[
s(2)44

∂γ1
∂ω + s(2)44

(
∂γ2
∂ω

γ1
γ2

− 2 ∂γ1
∂ω

)]
I2 (γ1 a)
I1 (γ1 a) +

[
s(1)44 (ω)γ2 a ∂γ1

∂ω − s(2)44 γ1 a ∂γ2
∂ω

]
I2 (γ1 a)
I1 (γ1 a)

K2 (γ2 a)
K1 (γ2 a) −

[
s(1)44 (ω)γ2 a ∂γ2

∂ω − s(2)44 γ1 a ∂γ1
∂ω

] (15)

where ∂γ1
∂k = k

γ1
; ∂γ2

∂k = k
γ2

; ∂γ1
∂ω =

−ρ1

(
ωs(1)44 (ω)+s0ω2

p/ω
)

γ1
; ∂γ2

∂ω =
−ωρ2s(2)44

γ2
and ∂s(1)44 (ω)

∂ω =

2s0ω2
p/ω3.
At first glance, Equation (15) looks lengthy and intimidating, with doubtful opera-

tional significance; however, it can be easily implemented in numerical calculations using
standard procedures from software packages, such as Scilab or Matlab.

The computer program written in Scilab programming language to solve the disper-
sion equation (Equation (14)) to evaluate the dispersion curve and calculate the group
velocity (Equation (15)) is given in Appendix A.

4. Results of Numerical Calculations
4.1. Material Parameters of the Waveguide

Numerical calculations were performed employing an exemplary waveguide structure
consisting of a metamaterial cylindrical rod (0 < r ≤ a) made of ST-Quartz with embedded
local oscillators and PMMA surrounding medium (r > a). We assume that the frequency
of the local elementary oscillators equals fp = 1 MHz. The radius of the metamaterial
cylindrical rod is a = 1 cm. Losses in the cylindrical waveguide structure are neglected.
The actual values of the material parameters used in the numerical calculations are given
in Table 1.
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Table 1. Material parameters of the cylindrical rod (ST-Quartz) and the adjacent (PMMA) medium.

s0 = s(1)44 (ω → ∞), see Equation (1), phase velocity v0 =
√

1/(s0ρ1).

Material Density
[kg/m3]

Elastic Compliance
[GPa]

Bulk Shear Wave
Velocity [m/s]

ST-Quartz ρ1 = 2650 s0 = 1.474 v0 = 5060
PMMA ρ2 = 1180 s(2)44 = 70.03 v2 = 1100

Numerical calculations were performed with the help of the Scilab software package.

4.2. Dispersion Curve

The dispersion curve of the new torsional elastic surface wave was calculated from
the solution of the dispersion relation Equation (14) and plotted in Figure 2 as the wave
frequency f versus the wave number k. The phase velocity of the bulk shear elastic waves in

the surrounding conventional elastic medium is denoted in Figure 2 as v2 =
(

ρ2s(2)44

)−1/2
.

The surface resonant frequency is an upper cut-off frequency since above this frequency
the new torsional elastic surface wave cannot propagate.
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Figure 2. Dispersion curve (blue color) of the new torsional elastic surface wave, as the wave
frequency f versus the wavenumber k. The green line shows the dispersion curve of bulk shear
waves in a surrounding conventional elastic material.

The new torsional wave is a surface wave. From the analysis of the dispersion Equation (14),
it results that a new torsional wave can only exist in the range (ωmin, ωmax). The lower
limit ωmin is defined by the cylinder curvature. Above the upper ωmax, the torsional wave
cannot be a surface wave. In this frequency range (ωmin, ωmax), the phase velocity vp and
the group velocity vgr tend to zero as ω → ωmax .

4.3. Phase Velocity

Using the solution of the dispersion Equation (14), the plot of the phase velocity vp(ω)
= ω/k as a function of the wave frequency f was evaluated and is presented in Figure 3. In
our calculations, the maximum frequency fmax is equal to approximately 146 kHz.
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4.4. Group Velocity

Figure 4 shows the plot of the group velocity vgr(ω) of the newly discovered torsional
elastic surface wave as a function of the wave frequency f . The numerical calculations
were performed using an analytical formula, Equation (15).

Note that group velocity vgr of the new torsional elastic surface wave is always lower
than its phase velocity vp, as shown in Figure 3, but has the same cut-off frequencies.
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5. Discussion
5.1. Group Velocity

As the wave frequency grows, an increasing fraction of the elastic torsional wave
power flows in the metamaterial elastic core. The torsional wave power in a conventional
elastic medium (s44 > 0 and r > a) flows in the opposite direction to the wave power
flowing in the metamaterial elastic medium (s44 < 0 and r ≤ a). This reduces the overall
power flow of the wave P1 in the direction of propagation. By definition, energy velocity
ve = P1/u, where: P1 is the time-averaged total power flow in the propagation direction,
and u is the time-averaged energy stored in the waveguide per unit length. Consequently,
the energy velocity ve of the torsional wave decreases with increasing frequency.

Since the group velocity vgr can be identified with the energy flow velocity ve, a
decrease in the energy flow velocity ve entails a decrease in the group velocity of the wave
vgr → 0 for ω → ωmax . Moreover, it can be proven that the group velocity vgr is always
smaller than the phase velocity (vgr < vp). Namely,

vgr =
dω

dk
= vp + k·

dvp

dk
(16)

Since in general dvp
dk < 0 (normal dispersion); therefore, vgr < vp.

This can be seen in Figures 3 and 4.

5.2. Phase Velocity

The phase velocity vp behaves similarly to the group velocity vgr.
Namely, vp = ω/k.

dvp

dω
=

1
k
·
(

1 −
vp

vgr

)
(17)

Since vgr < vp, then dvp
dω < 0, i.e., the phase velocity vp decreases with increasing

angular frequency ω.

5.3. Dispersion Curve

The characteristic feature of the dispersion curve (see Figure 2) of the newly discovered
torsional wave is that as the wave frequency f grows and approaches the cut-off frequency
fmax, the wavenumber k increases significantly. Consequently, the wavelength λ = 2π/k of
the wave decreases and can reach the subwavelength region. This feature is responsible for
the increase in the concentration of wave energy near the surface of the cylinder r = a and,
therefore, for a substantial increase in the mass sensitivity of the new torsional wave.

Since the group velocity is, by definition, the derivative of the angular frequency ω

with respect to the wavenumber k, then the dispersion curve, i.e., the plot of ω versus k,
must decrease its slope as the angular frequency ω increases (see Figure 2).

In the limiting case ω → ωmax , the group velocity vgr → 0 and the wavenumber k
becomes very large k → ∞ .

The quest for sensors with enhanced parameters, such as very high sensitivity or
very low detection threshold, is driven by the requirements resulting from numerous
applications in medicine, biology, environmental studies, toxicology, etc. In fact, early
detection of harmful bacteria, viruses, or toxins requires the development of appropriate
sensors with a very high sensitivity and very low threshold of detection.

These important goals can be achieved using in general two different ways: first, by
improvement of the existing sensors and technologies and second, by employment of new
concepts, new types of waves, or new materials. Evidently, the second approach offers a
chance to develop new revolutionary solutions with sensors of extraordinary parameters.
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However, it requires the navigation on uncharted waters, which may be not only very
difficult but very often disappointing.

In this paper, we adhere to the second approach. In fact, in order to develop sensors
with a very high mass sensitivity we propose to use the new type of elastic torsional
surface waves which were discovered recently by the authors. These newly discovered
elastic torsional waves propagate in the vicinity of the curved surface of the metamaterial
cylindrical rod in which the elastic compliance s(1)44 (ω) is analogous to the dielectric function
ε(ω) in Drude’s model of metals.

Our choice of the new type of torsional elastic surface waves, propagating in meta-
material waveguides, can be justified by their extraordinary properties, which cannot be
found in the existing elastic surface waves propagating in conventional pure elastic waveg-
uides. For example, the newly discovered torsional elastic surface waves propagating along
metamaterial cylinders (rods) exhibit the following unique properties:

1. Very high concentration of the wave energy in the vicinity of the cylindrical guiding
surface (r = a) of the waveguide;

2. Subwavelength penetration depth in both directions from the cylindrical guiding
surface (r = a);

3. Very low phase and group velocities (see Figures 3 and 4).

As a matter of fact, all the above characteristics of the new torsional elastic surface
waves can be employed in the development of ultrasonic sensors with a very high mass
sensitivity. In addition, the cylindrical shape of the waveguide supporting the new torsional
elastic surface waves can be advantageous in operations in a liquid environment.

6. Conclusions
In this paper, we discovered and presented new torsional elastic surface waves that

propagate along elastic metamaterial rods (cylinders) embedded in a conventional elastic
medium. The new torsional elastic surface waves have the following unique properties:

1. They constitute an elastic analog of the Surface Plasmon Polariton (SPP) electromag-
netic (optical) waves propagating in layered dielectric-metal cylindrical waveguides;

2. New torsional elastic waves can inherit fascinating properties of SPP optical waves,
such as (a) superlensing, (b) superresolution, and (c) the ability to break the diffraction
limit;

3. They have only one component of the mechanical displacement polarized along the
angular coordinate;

4. The energy of the wave is strongly confined in the vicinity of the guiding cylindrical
surface (r = a) of the metamaterial rod;

5. The penetration depth of the wave in both directions from the guiding cylindrical
surface of the metamaterial rod can be a subwavelength;

6. Their phase and group velocities tend to zero as the wave frequency approaches the
upper cut-off frequency.

Consequently, due to their unique properties, which are presented above, the newly
discovered torsional elastic surface waves analyzed in this paper have significant potential
for the development of a new generation of ultrasonic sensors, biosensors, and chemosen-
sors with a very high mass sensitivity for applications in medicine, biology, chemistry, and
environmental research.

This work has an interdisciplinary character and, therefore, can be of interest to a wide
range of researchers and engineers working in different domains of science and technology,
such as acoustics, ultrasonics, optics, physics, microwaves, elastic metamaterials, ultrasonic
sensors, biosensors, and chemosensors.
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Appendix A
A computer program written in Scilab programming language to solve the dispersion
equation (Equation (14)), evaluate the dispersion curve, and calculate the group velocity
(Equation (15)) is given below.

//THIS PROGRAM SOLVES THE DISPERSION EQUATION
//AND EVALUATES THE PHASE AND GROUP VELOCITIES
//OF THE NEW ELASTIC TORSIONAL WAVE

c442= 1.43*10ˆ9 //PMMA = CONVENTIONAL ELASTIC MEDIUM
s442= 1/c442
ro2= 1.18*10ˆ3
v2= sqrt(c442/ro2)

a= 1*10ˆ-2 //RADIUS OF THE METAMATERIAL CYLINDER IN [m]

c0= 6.785*10ˆ10 //QUARTZ=METAMATERIAL CYLINDER
s0= 1/c0
ro1= 2.65*10ˆ3
v0= sqrt(c0/ro1)
fp= 1*10ˆ6 //FREQUENCY OF LOCAL RESONATORS
omp= 2*%pi*fp //ANGULAR FREQUENCY OF LOCAL RESONATORS

//THIS FUNCTION CALCULATES THE ELASTIC COMPLIANCE s441
//OF THE METAMATERIAL CYLINDER FOR GIVEN ANGULAR FREQUENCY om, EQ.1
function F= s441(x)

om= x
X1= s0*(1-(omp/om)ˆ2)
F= X1
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//MATERIAL DATA
endfunction

//THIS FUNCTION EVALUATES THE DISPERSION EQUATION FOR THE TORSIONAL
WAVE, EQ.14
//FOR KNOWN ANGULAR FREQUENCY om AND THE WAVENUMBER k
function F= T_Dysp_2(z)

k= z
gamma1= sqrt(k*k-om*om*ro1*s441(om))
gamma2= sqrt(k*k-om*om*ro2*s442)
x= gamma1*a
y= gamma2*a
// besseli(2,x) and besseli(1,x) ARE MODIFIED BESSEL FUNCTIONS
// OF THE FIRST KIND OF ORDER 2 AND 1
// besselk(2,y) and besselk(1,y) ARE MODIFIED BESSEL FUNCTIONS
// OF THE SECOND KIND OF ORDER 2 AND 1
X1= besseli(2,x)/besseli(1,x)
X2= besselk(2,y)/besselk(1,y)
X3= s442/s441(om)*gamma1/gamma2
F= X2+X3*X1

endfunction

//THIS FUNCTION EVALUATES THE GROUP VELOCITY FOR THE TORSIONAL
WAVE, EQ.15
function G= Group_Vel_2(x,y)
om= x
k= y
gamma1= sqrt(k*k-om*om*ro1*s441(om))
gamma2= sqrt(k*k-om*om*ro2*s442)
X= gamma1*a
Y= gamma2*a
dg1dk= k/gamma1
dg2dk= k/gamma2
dg1dom= (-om*ro1*s441(om)-ro1*s0*omp*omp/om)/gamma1
dg2dom= (-om*ro2*s442)/gamma2
// DERIVATIVE OF THE ELASTIC COMPLIANCE S441 ON THE ANGULAR
FREQUENCY om
ds441dom= 2*s0*omp*omp/omˆ3
L1= s441(om)*dg2dk+s441(om)*Y*(dg1dk/X-dg2dk*2/Y)
L2= s442*dg1dk-s442*X*(dg1dk*2/X-dg2dk/Y)
L3= -s441(om)*Y*dg2dk+s442*X*dg1dk
L4= s441(om)*Y*dg1dk-s442*X*dg2dk
M1= ds441dom*gamma2+s441(om)*dg2dom+s441(om)*Y*(dg1dom/X-dg2dom*2/Y)
M2= s442*dg1dom-s442*X*(dg1dom*2/X-dg2dom/Y)
M3= -s441(om)*Y*dg2dom+s442*X*dg1dom
M4= s441(om)*Y*dg1dom-s442*X*dg2dom
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//MATERIAL DATA
K2DK1= besselk(2,Y)/besselk(1,Y)
I2DI1= besseli(2,X)/besseli(1,X)
I2DI1RK2DK1= besseli(2,X)/besseli(1,X)*besselk(2,Y)/besselk(1,Y)
// L = NUMERATOR IN EQ.15
// M = DENOMINATOR IN EQ.15
L= L1*K2DK1+L2*I2DI1+L3*1+L4*I2DI1RK2DK1
M= M1*K2DK1+M2*I2DI1+M3*1+M4*I2DI1RK2DK1
G= -L/M

endfunction

//RESULTS
aa= 0
x0= 2*%pi*0.7*10ˆ5/v2*1.05 //STARTING POINT FOR WAVENUMBER k

//SET UP A LOOP FOR EVALUATION THE PHASE AND GROUP
//VELOCITIES AS A FUNCTION OF THE WAVE FREQUENCY f
for i= 1:1:77

f= 0.7*10ˆ5+(i-1)*1*10ˆ3 //WAVE FREQUENCY IN KHz
om= f*2*%pi //ANGULAR FREQUENCY
[xs,fxs,m]= fsolve(x0,T_Dysp_2,10ˆ-12)
k= xs //WAVENUMBER
vp= om/k //PHASE VELOCITY
x= om
y= k
vgr= Group_Vel_2(x,y) //GROUP VELOCITY
x0= k*1.05
//STORE THE RESULTS OF CALCULATIONS IN THE MATRIX aa

aa(i,1)= f/1000
aa(i,2)= vp
aa(i,3)= vgr
aa(i,4)= k

end

//WRITE THE MATRIX aa INTO AN OUTPUT TXT FILE
write(’Torsional_2024_4.txt’,aa,’(e15.6,2x,e16.7,2x,e16.7,2x,e16.7)’)
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