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Abstract
Purpose of Review  This paper provides an overview of integrating artificial intelligence (AI), particularly deep learning (DL), 
with ground-based LiDAR point clouds for forest monitoring. It identifies trends, highlights advancements, and discusses 
future directions for AI-supported forest monitoring.
Recent Findings  Recent studies indicate that DL models significantly outperform traditional machine learning methods 
in forest inventory tasks using terrestrial LiDAR data. Key advancements have been made in areas such as semantic 
segmentation, which involves labeling points corresponding to different vegetation structures (e.g., leaves, branches, stems), 
individual tree segmentation, and species classification. Main challenges include a lack of standardized evaluation metrics, 
limited code and data sharing, and reproducibility issues. A critical issue is the need for extensive reference data, which 
hinders the development and evaluation of robust AI models. Solutions such as the creation of large-scale benchmark datasets 
and the use of synthetic data generation are proposed to address these challenges. Promising AI paradigms like Graph Neural 
Networks, semi-supervised learning, self-supervised learning, and generative modeling have shown potential but are not yet 
fully explored in forestry applications.
Summary  The review underscores the transformative role of AI, particularly DL, in enhancing the accuracy and efficiency 
of forest monitoring using ground-based 3D point clouds. To advance the field, there is a critical need for comprehensive 
benchmark datasets, open-access policies for data and code, and the exploration of novel DL architectures and learning 
paradigms. These steps are essential for improving research reproducibility, facilitating comparative studies, and unlocking 
new insights into forest management and conservation.

Keywords  Deep learning · Machine learning · Forest inventory · Tree characteristics · Open data · Precision forestry · 
LiDAR · TLS

Introduction

LiDAR (Light Detection and Ranging) is a remote sensing 
method that uses light pulses to create detailed 3D repre-
sentations of an environment. In the past, forestry research 

relied primarily on aerial LiDAR, which provided a com-
prehensive view of forests from above the canopy. How-
ever, interest in ground-based LiDAR technology is grow-
ing. These scanners operate at close range below the tree 
canopy, allowing for very detailed mapping of the tree stems, 
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branches and undergrowth that is not possible with aerial 
solutions.

Ground-based scanners were initially limited to static 
Terrestrial Laser Scanners (TLS), but the technology has 
expanded to Mobile Laser Scanners (MLS), including 
Personal Laser Scanners (PLS) carried by humans. These 
devices allow for continuous data collection while moving 
around the area, which speeds up data collection. They come 
in various forms, such as handheld devices, in backpacks or 
mounted on vehicles. LiDAR scanners have become cheaper 
and more available in recent years, making it easier than ever 
to capture detailed 3D data. The data captured with LiDAR 
takes the form of a point cloud, an unordered collection of 
points in 3D space. As a rule, each point is labelled with 
an intensity value that can potentially provide information 
about the physical properties of the scanned surface.

Precision forestry represents a paradigm in forest man-
agement and conservation that utilizes technology to 
obtain information about forests at the individual tree level. 
Ground-based LiDAR scanners play a crucial role in data 
collection for precision forestry, enabling the mapping of 
tree stems and branches with an unprecedented level of 
detail. With the advent of such detailed data collection 
comes a critical need for appropriate data processing tech-
niques. In this context, the distinction between rule-based 
(heuristic) approaches and Artificial Intelligence (AI) meth-
odologies, particularly Machine Learning (ML) and Deep 
Learning (DL), becomes pivotal.

Rule-based systems operate on predefined sets of instruc-
tions or algorithms developed from expert knowledge. While 
these systems offer predictability and transparency, their effi-
cacy is constrained by the complexity of the rules and the 
variability of natural environments, which may not be fully 
encapsulated in static rules. On the other hand, AI, through 
ML and DL, marks a significant advancement in data pro-
cessing for precision forestry. ML, the development of algo-
rithms that learn and make predictions based on data, and 
DL, a subset of ML that uses multi-layer neural networks to 
learn highly complex data representations, are well-suited 

for handling the volume and complexity of LiDAR data. 
Unlike heuristic methods, AI does not rely on predefined 
rules but learns directly from data, enabling it to adapt to 
new, unseen data and improve over time. This adaptability 
makes AI an invaluable tool in the modern forester’s arsenal, 
capable of efficiently processing large datasets and uncover-
ing insights that heuristic approaches might overlook.

Overview of AI Methods for Point Cloud Processing

In the context of point cloud data, AI models can perform a 
variety of processing tasks that provide useful insights about 
3D environments. Three key tasks, visualized in Fig. 1, are 
particularly relevant to forestry applications:

•	 Point Cloud Classification: This task involves assigning a 
single label to an entire point cloud, based on its overall 
characteristics. The model learns to map the input point 
cloud to a predefined set of categories. In forestry, this 
can be applied to identify tree species or to assess their 
health status.

•	 Semantic Segmentation: This process assigns a semantic 
label to each individual point in the cloud, partitioning 
the point cloud into semantically meaningful regions. 
In forest environments, this can be used to distinguish 
between different types of vegetation, such as separating 
leaves, branches, and trunks.

•	 Instance Segmentation: Related to semantic segmenta-
tion, this task divides semantic categories into distinct 
individual object instances. In forestry, this is crucial for 
delineating individual trees within a larger forest point 
cloud, enabling tree-level analysis and inventory.

AI techniques can be also employed in point cloud recon-
struction and completion, where missing parts of the cloud 
are inferred, and in regression tasks, which predict continu-
ous variables based on point cloud data. Although these lat-
ter tasks were not present in the reviewed articles, they are 
significant areas of research in the broader field of point 

Fig. 1   A visualization of 
various AI tasks and corre-
sponding information that can 
be extracted from forest point 
clouds
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cloud analysis and could perhaps find their application in 
forest research.

Before we delve into the details of the reviewed papers, 
we provide a broad overview of the types of AI models pre-
sent in the field.

Machine Learning Based on Handcrafted Features

Machine learning encompasses a wide range of techniques 
that enable computers to learn from data and make predic-
tions without being explicitly programmed. Traditionally, 
ML models have relied heavily on feature engineering, 
which can be defined as the creation of descriptive features 
designed by domain experts to capture the relevant informa-
tion and reduce the data complexity. There are many classes 
of models that can be trained on such features. Common 
examples include Random Forest (RF) [1], Support Vec-
tor Machine (SVM) [2], Multi-layer Perceptron (MLP) [3] 
or XGBoost [4]. Compared to more complex deep neural 
networks, these traditional ML models are much faster to 
compute and can successfully learn from small datasets. 
However, their performance relies heavily on the selection 
of features. Below we go over various kinds of features used 
for forest data.

Point Geometric Features

A popular approach to extract features of individual points, 
proposed by Hackel et al. [5], involves geometric descrip-
tions of the neighbourhood of a point, defined based on a 
fixed distance or the nearest k neighbors. Based on the loca-
tions of points in the neighbourhood, a covariance matrix C 
is derived in Eq. 1:

The eigenvectors e1, e2, e3 ∈ R3 and eigenvalues λ1 ⩾ λ2 ⩾ 
λ3 ∈ R of this covariance matrix are used to calculate various 
features providing information about the shape of the neigh-
borhood. Table 1 show definitions of features from Hackel 
et al. [5].

Some approaches [6–8] include several neighbourhood 
scales and calculate the features separately for each scale.

Tree‑Level Features

When dealing with problems on single-tree level, such as 
species classification, one needs tree-level features. A vari-
ety of attributes can be extracted from the point cloud at tree 
level, including:

•	 properties of the whole point cloud, such as its height, 
total number of points, volume of the convex hull [9, 10]

•	 aggregated properties of the points, e.g. mean intensity, 
median height, or geometric features [11, 12]

•	 Hui et al. [10] propose fractal features, derived by count-
ing the voxels at different levels of point cloud voxeliza-
tion

A unique method of describing tree structure involves 
converting the point cloud into a Qualitative Structure 
Model (QSM) [13], which represents stems and branches 
as a hierarchical set of cylinders, approximating their actual 
shape. A QSM model, among other use cases, can be used 
to provide features for ML models, such as average branch 
angle, length, volume [14, 15]. Since the QSM contains 
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Table 1   Local neighbourhood 
features of points and their 
definitions [ 5 ].



	 Current Forestry Reports            (2025) 11:5     5   Page 4 of 19

information about the branching structure, features can be 
considered separately at different branch hierarchy levels.

Deep Learning

While processing point clouds using handcrafted features 
offers interpretability and efficiency, Deep Learning (DL) 
has recently emerged as a powerful alternative. Unlike tra-
ditional ML that relies on handcrafted features, DL models 
derive the features directly from the data. The complexity of 
these models means that they typically require large datasets 
to perform well.

Dealing with point cloud data has been challenging for 
DL models for a variety of reasons. Firstly, point clouds are 
inherently unordered, and all processing has to be order-
invariant—given the same set of points in a different order, 
the output must be the same. This makes point cloud data 
fundamentally different from domains such as text, which is 
a 1-dimensional sequence of letters, or images, which form a 
well-structured 2D grid. In addition, point clouds often have 
uneven point density and vary in terms of points per sample. 
To address these challenges, several approaches have been 
developed. Many of them involve converting the point cloud 
to other formats, as visualized in Fig. 2.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been extraor-
dinarily successful in processing grid-structured data, with 
CNN architectures such as YOLO[16] and ResNet [17] 
establishing themselves as a standard approach for image 
analysis. CNNs work by applying learnable filters across the 
input data, capturing local patterns and hierarchical features. 
While initially designed for 2D image data, CNNs can be 
naturally extended to 3D grids, making them applicable to 
point cloud data after preprocessing.

Projection-based methods: The 2D projection 
approach involves projecting 3D point clouds onto 2D 

planes, typically incorporating depth information. A var-
iant of this method, popular in forestry, is the Canopy 
Height Model (CHM), which is a top-down 2D projection 
of the canopy. While some methods are based on a single 
projected image [18], most of them integrate views from 
various angles. Typically, features extracted from different 
images are aggregated and jointly processed by a classifi-
cation model [19].

Voxel-based methods: Voxel conversion discretizes 3D 
space into a grid of voxels (3D pixels) and assigns voxel 
attributes based on point data. This can be done with simple 
binary occupancy, indicating the presence of any points in a 
voxel, or with more complex representations such as point 
density or aggregated point attributes. Some CNN architec-
tures have been developed specifically to process 3D vox-
els, with VoxNet [20] being an early example. Additionally, 
many image processing CNNs, such as VGG[21] or ResNet, 
have been successfully adapted to 3D data. However, add-
ing another dimension significantly increases the need for 
computational resources.

Computational requirements of 3D convolution can be 
reduced using the fact that voxel grids derived from point 
clouds tend to be rather sparse, with a large proportion of 
empty voxels. This enables the utilization of specialized 
deep learning architectures that can efficiently handle sparse 
data, such as MinkowskiNet [22].

Point‑Based Methods

While DL on point clouds remains relatively undeveloped 
compared to other modalities, there is a growing number of 
methods in the area.

PointNet, a seminal work introduced by Qi et al. [23], is 
the first prominent DL model to operate directly on point 
clouds. It has shown remarkable performance in both clas-
sification and segmentation tasks, setting a precedent in the 
field. Building upon PointNet, PointNet +  + was developed 
by the same authors [24], addressing its inability to capture 

Fig. 2   Different methods of 
representing a tree point cloud. 
Left: raw, unprocessed point 
cloud. Middle: Point cloud rep-
resented as a 3D grid of voxels. 
Right: point cloud projected as 
2D images viewed from various 
angles
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local structures. PointNet +  + introduced a hierarchical 
structure that applies PointNet recursively on nested parti-
tions of the point set. It demonstrated significant improve-
ments over its predecessor, particularly in tasks requiring 
detailed local understanding.

Multiple recent works succeeded at adapting established 
architectures from other domains in a way that is compatible 
with point clouds. One such adaptation involves the use of 
convolutions, with notable approaches including PointCNN 
[25] and PointConv [26]. Another approach, PointMixer 
[27], works by adapting the MLP-Mixer architecture, origi-
nally designed for image processing.

Graph Neural Networks

Graph Neural Networks (GNNs) have shown promise in 
processing point cloud data by representing the point cloud 
as a graph, where each point is a node and edges repre-
sent relationships between points. This approach allows the 
model to capture local geometric structures and global con-
text simultaneously. GNNs have been effectively applied in 
various domains such as social network analysis, molecular 
chemistry, and recommendation systems. Notable architec-
ture types include Graph Convolutional Networks (GCNs), 
which apply convolutions to graph data, and Graph Attention 
Networks (GATs), which leverage attention mechanisms to 
weigh the importance of neighboring nodes.

A popular graph architecture for processing point clouds 
is Dynamic Graph CNN (DGCNN) [28]. It works by con-
structing a neighborhood graph from the point cloud and 
processes it using graph convolutions. The graph is dynami-
cally updated in each layer, allowing the model to capture 
different levels of local structure. DGCNN is often used as 
an alternative to PointNet and fits a similar niche.

A notable application of GNNs in forestry is the work by 
Chattoraj et al.[29], which proposes a species recognition 
framework using an ARMA (AutoRegressive Moving Aver-
age) GNN architecture.

Despite their potential, the use of GNNs in forestry 
applications remains limited, likely due to the complexity 
of implementation and the need for large, well-structured 
datasets.

Transformers

Transformer models, which have now become the new 
state of the art in natural language processing and computer 
vision tasks, have also been adapted for point cloud process-
ing. These models use self-attention mechanisms to capture 
global context and local geometric information.

Popular architectures include Point Cloud Transformer 
(PCT) [30], which applies self-attention to point cloud 

features, allowing the model to focus on the most relevant 
parts of the input and Superpoint Transformer [31], which 
hierarchically groups points into superpoints and applies 
transformers at multiple scales, enabling efficient process-
ing of large point clouds.

Additionally, transformers designed for images, such as 
SegFormer[32], can be adapted to work with voxel data in 
a manner similar to 3D CNNs, leveraging self-attention for 
enhanced 3D performance.

All the above-mentioned architectures have been 
employed for precision forestry tasks, with an addition 
of several novel architectures that have been specifically 
designed for forestry problems.

Aim of the Review

In this review we aimed to map the landscape of AI methods 
used in combination with ground-based LiDAR for forestry 
applications. Specifically, our goal was to address the fol-
lowing questions:

1.	 What forestry tasks have been solved using AI on 
ground-based LiDAR data?

2.	 Which AI models have been used, and which ones show 
the best results on each task?

3.	 What data preprocessing methods have been used, and 
which ones have led to improved results?

4.	 What are the practices regarding sharing code, sharing 
data, and ensuring research reproducibility within the 
field?

5.	 What AI methods have been successfully applied in 
other fields and could be used for forestry?

Methodology

To identify the scientific works relevant for our research 
questions, we performed a systematic literature review, 
based on the following selection criteria:

•	 Ground-based Data: Studies were only included if they 
utilized ground-based LiDAR data. This encompassed 
TLS and various kinds of MLS, including handheld and 
backpack-mounted devices. We excluded all airborne 
laser scanning, which encompasses UAV, satellite and 
airplane mounted LiDAR.

•	 No camera-based point clouds: We excluded camera-
based point clouds obtained with Structure-from-motion 
and photogrammetry. Such point clouds are dependent on 
camera settings, environmental conditions and process-
ing methods and are generally considered less robust than 
laser scanning [33]. To make the comparison between 
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different AI methods as clear as possible we decided to 
focus on LiDAR data only.

•	 Use of Machine Learning or Deep Learning: A key cri-
terion was the application of ML or DL techniques for 
data processing.

•	 Individual Tree Level Analysis: The studies needed to 
address plot level data and provide results at individual 
tree level. Studies that only provided plot level attributes 
(e.g. total plot biomass) were excluded.

•	 Specificity to Forest Data: The scope was confined to 
studies involving forest data, excluding research on felled 
or processed timber, urban trees, and orchards.

Based on these criteria, we have developed the following 
query:

("forestry" OR "forest" OR "tree") AND ("learning" 
OR "neural network" OR "artificial intelligence") AND 
("LiDAR" OR "point cloud").

The query was applied to the Web of Science database, 
which yielded 396 results. Titles and abstracts of these stud-
ies were manually screened to assess their relevance based 
on the inclusion criteria. This led to the selection of 39 stud-
ies. We identified 13 additional studies that were included 
based on expert knowledge, resulting in 52 studies in total 
taken into account.

Following the selection of relevant studies, we con-
ducted a comprehensive analysis of each paper. This pro-
cess involved categorizing the studies based on the specific 
forestry tasks addressed and identifying the AI methods 
employed. We classified these methods as either deep learn-
ing or traditional machine learning approaches and we noted 
the data sources utilized (static TLS, mobile MLS). We also 
identified the data representations used as input for the AI 
models, identifying preprocessing operations such as feature 
extraction, projection and voxelization of the point clouds. 
For each task category, we identified common performance 
metrics and collected the reported results.

We also categorized each paper in terms of data and code 
availability. Code availability was evaluated using simple 
binary classification, denoting whether the paper had any 
associated codebase. For data availability, we grouped the 
papers into three categories:

•	 Public data: the authors evaluate datasets that have 
already been published or they collect their own data, 
which they share publicly along with the paper.

•	 Own data, shared upon request: the authors collect their 
own data, which can be accessed by contacting the 
authors.

•	 Own data, not available: the authors collect their own 
data and do not make it available in any way. Some of the 

works explicitly state that the data cannot be shared, but 
the majority do not include a data availability statement.

After extracting this information, we evaluated the perfor-
mance of the different AI methods. Due to vast differences 
between datasets, we focused on papers that compare dif-
ferent methods on the same data. For each task, our analysis 
included a general comparison between ML and DL, com-
parison between specific ML algorithms and DL models, 
and the impact of different preprocessing methods.

Results and Discussion

General view

Starting in 2013, the research landscape on this topic was 
relatively quiet, with annual outputs ranging from none to 
a maximum of two papers per year up until 2019, as can 
be seen in Fig. 3. This pattern shifted in 2020, when the 
number of publications began to climb noticeably and con-
sistently. The growth trajectory peaked in 2023, which saw 
an impressive total of 24 papers, with this upsurge largely 
fueled by DL techniques. In our comprehensive review, 21 
studies were found to employ traditional ML algorithms, 
while 38 studies utilized DL. Notably, seven papers con-
ducted comparative analyses between DL and traditional ML 
approaches, with DL emerging as the superior performer in 
all cases.

Our analysis identified that the vast majority of the papers 
fall into one of three main categories:

Fig. 3   The number of papers making use of Traditional Machine 
Learning and Deep Learning over time. Several studies employed 
both types of methods, in such a case we classified it based on the 
best performing one, which in all such cases was Deep Learning
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•	 Semantic segmentation (20 studies): This category 
includes studies focused on delineating various parts of 
trees, such as leaves, branches, and stems and differenti-
ating other forest elements, such as the ground, shrubs, 
and woody debris.

•	 Individual tree segmentation (8 studies): These studies 
aim to identify separate trees within a point cloud and 
assign points to the corresponding trees.

•	 Species classification (15 studies): This task involves 
providing a species label to a point cloud of a single tree.

•	 Other tasks (9 studies): This group comprises various 
studies that don’t align with the above categories.

Figure 4 outlines how the use of AI in this domain ini-
tially centered on species classification, beginning with 
Othmani et al.’s pioneering study in 2013 [34]. The scope 
of research broadened to include semantic segmentation by 
2018 and further to individual tree segmentation by 2021. 
The year 2023 stands out for a marked rise in studies focus-
ing on semantic segmentation, which make up almost half 
of all papers from that year.

Regarding the types of data utilized, shown in Fig. 5, TLS 
data was the choice for 37 studies, whereas MLS data was 
used in 18 studies. A total of 5 studies included both scanner 
types. While TLS was the initially preferred data source, the 
adoption of MLS rapidly increased, bringing its usage nearly 
on par with TLS by 2022.

Point cloud semantic segmentation

This problem involves providing a label to each point based 
on a predefined list of classes, which might include ele-
ments such as stem, branch, leaves, ground, or understory 
vegetation. The process provides information about the for-
est structure and is often utilized in other tasks. There are 

multiple ways to define the classes, depending on the needs 
of the user. Studies range from basic binary classifications 
(e.g., wood/non-wood) [8] to more complex systems, such 
as separating tree points into leaves, stems and branches 
[35] or categorizing ground components such as shrubs and 
grass [36]. We summarize each paper approaching this task 
in Table 2. The papers utilize 7 different evaluation met-
rics: Overall Accuracy (OA), mean Intersection over Union 
(mIoU), Precision, Recall, F1, Kappa, Matthews Correlation 
Coefficient (MCC). In the table, we report the 3 most com-
monly used metrics: OA, mIOU and F1 score.

Feature‑based machine learning

A popular approach involves training a ML model based 
on geometric features of each point, as described in 
Sect. 1.1.1. Several papers extract these features across 
multiple scales [6–8]. A variation of the method involves 
a functional approach, proposed by Oviedo et al. [36], 
in which each geometric feature is represented as a con-
tinuous function of the neighbourhood size. The studies 
evaluated many different ML models. The review suggests 
that Random Forest performs especially well, being the 
top method in 4 studies[6, 7, 35, 44]. SVM and XGBoost 
have shown to perform similarly well, with only margin-
ally poorer performance. In the study by Xi et al. [8] Ada-
Boost, an ensemble model similar to RF achieved the best 
result.

Deep Learning

A majority of semantic segmentation papers involve DL. A 
particularly popular model is PointNet +  + , with 5 papers 
utilizing it [9, 36, 40, 45, 46]. Works from Wang et al. [9] 

Fig. 4   Variation in the number of papers over time focused on differ-
ent segmentation tasks

Fig. 5   Variation in the number of papers over time that used data 
from Terrestrial (TLS) and Mobile Laser Scanners (MLS)
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Table 2   Summary of reviewed papers that address point cloud semantic segmentation. Methods in bold indicate the highest performance in their 
respective studies. Abbreviations used: GF — geometric features, 3DC — 3D coordinates, (C) — custom deep learning architecture

1st author, ref. Year Source Segmented classes Method Data format OA mIoU F1
Xi [37] 2018 TLS Stem/branch/other DL 3DFCN 3D voxels 94 79
Cabo [6] 2019 MLS leaf/wood ML RF Multiscale GF 85

LR Multiscale GF 83
LDA Multiscale GF 80
SVM Multiscale GF 82

Krishna
Moorthy [7] 2020 TLS leaf/wood ML RF Multiscale GF 94.2

DL FWCNN(C) GF 93.4-98.6
Wu [38] 2020 TLS wood/foliage GMM GF 82.92-97.6

ML RF GF 91.1-97.26 
SVM GF 91.29-97.6 
kNN Multiscale GF 90 76
SVM Multiscale GF 76 75

ML AdaBoost Multiscale GF 92 79
RF Multiscale GF 92 79
Naive Bayes Multiscale GF 78 52
LDA Multiscale GF 91 77

Xi [8] 2020 TLS wood/non-wood VGG 3D voxels 94 83
ResNet 3D voxels 94 83
IncResV2 3D voxels 94 83

DL UNet 3D voxels 94 84
DenseNet 3D voxels 94 83
PSPNet 3DC with intensity 93 82
SPG 3DC with intensity 94 83
PointCNN 3DC with intensity 83 61

Lin [35] 2021 MLS stem/branch/leaf ML RF + KNN GF 96.6
Vatandaslar [39] 2021 MLS trunk/other ML Random forest GF, surface normals -

Krisanski [40] 2021 TLS, ALS, 
MLS,ULS

terrain/vegetation/ 
cwd/stems ML PointNet++ 3DC 95

Shen [41] 2022 TLS ground/foliage/ 
stem/other DL PointCNN 3DC with GF 94

FCN GF time series 92
Han [42] 2022 TLS leaf/wood DL LSTM-FCN GF time series 96

ResNet GF time series 96
Chang [43] 2022 TLS tree/non-tree DL RandLA-Net 3DC 92

ML RF Functional GF 77

Oviedo [36] 2023 TLS branches+leaves/    
stems/shrubs/grass SVM Functional GF 77

DL Pointnet++ 3DC with surface 
normals 69

DGCNN 3DC with surface 
normals 79

RF GF 90
MLP GF 90

Alvites [44] 2023 TLS leaf/wood ML GBM GF 90
GLM GF 88
NB GF 87

Kim [45] 2023 TLS, MLS canopy, trunk, branch DL PointNet++ Resampled 3DC 82.4-95.5 86

Bryson [46] 2023 MLS, 
Synthetic stem/foliage DL PointNet++ 3DC 76.9

3D-Unet + MLP sparsified point cloud 75.8
PointNet 3DC 75.3

Wang [9] 2023 ALS, MLS stem/foliage DL PointNet++ 3DC 86.5
PointNet 3DC, 2D-projected GF 85.3

PointNet++ 3DC, 2D-projected 
GF 87.2

Xi [47] 2023 TLS tree/stem/log/other DL SegFormer 3D voxels with avg 
intensity 73-94

Ma [48] 2023 TLS ground/bush/ 
trunk/leaves DL Forest-PointNet 

(C)
3DC with surface 
normals 91

PointNet 3DC with surface 
normals 86.2

Dai [49] 2023 TLS leaf/wood DL MDC-Net (C) 3DC with SoD index 
and intensity 97.3 82.1

ML RF GF 77.1
Jiang [50] 2023 TLS leaf/wood DL KPconv 3DC 95.1

LWS-Net (C) 3DC with GF 97.3
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and Ma et al. [45] showed that additional information in 
form of geometric features resulted in better performance. 
Wang et al. [9] develop their own feature extraction method, 
in which point neighbourhoods are projected on 2D planes 
and used to create histograms.

Several works employed other established DL architec-
tures, such as PointCNN [41], LSTM [42] or SegFormer 
[47], combined with additional processing steps. Xi et al. [47] 
developed a hierarchical segmentation process, with major 
classes extracted using SegFormer, and further divided using 
hand-crafted procedures. Another method from Han et al. 
[42] described points as sequences of geometric features of 
their neighbours, ordered by distance. This enabled the use 
of a sequence-based DL model, LSTM-FCN. Shen et al. 
[41] employed PointCNN combined with a technique which 
involves adjusting point locations based on geometric features.

Studies by Wu et al. [38], Jiang et al. [50] and Dai et al. [49] 
have ventured into designing their own custom DL architec-
tures. All three propose models that make use of geometric fea-
tures of points, and [38, 49] and additionally take into account 
intensity information. All the studies show improved results 
compared to methods that only use 3D point coordinates.

Benchmarking

A benchmarking study by Xi et al. [8] involved evaluating 
different semantic segmentation methods, including six 
traditional ML methods based on geometric features, six 
voxel-based DL models, and two point cloud DL methods. 
The DL models, both voxel and point-based, showed similar 
performance and outperformed traditional ML classifiers by 
about 10% on average, showing the general effectiveness of 
DL regardless of specific architecture.

Key takeaways

• DL models generally outperform traditional ML models.
• Geometric and intensity features provided alongside 3D 

coordinates improve the performance of DL models.

• PointNet +  + is a popular and reliable model choice, but 
there is no clearly superior DL architecture.

Individual tree segmentation

A fundamental precision forestry task is separating indi-
vidual trees from a point cloud. It can be framed as instance 
segmentation, a Computer Vision problem in which each 
point is assigned a label denoting the specific object it 
belongs to. We summarize the papers in the area in Table 3. 
The papers utilize 7 different evaluation metrics (F1, Accu-
racy, Detection rate, mIoU, AP, Recall, Precision). The two 
most commonly used metrics are F1 and detection accuracy.

There exist a variety of non-learning approaches for the 
task. Many of them rely on detecting tree stems, which are 
usually clearly separated and easy to identify. The remaining 
points are assigned to the stems based on rules and heuris-
tics, using tools such as density-based clustering, graph con-
nectivity or geometric features [54]. While these approaches 
show reasonable performance, especially in evenly planted 
artificial forests, they tend to fail in dense forests with 
intersecting crowns and subcanopy trees. Such rule-based 
approaches are rather inflexible and often require extensive 
manual finetuning.

Hybrid approaches

Several papers propose hybrid approaches, applying 
AI models for parts of the pipeline and integrating them 
with rule-based methods. In works by Hui et al. [51] and 
Zhang et al. [55] an AI model is used only for semantic 
segmentation of trunk points, which are then used for 
clustering.

Another approach, employed by Xi et al. [52] and Zhou 
et al. [53] involves locating trees with rectangular bounding 
boxes. This method is relatively simple to implement and 
train compared to methods that label each point separately, 
but rectangular boxes do not capture the exact tree shape 
and are prone to error when dealing with overlapping 

Table 3   Summary of papers dealing with individual tree segmentation

1st Author, ref Year Data source Method Data Representation F1 Accuracy

Hui [51] 2021 TLS ML PCA, GMM Point cloud - 69.8
Xi [52] 2021 TLS DL CenterNet 2D voxels 75.4 -
Chang [43] 2022 TLS DL YOLOv3 + hierarchical clustering 2D feature maps 89.4–94.1 -
Zhou [53] 2023 MLS DL Improved PointPillar Vertical columns of points 85 52.5
Henrich [54] 2023 MLS, TLS DL TreeLearn (custom) 3D voxels 98.2 -
Zhang [55] 2023 MLS DL WCF-CACL-RandLA-Net (custom) Point cloud - 69.9
Xiang [56] 2023 MLS,

UAV-LS
DL Custom Point cloud 68.9 -

Wielgosz [57] 2024 TLS, MLS, UAV-LS DL Custom (from Xiang) Point cloud 84.5 -
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crowns. Therefore, works embracing this framework rely 
on additional processing steps to label individual points.

Instance segmentation with offset prediction

Individual tree segmentation can be framed as an offset 
prediction problem. In this approach, the model learns 
to map each point to a corresponding tree base using an 
offset vector. When the points are moved using these 
vectors, points from a single tree form well-separated 
clusters. This framing turns the discrete classification 
problem into continuous regression, which makes the 
model training easier. Henrich et al. [54] employ this 
approach in TreeLearn, a UNet-based model for offset 
prediction. A similar approach was proposed by Xiang 
et al. [56]. The method was trained on both urban and 
forest datasets and can segment trees, as well as other 
objects such as cars or buildings. The same architecture 
was employed by Wielgosz et  al. [57], who used 
downsampling to generate point clouds of various density, 
down to the resolution of 10 points/m2, typical for aerial 
data. They showed that the downsampling was beneficial 
for the training, with a single model performing well on 
a wide range of densities. In addition to being versatile, 
the model showed improved performance even on the 
original, high-density data.

Potential DL approaches

While these approaches show promising results, there 
are many other instance segmentation models that have 
not been applied for individual tree segmentation. 
Architectures such as Mask3D [58] or SPFormer [59] 
have shown remarkable performance on indoor datasets 
and they are worth investigating in the context of forests. 
Other interesting works include OneFormer3D [60], 
which performs semantic and instance segmentation with 
one model, and FreePoint [61], which learns instance 
segmentation in an unsupervised manner.

Key takeaways

• Heuristic rule-based approaches remain popular, machine 
learning approaches are relatively less developed.

• Many methods utilize DL models combined with clus-
tering and postprocessing techniques.

• A promising research direction involves DL models for 
offset prediction.

• Many DL models for instance segmentation (e.g. 
SPFormer, Mask3D) still have not been tried for individual 
tree segmentation.

Species classification

This task involves identifying the tree species based on a 
point cloud of a single tree. The papers dealing with this 
problem are summarized in Table 4.

Early work: bark classification

Species classification has been tackled with machine learn-
ing already in 2013 by Othmani et al. [34] and Mizoguchi 
et al. in 2017 [62]. Both approached the task by modelling 
the texture of the tree bark. This approach has since been 
abandoned with later methods instead relying on the shape 
of the whole tree.

Traditional machine learning

Guan et al. [12] characterized trees by counting points at 
various heights and constructing a vertical distribution. The 
distribution was further transformed with a Deep Boltzmann 
machine and classified with an SVM.

A popular class of approaches involves ML based on fea-
tures extracted from a QSM model [8, 10, 14, 15], which 
provides a comprehensive description of the branching 
structure. A study by Hui et al. [10] showed that combin-
ing QSM with directly measured and fractal features led to 
improved results.

Deep learning

Several studies investigated projecting point clouds as 
2D images and applying image-based DL models to pre-
dict the species. Seidel et al. [18] showed that a simple 
CNN based on a single image was able to significantly 
outperform a PointNet model. Zou et al. [63] utilized 36 
images, rotated around the vertical axis, while Allen et al. 
[19] used 6 depth-colored images. Another line of work 
involves point-based DL. Two studies by Liu et al. [64, 65] 
compared different DL architectures, with PointConv and 
PointNet +  + being the top performing models. All archi-
tectures performed similarly, except for PointNet which 
was consistently worse. Several works showed that the DL 
performance benefitted from point cloud downsampling, 
specifically by using farthest point sampling to a fixed 
number of points (1024 points in [66] and 2048 point in 
[64, 65]). Xi et al. [8] compared three classes of methods: 
QSM-based ML, Voxel DL and Point cloud DL. The best 
result was achieved by PointNet +  + , followed closely 
by two QSM-based models: AdaBoost and RF. Another 
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Table 4   Different approaches for species classification. Abbreviations: OA — Overall Accuracy, (C) — custom deep learning architecture, N Sp. 
— Number of tree species

1 Year Source N Sp. Method Representation OA

Othmani [34] 2013 TLS 5 ML RF Wavelet features 89.1

Guan [12] 2015 MLS 10 DL DBN, SVM point density per height 86.1

Zou [63] 2017 TLS 8 DL DBN 2D-projected images 93

Mizoguchi [62] 2017 TLS 2 DL AlexNet Bark texture image 89.3

PointNet++ Point cloud 96

ResNet Voxels 89

DL VGG Voxels 85

PointNet Point cloud 84

KdNet Point cloud 84

Xi [8] 2020 TLS 9 AdaBoost QSM features 92

RF QSM features 91

ML SVM QSM features 89

KNN QSM features 88

LDA QSM features 85

Naïve Bayes QSM features 78

SVM QSM features 82

Terryn [14] 2020 TLS 5 ML MLR QSM features 81

kNN QSM features 79

LayerNet(C) Point cloud 88.8

DL PointNet Point cloud 86.7

Liu [11] 2021 ALS, TLS 2 DBN point density per height 84.2

MLP geometric features 80

ML RF geometric features 77.5

KNN geometric features 75.4

PCT-SCN(C) downsampled point cloud 94

PointNet++ point cloud 92

Chen [66] 2021 TLS 2 DL ResNet101 2D-projected image 92

PointNet point cloud 89

VoxNet voxels 85

Seidel [18] 2021 TLS 7 DL LeNet-based CNN 2D-projected image 86.1

PointNet Point cloud 35.4

PointConv Point cloud 99.5

PointMLP Point cloud 98

Liu [64] 2022 MLS 8 DL PointNet++ Point cloud 97

DGCNN Point cloud 96

PCT Point cloud 92

PointNet Point cloud 73

SVM QSM features 84.1

Random forest QSM features 75.6

Wang [15] 2022 MLS 4 ML ANN QSM features 75.1

KNN QSM features 72.9

Decision tree QSM features 69.5

PointNet++ Point cloud 88.4

Liu [65] 2022 MLS 7 DL PointMLP Point cloud 84.6

PointNet Point cloud 27.7

Chattoraj [29] 2022 MLS 11 DL ARMA Graph -

Hui [10] 2023 TLS 5 ML SVM Fractal and QSM features 93.3

DenseNet 2D-projected images 79

YOLOv5 2D-projected images 78

SimpleView (ResNet) 2D-projected images 76

Puliti [67] 2023 TLS, MLS, 33 DL PointNet++ Point cloud 76

ULS MinkNet 3D voxels 74

Point-Mixer Point cloud 71

DGCNN Point cloud 68
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benchmarking study, in a form of a data science competi-
tion was performed by Puliti et al. [67] and it involved 7 
different DL methods. The three top-performing methods 
were CNN models on 2D images, with PointNet +  + being 
a strong contender.

A unique study by Chattoraj et al. [29] reformulated the 
species classification problem as multi-classification of tree 
structural attributes: phyllotaxis, divergence and branching 
mode, which enabled identification of 11 species. In addi-
tion, they represented the point cloud as a graph and classi-
fied it using a Graph Neural Network.

Key takeaways

• QSM provides good features for species classification.
• Projecting a point cloud onto 4–6 images and process-

ing them with a CNN works remarkably well.
• Point-based DL works well, PointNet +  + shows con-

sistent strong performance.
 For point cloud DL, farthest point downsampling to a 

fixed number of points improves performance.
• PointNet does not work well, should be avoided.

Other tasks

While most of the studies focus on the tasks described 
above, they are not the only ones. The tree can be 
characterized in more detail by providing a model of the 
branching structure, detecting tree damage or identifying 
microhabitats present on the tree. The papers not fitting 
into previous categories are summarized in Table 5. Since 

the papers deal with diverse, often novel problems, without 
clearly established evaluation metrics, we do not provide 
numerical results here.

Modelling tree structure

Several works have been dedicated to model the structure of 
the tree and its parameters. Wang et al. [70] use TLS-derived 
features to predict aboveground biomass of individual trees. 
Lopez Serrano et al. [72] use a DL model to predict stem 
volume, showing improved performance over handcrafted 
methods. More detailed representation of tree structure can 
be done with skeletonization, i.e. converting a point cloud 
into a model of the branching structure. Methods by Dobbs 
et al. [69] and Liu et al. [68] present DL-based approaches 
that provide an alternative to handcrafted QSM algorithms.

Detecting defects and damage

An important application involves detecting various kinds 
of tree damage. Klauberg et  al. [73] used TLS data to 
assess post-hurricane damage at individual tree level. They 
developed a projection-based method, involving 12 viewing 
angles around the vertical axis, classified with CNN models. 
They found VGG16 to be the best performing architecture. 
Hrdina et al. [74] developed a method for internal trunk 
decay detection. They collected MLS data and ground-truth 
based on acoustic tomography and developed a PointNet-
based classifier. Nguyen et al. [72] developed a ML approach 
for classifying tree trunk defects. They used a handcrafted 
clustering method for detecting defective segments, and a 
RF classifier to determine the type of defect.

Table 5   Papers approaching various tasks that do not fit into the previous categories

1st author, ref. Year Task Data source Method Representation

Modelling tree structure

Liu [68] 2021 Tree skeletonization TLS DL TreePartNet Point cloud

Dobbs [69] 2023 Tree skeletonization Synthetic DL U-Net Point cloud

Wang [70] 2023 Aboveground biomass estimation TLS ML MLP, Random forest Tree features

López Serrano [71] 2022 Stem volume MLS DL Faster R-CNN Point cloud

Detecting defects and damage

Nguyen [72] 2020 Trunk defect detection TLS ML Random forest Geometric features

Klauberg [73] 2023 Hurricane damage detection TLS DL CNN 2D images

Hrdina [74] 2023 Tree trunk decay detection MLS DL PointNet Point cloud

Identifying other forest elements

Han [75] 2022 Liana detection TLS ML Random forest Geometric features

Rehush[76] 2023 Tree-related microhabitat detection TLS ML Random forest Geometric features
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Identifying other forest elements

The detail present in ground-based LiDAR makes it possible 
to identify various non-tree parts of forest ecosystems. Han 
et al. [75] developed a model for detecting lianas growing 
on trees using geometric features and RF. Rehush et al. [76] 
used TLS data to detect 6 classes of tree-related microhabi-
tats (Bark, Bark pockets, Cavities, Fungi, Ivy, Mosses). The 
authors framed the task as semantic segmentation and tried 
two different approaches: RF based on geometric features 
and CNN based on 2D images. They found that the CNN 
significantly outperformed the RF.

Key takeaways

• AI can be used for characterization of individual trees in 
terms of damage, diseases or branching structure.

• Non-tree elements of forest ecosystems can be detected 
using AI.

• These areas are relatively undeveloped and open for 
future research.

Reproducibility analysis

We investigated three aspects of research reproducibility: 
availability of code, availability of data, and performance 
comparison between studies.

Code sharing

Despite a notable increase in code sharing in 2023, as 
depicted in Fig. 6, the majority of studies, particularly those 
introducing novel deep learning (DL) architectures [11, 38, 

42, 48, 50, 55, 66], still lack accompanying code reposito-
ries. This absence hinders the reproducibility of these com-
plex models, which cannot be effectively reconstructed from 
text descriptions alone. As a result, the impact and credibil-
ity of such research are significantly reduced. More robust 
code sharing practices could greatly enhance the scientific 
community’s ability to verify and build upon new findings.

Data sharing

Figure 7 shows that 44.2% of the reviewed papers evaluate 
their methods on self-collected datasets, and do not provide 
access to them. This practice was especially prevalent in the 
early years. There is a clear upward trend in data sharing 
over time, especially significant in 2023. However, there is 
still a significant number of new papers that collect their own 
data and do not make it available. Utilizing public datasets 
makes it easier to compare and benchmark different meth-
ods and is a sign of the field becoming more structured and 
mature.

Several papers [11, 38, 42, 48, 50, 55, 66] follow a pattern 
which makes them practically impossible to reproduce or 
evaluate. They propose a novel DL architecture for a specific 
forestry task. While they describe the network architecture, 
they do not provide open-source code. In addition, they only 
evaluate their method on a self-collected dataset with no 
open access. This way, they make it impossible to test their 
approach on other datasets, or to test different approaches 
on their data.

Fig. 6   Number of papers sharing their code over the years

Fig. 7   Number of papers utilizing publicly available data over the 
years. The three studies in 2023[9, 44, 68] that used both public and 
closed datasets were classified as using public data
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Benchmark datasets

While the majority of papers use their own data, 37.3% 
of works make use of publicly available data from other 
sources. Several datasets have been used in multiple 
papers:

•	 ISPRS/EuroSDR benchmark [77]: a dataset launched 
in 2014, with 24 sample plots encompassing diverse 
species, growth stages, and management conditions in 
a southern boreal forest in Finland. It contains high-
density TLS data with both single-scan and multiscan 
point clouds. The dataset contains reference data includ-
ing positions of individual trees, making it a valuable 
resource to evaluate individual tree detection methods. 
The data has been used by 4 studies in this review [8, 43, 
51, 52].

•	 Wytham woods [78]: a dataset made available in 2016, 
containing data about 835 individual trees, including 
segmented point clouds and QSM models. Used by 2 
studies: [14, 57]

•	 FOR-species [67]: a combined dataset from several 
countries, containing approximately 20,000 individual 
tree point clouds with species labels. It was introduced 
for a benchmarking project with 7 submissions proposing 
different tree species classification approaches.

Evaluation metrics

A problem we encountered while performing this review 
involved inconsistent performance metrics. We found 7 met-
rics for semantic segmentation: OA, mIoU Precision, Recall, 
F1, Kappa, MCC; 7 metrics for individual tree segmenta-
tion: F1, Accuracy, Detection rate, mIoU, AP, Recall, Preci-
sion; and 5 metrics for species classification: OA, Precision, 
Recall, F1-score, Kappa. The only metric that was used con-
sistently within a group was OA for species classification. 
For other tasks, none of the metrics were used consistently. 
While it is important to use a variety of metrics to capture 
different aspects of the problem, there is a need for clearly 
defined standardized metrics used across the field.

Perspective on AI Methods in Forestry

One of the goals of this review was to evaluate to what 
degree the precision forestry field utilizes the latest AI 
research, and what areas might be overlooked.

Deep learning architectures

In general, a wide range of DL models have been inves-
tigated. This includes various point-based DL architec-
tures. The ones that have proven to work well include: 

PointNet +  + , PointCNN, PointMLP. Architectures such as 
PCT, DGCNN, KPConv were shown to be slightly worse, 
perhaps because of limited dataset sizes. PointNet has shown 
to be consistently inferior and should probably be avoided.

In case of 2D-projected images and 3D voxel grids, it 
seems that any established computer vision model, such as 
ResNet or VGG, will do the job well.

Progress is still to be made in architectures for individ-
ual tree segmentation. There is relatively little work in the 
area, and all the promising DL methods are based on off-
set prediction [56, 57]. They show remarkable results out-
performing the rule-based approaches but there is clearly 
room for development. Research in the area of indoor and 
urban instance segmentation might be used as a source of 
inspiration.

A large area that is almost entirely unexplored is the 
use of Graph Neural Networks (GNNs). This popular and 
diverse family of models is almost completely absent in the 
reviewed articles, apart from [29]. The branching structure 
of trees has an inherent graph nature, which can be repre-
sented in form of QSM or other graph formats. Perhaps such 
a representation might provide important abstractions that 
are not easily extracted from raw point clouds. In addition, 
the whole forest can be modeled as a graph of connected 
trees. For tasks such as species classification, it might be 
beneficial to consider the tree not as an isolated point cloud, 
but as a part of a tree network, which largely constrains the 
composition of species in a given area.

Data preprocessing

Choosing the right methods for data preprocessing can have 
a significant impact on the performance of AI models. One 
essential technique is data augmentation, which involves 
applying various disturbances to the training data to gener-
ate more samples and improve the model's generalization 
capabilities. Data augmentation has been employed in 15 of 
the reviewed papers. The most common technique was point 
cloud rotation [8, 9, 18, 19, 40, 46–48, 53, 55, 56], typically 
along the vertical axis, though some studies [40] incorporate 
small rotations along other axes, resulting in slight tilts of 
the trees. Other prevalent methods include jittering [40, 56, 
74], which involves adding Gaussian noise to point coordi-
nates; scaling [19, 53, 55, 56], downsampling [46, 57] and 
mirror-flipping [52, 53, 56, 76] of the point cloud. Studies 
that explicitly evaluated the impact of data augmentation 
[8, 18, 57, 76] consistently reported improved model per-
formance when trained on augmented data.

Another practice that has shown good results, specifically 
in semantic segmentation, is enhancing point representations 
with additional handcrafted features. Multiple studies [9, 
44–46] have shown that providing geometric and intensity 
features can support the performance of DL models.
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Expanding the datasets

While exploring various types of model architectures is 
important, a huge potential for improvement lies in expand-
ing the datasets. In line with a critical analysis by Lines 
et al. [79], we think that the development of large-scale, 
international benchmark datasets is crucial to move the field 
forward. To facilitate the development of such datasets, it is 
essential to establish comprehensive data standards. These 
standards should encompass clearly defined data formats, 
label structures, and evaluation methods to ease the process 
of combining data from multiple sources and coordinated 
evaluation of different models.

A promising example of this standardization is already 
emerging in the domain of individual tree segmentation, ini-
tiated by Puliti et al. creating the FOR-instance dataset [79] 
of labeled UAV-LS scans from five different countries. Their 
approach introduces a consistent data format using.laz files 
with an additional treeID field for each point, coupled with 
a clear evaluation guideline and a predefined train-test split. 
Building on this work, Henrich et al. [80] have processed 
two existing ground-based datasets (Wytham Woods and 
LAUTx) to fit this standard, further promoting its adoption 
and contributing to the data pool.

It might be beneficial to combine data from various 
LiDAR modalities, both ground-based and aerial. Krisanski 
et al. [37] and Wielgosz et al. [54] show that it is possible to 
train sensor-agnostic models, which might even outperform 
their modality-specific counterparts. This approach makes 
it easier to create large datasets and it provides models with 
wider applicability.

This can be supported by synthetic data. There is a vast 
computer graphics literature focused on developing realistic 
tree-growth simulations. Such simulations can be used to 
quickly generate large amounts of samples, with labels auto-
matically provided. Several studies in this review [43, 66] 
showed that employing synthetic data has led to improved 
performance in real-world evaluation. While synthetic data 
cannot capture all aspects of a real forest, combining real and 
synthetic data can certainly be a part of the solution.

Alternatives to supervised learning

An area of AI research largely overlooked in the reviewed 
articles includes learning paradigms other than pure super-
vised learning, specifically semi-supervised and self-super-
vised learning.

Semi-supervised learning involves training a model using 
a mix of labeled and unlabeled examples. A popular tech-
nique, self-training, involves the model teaching itself by 
incorporating its own high-confidence predictions into the 
learning process. Another approach might include training 
based on predictions from an ensemble of different models. 

The semi-supervised paradigm was only employed in one 
reviewed paper [9], which showed improved performance 
through self-training.

Another overlooked paradigm is self-supervised learn-
ing, in which a model can learn useful features from large 
unlabeled datasets. This approach has been very success-
ful in 2D computer vision [82] and natural language pro-
cessing [83]. Self-supervised learning leverages inherent 
structural properties of data to create supervisory sig-
nals. By learning to predict hidden or transformed parts 
of the input, models develop rich internal representations 
applicable to downstream tasks. Various methods of self-
supervision have been developed for point cloud data. 
This includes shape completion, in which a small region 
of the point cloud is masked and a model is trained to 
predict the positions of the points within it. It is typically 
implemented using a masked autoencoder architecture, 
with popular ones being Point-MAE [84] and Voxel MAE 
[85]. Another approach is point upsampling, in which the 
model learns by trying to increase the density of down-
sampled point clouds. An example of such approach is 
SAPCU [86].

An increasingly popular paradigm in the AI community is 
generative modelling. Generative models, such as Generative 
Adversarial Networks (GANs), variational autoencoders, or 
diffusion models, have demonstrated remarkable capabilities 
in synthesizing various kinds of realistic outputs, including 
tree structures and growth patterns, as seen in works like 
DeepTree [87]. These models can be harnessed not only for 
generating synthetic datasets that supplement LiDAR data, 
but also as predictive tools for understanding and simulating 
forest dynamics. By training generative models on LiDAR 
data, they could potentially predict future growth patterns 
and provide insights into forest development under various 
conditions. Furthermore, the internal representations learned 
by generative models could be used for feature extraction, 
potentially leading to more robust tree classification and 
segmentation. Exploring the interplay between generative 
models and LiDAR data could reveal new ways to tackle 
challenges in forest monitoring.

Overlooked tasks

Relatively little research has been done to assess attributes 
of individual trees beyond their species. The detail present 
in ground-based scans could potentially be used to identify 
dead and infected trees, and to predict their age class. All 
this information is crucial for forest management.

Dead tree detection stands out as a particularly promising 
task that has received little attention. It is likely the easiest of 
these overlooked tasks to implement, as labeling dead trees 
in datasets is relatively straightforward and feasible based on 
the scan itself. Dead tree detection holds high relevance for 
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various aspects of forest ecology and management, includ-
ing assessing forest health, estimating carbon stocks, and 
managing fire risks.

Tree disease detection, despite its importance, was 
addressed in only one paper reviewed, addressing the spe-
cific issue of tree trunk decay [74]. AI models could be used 
to generally identify trees with poor health, and perhaps to 
specifically identify the most common pathogens. Early and 
accurate detection of disease spread is crucial for making 
management decisions.

Another important issue is tree age prediction. It could 
be implemented either as continuous regression predict-
ing a specific number or age class classification, predict-
ing one of several discrete age groups. However, acquiring 
accurate ground truth data for tree age is often difficult and 
labor-intensive. 

While current AI architectures are fully capable of solv-
ing these important challenges, the key constraint is the 
requirement to collect large, diverse datasets with reliable 
ground-truth labels. Such datasets are critical for developing 
models that can operate across a wide range of ecological 
settings.

Conclusion

This review underscores the pivotal role of Artificial Intel-
ligence, particularly Deep Learning, in transforming preci-
sion forestry through the analysis of ground-based LiDAR 
data. Our comprehensive examination has revealed that 
the primary applications of AI in this field center around 
semantic segmentation, individual tree segmentation, and 
species classification. Among the array of models tested, 
deep learning architectures like PointNet+ + have consist-
ently outperformed traditional machine learning methods, 
offering enhanced accuracy and efficiency.

Despite these advancements, the study identifies several 
underexplored areas such as the potential of Graph Neural 
Networks and other novel DL models that could provide 
significant breakthroughs in how we understand and manage 
forest environments. Moreover, the review highlights a criti-
cal gap in the field: the scarcity of shared code and standard-
ized metrics, which complicates the replication of research 
and limits the comparative analysis of different approaches.

To propel the field forward, we advocate for the establish-
ment of large, comprehensive benchmark datasets that com-
bine data from diverse environments and LiDAR modalities. 
Such datasets would not only facilitate the development and 
testing of new models but also ensure that rigorous evalua-
tion standards are met across studies. Additionally, fostering 
an environment of open scientific communication by making 
datasets and DL models publicly accessible will be crucial 
for collaborative advancements in precision forestry.

In conclusion, while AI methodologies have shown con-
siderable promise in enhancing the capabilities of forest 
monitoring and management, the realization of their full 
potential will depend heavily on concerted efforts to address 
current limitations. By embracing open data practices, stand-
ardizing evaluation metrics, and exploring innovative AI 
architectures, the field of precision forestry can advance in 
accuracy and efficiency, paving the way for detailed forest 
observation and sustainable management practices.

Author Contribution  M.K.: Literature review, initial draft writing, 
figure and table creation, final editing. C.C.: Manuscript review and 
editing, figure design. J.B.: Manuscript review and editing. T.T.: Manu-
script review and editing. K.S.: Conceptualization, methodology, pro-
ject supervision. All authors reviewed the manuscript and approved 
the final version.

Funding  CC received funding from the UK NERC (NE/T001194/1), 
from the Spanish Ministry of Universities and NextGenerationEU 
(MU21-UP2021-030), and the Spanish Knowledge Generation project 
(PID2021-126790NB-I00).

Data Availability  No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of Interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. 
https://​doi.​org/​10.​1023/A:​10109​33404​324.

	 2.	 Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support 
vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28.

	 3.	 Popescu M-C, Balas VE, Perescu-Popescu L, Mastorakis N. Mul-
tilayer perceptron and neural networks. WSEAS Trans Circuits 
and Syst. 2009;8(7):579–88.

	 4.	 Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen 
K, Mitchell R, Cano I, Zhou T et al.: Xgboost: extreme gradient 
boosting. R package version 0.4–2 1 2015; (4), 1–4

	 5.	 Hackel T, Wegner JD, Schindler K Contour detection in unstruc-
tured 3d point clouds. In: 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 1610–1618 (2016). 
https://​doi.​org/​10.​1109/​CVPR.​2016.​178

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/CVPR.2016.178


Current Forestry Reports            (2025) 11:5 	 Page 17 of 19      5 

	 6.	 Cabo C, Ordóñez C, Sáchez-Lasheras F, Roca-Pardiñas J, Cos-
Juez J Multiscale supervised classification of point clouds with 
urban and forest applications. Sensors 2019; 19(20) https://​doi.​
org/​10.​3390/​s1920​4523

	 7.	 Krishna Moorthy SM, Calders K, Vicari MB, Verbeeck H. 
Improved Supervised Learning-Based Approach for Leaf and 
Wood Classification from LiDAR Point Clouds of Forests. IEEE 
Trans Geosci Remote Sens. 2020;58(5):3057–70. https://​doi.​org/​
10.​1109/​TGRS.​2019.​29471​98.

	 8.	 Xi Z, Hopkinson C, Rood SB, Peddle DR. See the forest and the 
trees: Effective machine and deep learning algorithms for wood 
filtering and tree species classification from terrestrial laser scan-
ning. ISPRS J Photogramm Remote Sens. 2020;168:1–16. https://​
doi.​org/​10.​1016/j.​isprs​jprs.​2020.​08.​001.

	 9.	 Wang F, Bryson M Tree Segmentation and Parameter Measure-
ment from Point Clouds Using Deep and Handcrafted Features. 
Remote Sens 2023; 15(4) https://​doi.​org/​10.​3390/​rs150​41086

	10.	 Hui Z, Cai Z, Xu P, Xia Y, Cheng P Tree Species Classifica-
tion Using Optimized Features Derived from Light Detection and 
Ranging Point Clouds Based on Fractal Geometry and Quantita-
tive Structure Model. Forests 2023; 14(6) https://​doi.​org/​10.​3390/​
f1406​1265

	11.	 Liu, M., Han, Z., Chen, Y., Liu, Z., Han, Y Tree species classifica-
tion of LiDAR data based on 3D deep learning. Meas J Int Meas 
Confederation. 2021; 177 https://​doi.​org/​10.​1016/j.​measu​rement.​
2021.​109301

	12.	 Guan H, Yu Y, Ji Z, Li J, Zhang Q. Deep learning-based tree 
classification using mobile LiDAR data. Remote Sens Lett. 
2015;6(11):864–73. https://​doi.​org/​10.​1080/​21507​04X.​2015.​
10886​68.

	13.	 Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, 
Kaartinen H, Vastaranta M, Holopainen M, Disney M, Lewis P. 
Fast automatic precision tree models from terrestrial laser scanner 
data. Remote Sens. 2013;5(2):491–520.

	14.	 Terryn L, Calders K, Disney M, Origo N, Malhi Y, Newnham 
G, Raumonen P, Åkerblom M, Verbeeck H. Tree species clas-
sification using structural features derived from terrestrial laser 
scanning. ISPRS J Photogramm Remote Sens. 2020;168:170–81. 
https://​doi.​org/​10.​1016/j.​isprs​jprs.​2020.​08.​009.

	15.	 Wang M, Wong MS, Abbas S Tropical Species Classification with 
Structural Traits Using Handheld Laser Scanning Data. Remote 
Sens 2022; 14(8) https://​doi.​org/​10.​3390/​rs140​81948

	16.	 Redmon J, Divvala S, Girshick R, Farhadi A "You Only Look 
Once: Unified, Real-Time Object Detection," 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Las 
Vegas, NV, USA, 2016, 779–788, https://​doi.​org/​10.​1109/​CVPR.​
2016.​91

	17.	 He K, Zhang X, Ren S, Sun J Deep residual learning for image 
recognition. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, (2016): pp. 770–778

	18.	 Seidel D, Annighöfer P, Thielman A, Seifert QE, Thauer JH, Glat-
thorn J, Ehbrecht M, Kneib T, Ammer C Predicting Tree Species 
From 3D Laser Scanning Point Clouds Using Deep Learning. 
Front Plant Sci 2021; 12 https://​doi.​org/​10.​3389/​fpls.​2021.​635440

	19.	 Allen MJ, Grieve SWD, Owen HJF, Lines ER. Tree species clas-
sification from complex laser scanning data in Mediterranean for-
ests using deep learning. Methods Ecol Evol. 2023;14(7):1657–
67. https://​doi.​org/​10.​1111/​2041-​210X.​13981.

	20.	 Maturana D, and Scherer S. Voxnet: A 3d convolutional neural 
network for real-time object recognition. In 2015 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS) (pp. 
922–928). IEEE.(2015)

	21.	 Simonyan, K., Zisserman, A.: Very deep convolutional networks 
for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 
(2014)

	22.	 Choy C, Gwak J, and Savarese S 4d spatio-temporal convnets: 
Minkowski convolutional neural networks. In Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition 
(pp. 3075–3084) (2019)

	23.	 Qi CR, Su H, Mo K, Guibas LJ Pointnet: Deep learning on point 
sets for 3d classification and segmentation. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 652–660 (2017)

	24.	 Qi CR, Yi L, Su H, Guibas LJ Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural 
information processing systems 30 (2017)

	25.	 Li Y, Bu R, Sun M, Wu W, Di X, Chen B Pointcnn: Convolution 
on xtransformed points. Advances in neural information process-
ing systems 2018; 31

	26.	 Wu W, Qi Z, Fuxin L Pointconv: Deep convolutional networks on 
3d point clouds. In: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

	27.	 Phan AV, Le Nguyen M, Nguyen YLH, Bui LT. Dgcnn: A con-
volutional neural network over large-scale labeled graphs. Neural 
Netw. 2018;108:533–43.

	28.	 Choe J, Park C, Rameau F, Park J, Kweon IS Pointmixer: Mlp-
mixer for point cloud understanding. In: European Conference on 
Computer Vision, pp. 620–640 (2022). Springer

	29.	 Chattoraj J, Yang F, Lim CW, Gobeawan L, Liu X, Raghavan 
VSG Knowledge-Driven Transfer Learning for Tree Species 
Recognition. In: 2022 17th International Conference on Control, 
Automation, Robotics and Vision, ICARCV 2022, pp. 149–154. 
Institute of Electrical and Electronics Engineers Inc. (2022). 
https://​doi.​org/​10.​1109/​ICARC​V57592.​2022.​10004​314

	30.	 Guo M-H, Cai J-X, Liu Z-N, Mu T-J, Martin RR, Hu S-M. PCT: 
Point cloud transformer. Comput Visual Media. 2021;7:187–99.

	31.	 Robert D, Raguet H, Landrieu L Efficient 3d semantic segmen-
tation with superpoint transformer. Proceedings of the IEEE/
CVF International Conference on Computer Vision (2023)

	32.	 Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. 
Segformer: Simple and efficient design for semantic seg-
mentation with transformers. Adv Neural Inf Process Syst. 
2021;34:12077–90.

	33.	 Kükenbrink D, Marty M, Bösch R, Ginzler C. Benchmarking 
laser scanning and terrestrial photogrammetry to extract forest 
inventory parameters in a complex temperate forest. Int J Appl 
Earth Obs Geoinf. 2022;113:102999. https://​doi.​org/​10.​1016/j.​
jag.​2022.​102999.

	34.	 Othmani A, Lew Yan Voon LFC, Stolz C, Piboule A Single tree 
species classification from Terrestrial Laser Scanning data for 
forest inventory. Pattern Recogn. Lett. 2013; 34(16), 2144–2150 
https://​doi.​org/​10.​1016/j.​patrec.​2013.​08.​004

	35.	 Lin W, Fan W, Liu H, Xu Y, Wu J. Classification of handheld 
laser scanning tree point cloud based on different KNN algo-
rithms and random forest algorithm. Forests. 2021;12(3):1–36. 
https://​doi.​org/​10.​3390/​f1203​0292.

	36.	 Oviedo de la Fuente M, Cabo C, Roca-Pardiñas J, Louder-
milk EL, Ordóñez C 3D Point Cloud Semantic Segmentation 
Through Functional Data Analysis. J Agric Biol Environ. Stat 
2023; https://​doi.​org/​10.​1007/​s13253-​023-​00567-w

	37.	 Xi Z, Hopkinson C, Chasmer L. Filtering Stems and Branches 
from Terrestrial Laser Scanning Point Clouds Using Deep 3-D 
Fully Convolutional Networks. Remote Sens. 2018;10(8):1215. 
https://​doi.​org/​10.​3390/​rs100​81215.

	38.	 Wu B, Zheng G, Chen Y An improved convolution neural net-
work-based model for classifying foliage and woody compo-
nents from terrestrial laser scanning data. Remote Sens. 2020; 
12(6) https://​doi.​org/​10.​3390/​rs120​61010

	39.	 Vatandaşlar C, Zeybek M Extraction of forest inventory param-
eters using handheld mobile laser scanning: A case study from 

https://doi.org/10.3390/s19204523
https://doi.org/10.3390/s19204523
https://doi.org/10.1109/TGRS.2019.2947198
https://doi.org/10.1109/TGRS.2019.2947198
https://doi.org/10.1016/j.isprsjprs.2020.08.001
https://doi.org/10.1016/j.isprsjprs.2020.08.001
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/f14061265
https://doi.org/10.3390/f14061265
https://doi.org/10.1016/j.measurement.2021.109301
https://doi.org/10.1016/j.measurement.2021.109301
https://doi.org/10.1080/2150704X.2015.1088668
https://doi.org/10.1080/2150704X.2015.1088668
https://doi.org/10.1016/j.isprsjprs.2020.08.009
https://doi.org/10.3390/rs14081948
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.3389/fpls.2021.635440
https://doi.org/10.1111/2041-210X.13981
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICARCV57592.2022.10004314
https://doi.org/10.1016/j.jag.2022.102999
https://doi.org/10.1016/j.jag.2022.102999
https://doi.org/10.1016/j.patrec.2013.08.004
https://doi.org/10.3390/f12030292
https://doi.org/10.1007/s13253-023-00567-w
https://doi.org/10.3390/rs10081215
https://doi.org/10.3390/rs12061010


	 Current Forestry Reports            (2025) 11:5     5   Page 18 of 19

Trabzon, Turkey. Meas. J. Int. Meas. Confederation. 2021; 177 
https://​doi.​org/​10.​1016/j.​measu​rement.​2021.​109328

	40.	 Krisanski S, Taskhiri MS, Aracil SG, Herries D, Turner P Sen-
sor agnostic semantic segmentation of structurally diverse and 
complex forest point clouds using deep learning. Remote Sens. 
2021;13(8) https://​doi.​org/​10.​3390/​rs130​81413

	41.	 Shen X, Huang Q, Wang X, Li J, Xi B A Deep Learning-Based 
Method for Extracting Standing Wood Feature Parameters from Ter-
restrial Laser Scanning Point Clouds of Artificially Planted Forest. 
Remote Sens. 2022; 14(15) https://​doi.​org/​10.​3390/​rs141​53842

	42.	 Han T, Sánchez-Azofeifa GA A Deep Learning Time Series 
Approach for Leaf and Wood Classification from Terrestrial 
LiDAR Point Clouds. Remote Sens 14(13) (2022) https://​doi.​
org/​10.​3390/​rs141​33157

	43.	 Chang L, Fan H, Zhu N, Dong Z A Two-Stage Approach for 
Individual Tree Segmentation From TLS Point Clouds. IEEE 
Journal of Selected Topics in Applied Earth Observations and 
Remote Sens 2022; 15, 8682–8693 https://​doi.​org/​10.​1109/​
JSTARS.​2022.​32124​45

	44.	 Alvites C, Maesano M, Molina-Valero JA, Lasserre B, Marchetti 
M, Santopuoli G. Discrimination of Leaves in a Multi-Layered 
Mediterranean Forest through Machine Learning Algorithms. 
Remote Sens. 2023;15(18):4450. https://​doi.​org/​10.​3390/​rs151​
84450.

	45.	 Kim DH, Ko CU, Kim DG, Kang JT, Park JM, Cho HJ Auto-
mated Segmentation of Individual Tree Structures Using Deep 
Learning over LiDAR Point Cloud Data. Forests 2023 14(6) 
https://​doi.​org/​10.​3390/​f1406​1159

	46.	 Bryson, M., Wang, F., Allworth, J.: Using Synthetic Tree Data 
in Deep LearningBased Tree Segmentation Using LiDAR Point 
Clouds. Remote Sens 2023 15(9) https://​doi.​org/​10.​3390/​rs150​
92380

	47.	 Xi, Z., Chasmer, L., Hopkinson, C.: Delineating and Recon-
structing 3D Forest Fuel Components and Volumes with Ter-
restrial Laser Scanning. Remote Sens. 2023 15(19) https://​doi.​
org/​10.​3390/​rs151​94778

	48.	 Ma, Z., Dong, Y., Zi, J., Xu, F., Chen, F.: Forest-PointNet: A 
Deep Learning Model for Vertical Structure Segmentation in 
Complex Forest Scenes. Remote Sensing 2023 15(19) https://​
doi.​org/​10.​3390/​rs151​94793

	49.	 Dai W, Jiang Y, Zeng W, Chen R, Xu Y, Zhu N, Xiao W, Dong 
Z, Guan Q MDC-Net: a multi-directional constrained and prior 
assisted neural network for wood and leaf separation from ter-
restrial laser scanning. International J Digital Earth 2023: 16(1), 
1224–1245 https://​doi.​org/​10.​1080/​17538​947.​2023.​21982​61

	50.	 Jiang T, Zhang Q, Liu S, Liang C, Dai L, Zhang Z, Sun J, 
Wang Y LWSNet: A Point-Based Segmentation Network for 
Leaf-Wood Separation of Individual Trees. Forests 2023 14(7) 
https://​doi.​org/​10.​3390/​f1407​1303

	51.	 Hui Z, Jin S, Li D, Ziggah YY, Liu B. Individual tree extrac-
tion from terrestrial lidar point clouds based on transfer learn-
ing and gaussian mixture model separation. Remote Sens. 
2021;13(2):1–32. https://​doi.​org/​10.​3390/​rs130​20223.

	52.	 Xi Z, Hopkinson C. Detecting Individual-Tree Crown Regions 
from Terrestrial Laser Scans with an Anchor-Free Deep Learn-
ing Model. Canadian J Remote Sens. 2021;47(2):228–42. 
https://​doi.​org/​10.​1080/​07038​992.​2020.​18615​41.

	53.	 Zhou H, Zhang G, Zhang J, Zhang C Mapping of Rubber Forest 
Growth Models Based on Point Cloud Data. Remote Sens. 2023; 
15(21) https://​doi.​org/​10.​3390/​rs152​15083

	54.	 Henrich J, Delden J, Seidel D, Kneib T, Ecker A TreeLearn: A 
Comprehensive Deep Learning Method for Segmenting Indi-
vidual Trees from Ground-Based LiDAR Forest Point Clouds. 
arXiv (2024). https://​arxiv.​org/​abs/​2309.​08471

	55.	 Zhang, H., Zhang, H., Xu, K., Li, Y., Wang, L., Liu, R., Qiu, 
H., Yu, L.: A Novel Framework for Stratified-Coupled BLS 

Tree Trunk Detection and DBH Estimation in Forests (BSTDF) 
Using Deep Learning and Optimization Adaptive Algorithm. 
Remote Sens 2023; 15(14) https://​doi.​org/​10.​3390/​rs151​43480

	56.	 Xiang B, Peters T, Kontogianni T, Vetterli F, Puliti S, Astrup R, 
Schindler K Towards accurate instance segmentation in large-
scale LiDAR point clouds. arXiv (2023). https://​arxiv.​org/​abs/​
2307.​02877

	57.	 Wielgosz M, Puliti S, Xiang B, Schindler K, Astrup R Segmen-
tAnyTree: A sensor and platform agnostic deep learning model 
for tree segmentation using laser scanning data. arXiv (2024). 
https://​arxiv.​org/​abs/​2401.​15739

	58.	 Schult, J., Engelmann, F., Hermans, A., Litany, O., Tang, S., 
Leibe, B.: Mask3d

	59.	 Mask transformer for 3d semantic instance segmentation. In: 
2023 IEEE International Conference on Robotics and Auto-
mation (ICRA), 2023 pp. 8216–8223. https://​doi.​org/​10.​1109/​
ICRA4​8891.​2023.​10160​590

	60.	 Sun J, Qing C, Tan J, Xu X Superpoint Transformer for 3D Scene 
Instance Segmentation. arXiv (2022). https://​arxiv.​org/​abs/​2211.​15766

	61.	 Kolodiazhnyi M, Vorontsova A, Konushin A, Rukhovich D One-
Former3D: One Transformer for Unified Point Cloud Segmenta-
tion. arXiv (2023). https://​arxiv.​org/​abs/​2311.​14405

	62.	 Zhang Z, Ding J, Jiang L, Dai D, Xia G-S Freepoint: Unsupervised 
point cloud instance segmentation. arXiv (2023). https://​arxiv.​org/​
abs/​2305.​06973

	63.	 Mizoguchi T, Ishii A, Nakamura H, Inoue T, Takamatsu H Lidar-
based individual tree species classification using convolutional 
neural network. In: Videometrics, Range Imaging, and Applica-
tions XIV, vol. 10332, p. 103320. SPIE (2017). https://​doi.​org/​10.​
1117/​12.​22701​23

	64.	 Zou X, Cheng M, Wang C, Xia Y, Li J. Tree Classification in 
Complex Forest Point Clouds Based on Deep Learning. IEEE 
Geosci Remote Sens Lett. 2017;14(12):2360–4. https://​doi.​org/​
10.​1109/​LGRS.​2017.​27649​38.

	65.	 Liu, B., Huang, H., Su, Y., Chen, S., Li, Z., Chen, E., Tian, X.: 
Tree Species Classification Using Ground-Based LiDAR Data by 
Various Point Cloud Deep Learning Methods. Remote Sens 2022; 
14(22) https://​doi.​org/​10.​3390/​rs142​25733

	66.	 Liu B, Huang H, Tian X, Ren M Individual Tree Species Classifi-
cation Using the Pointwise MLP-Based Point Cloud Deep Learn-
ing Method, p. 19. MDPI AG, 2022. https://​doi.​org/​10.​3390/​iecf2​
022-​13049

	67.	 Chen, J., Chen, Y., Liu, Z.: Classification of typical tree species 
in laser point cloud based on deep learning. Remote Sens 13(23) 
(2021) 10. 3390/rs13234750

	68.	 Puliti S, Frey J, Schindler Z, Straker A, Allen M. Winiwarter L, 
Rehush N, Hristova H, Murray B Sensor-agnostic tree species 
classification using proximal laser scanning (TLS, MLS, ULS) 
and CNNs. https://​github.​com/​stefp/​FOR-​speci​es (2023). https://​
github.​com/​stefp/ FOR-species

	69.	 Liu, Y., Guo, J., Benes, B., Deussen, O., Zhang, X., Huang, H.: 
TreePartNet: Neural Decomposition of Point Clouds for 3D Tree 
Reconstruction. ACM Transactions on Graphics 2021; 40(6) 
https://​doi.​org/​10.​1145/​34785​13.​34804​86

	70.	 Dobbs H, Batchelor O, Green R, Atlas J Smart-Tree: Neural 
Medial Axis Approximation of Point Clouds for 3D Tree Skel-
etonization. arXiv (2023). https://​arxiv.​org/​abs/​2303.​11560

	71.	 Wang, F., Sun, Y., Jia, W., Zhu, W., Li, D., Zhang, X., Tang, Y., 
Guo, H.: Development of Estimation Models for Individual Tree 
Aboveground Biomass Based on TLS-Derived Parameters. For-
ests 14(2) (2023) 10.3390/ f14020351

	72.	 López Serrano FR, Rubio E, García Morote FA, Andrés Abellán 
M, Picazo Córdoba MI, García Saucedo F, Martínez García E, 
Sánchez García JM, Serena Innerarity J, Carrasco Lucas L, García 
González O, García González JC Artificial intelligence-based 
software (AID-FOREST) for tree detection: A new framework for 

https://doi.org/10.1016/j.measurement.2021.109328
https://doi.org/10.3390/rs13081413
https://doi.org/10.3390/rs14153842
https://doi.org/10.3390/rs14133157
https://doi.org/10.3390/rs14133157
https://doi.org/10.1109/JSTARS.2022.3212445
https://doi.org/10.1109/JSTARS.2022.3212445
https://doi.org/10.3390/rs15184450
https://doi.org/10.3390/rs15184450
https://doi.org/10.3390/f14061159
https://doi.org/10.3390/rs15092380
https://doi.org/10.3390/rs15092380
https://doi.org/10.3390/rs15194778
https://doi.org/10.3390/rs15194778
https://doi.org/10.3390/rs15194793
https://doi.org/10.3390/rs15194793
https://doi.org/10.1080/17538947.2023.2198261
https://doi.org/10.3390/f14071303
https://doi.org/10.3390/rs13020223
https://doi.org/10.1080/07038992.2020.1861541
https://doi.org/10.3390/rs15215083
https://arxiv.org/abs/2309.08471
https://doi.org/10.3390/rs15143480
https://arxiv.org/abs/2307.02877
https://arxiv.org/abs/2307.02877
https://arxiv.org/abs/2401.15739
https://doi.org/10.1109/ICRA48891.2023.10160590
https://doi.org/10.1109/ICRA48891.2023.10160590
https://arxiv.org/abs/2211.15766
https://arxiv.org/abs/2311.14405
https://arxiv.org/abs/2305.06973
https://arxiv.org/abs/2305.06973
https://doi.org/10.1117/12.2270123
https://doi.org/10.1117/12.2270123
https://doi.org/10.1109/LGRS.2017.2764938
https://doi.org/10.1109/LGRS.2017.2764938
https://doi.org/10.3390/rs14225733
https://doi.org/10.3390/iecf2022-13049
https://doi.org/10.3390/iecf2022-13049
https://github.com/stefp/FOR-species
https://github.com/stefp/
https://github.com/stefp/
https://doi.org/10.1145/3478513.3480486
https://arxiv.org/abs/2303.11560


Current Forestry Reports            (2025) 11:5 	 Page 19 of 19      5 

fast and accurate forest inventorying using LiDAR point clouds. 
Int J Appl Earth Obs Geoinf. 2022; 113 https://​doi.​org/​10.​1016/j.​
jag.​2022.​103014

	73.	 Nguyen VT, Constant T, Kerautret B, Debled-Rennesson I, Colin 
F A machine-learning approach for classifying defects on tree 
trunks using terrestrial LiDAR. Comput Electron Agric. 2020; 
171 https://​doi.​org/​10.​1016/j.​compag.​2020.​105332

	74.	 Klauberg C, Vogel J, Dalagnol R, Ferreira MP, Hamamura C, 
Broadbent E, Silva CA Post-Hurricane Damage Severity Clas-
sification at the Individual Tree Level Using Terrestrial Laser 
Scanning and Deep Learning. Remote Sens. 2023: 15(4) https://​
doi.​org/​10.​3390/​rs150​41165

	75.	 Hrdina, M., Surový, P.: Internal Tree Trunk Decay Detection Using 
Close Range Remote Sensing Data and the PointNet Deep Learning 
Method 2023; https://​doi.​org/​10.​20944/​prepr​ints2​02311.​0690.​v1

	76.	 Han T, Sánchez-Azofeifa GA Extraction of Liana Stems Using 
Geometric Features from Terrestrial Laser Scanning Point Clouds. 
Remote Sens. 2022; 14(16) https://​doi.​org/​10.​3390/​rs141​64039

	77.	 Rehush N, Abegg M, Waser LT, Brändli UB Identifying tree-
related microhabitats in TLS point clouds using machine learning. 
Remote Sens 2018; 10(11) https://​doi.​org/​10.​3390/​rs101​11735

	78.	 Nex, F., Gerke, M., Remondino, F., Przybilla, H.-J., Bäumker, 
M., Zurhorst, A.: Isprs benchmark for multi-platform photogram-
metry. ISPRS Annals Photogrammetry, Remote Sens Spatial 
Inf Sci. 2015; II-3/W4, 135–142 https://​doi.​org/​10.​5194/​isprs​
annals-​II-3-​W4-​135-​2015

	79.	 Calders K, Verbeeck H, Burt A, Origo N, Nightingale J, Malhi 
Y, Wilkes P, Raumonen P, Bunce RG, Disney M. Laser scanning 
reveals potential underestimation of biomass carbon in temperate 
forest. Ecol Solutions Evid. 2022;3(4):12197.

	80.	 Lines, E.R., Allen, M., Cabo, C., Calders, K., Debus, A., Grieve, 
S.W.D., Miltiadou, M., Noach, A., Owen, H.J.F., Puliti, S.: AI 
applications in forest monitoring need remote sensing benchmark 
datasets. arXiv preprint arXiv:​2212.​09937 (2022).

	81.	 Puliti S, et al For-instance: a uav laser scanning benchmark dataset 
for semantic and instance segmentation of individual trees. arXiv 
(2023). https://​arxiv.​org/​abs/​2309.​01279

	82.	 Henrich, J., van Delden, J.: Towards general deep-learning-based 
tree instance segmentation models. arXiv (2024). https://​arxiv.​
org/​abs/​2405.​02061

	83.	 He K, Chen X, Xie S, Li Y, Dollár P, and Girshick R (2022) 
Masked autoencoders are scalable vision learners. In Proceedings 
of the IEEE/CVF conference on computer vision and pattern rec-
ognition (pp. 16000–16009)

	84.	 Devlin J (2018) Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint arXiv:​1810.​04805.

	85.	 Pang Y, Wang W, Tay FE, Liu W, Tian Y and Yuan L October. 
Masked autoencoders for point cloud self-supervised learning. 
In European conference on computer vision (pp. 604–621). Cham: 
Springer Nature Switzerland. 2022

	86.	 Hess G, Jaxing J, Svensson E, Hagerman D, Petersson C, and 
Svensson L (2023) Masked autoencoder for self-supervised 
pre-training on lidar point clouds. In Proceedings of the IEEE/
CVF winter conference on applications of computer vision (pp. 
350–359).

	87.	 Zhao W, Liu X, Zhong Z, Jiang J, Gao W, Li G, and Ji X Self-
supervised arbitrary-scale point clouds upsampling via implicit 
neural representation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (pp. 1999–
2007). 2022

	88.	 Zhou X, Li B, Benes B, Fei S, Pirk S Deeptree: Modeling trees 
with situated latents. IEEE Trans Vis Comput Graph 2023; 1–14 
https://​doi.​org/​10.​1109/​TVCG.​2023.​33078​87

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.compag.2020.105332
https://doi.org/10.3390/rs15041165
https://doi.org/10.3390/rs15041165
https://doi.org/10.20944/preprints202311.0690.v1
https://doi.org/10.3390/rs14164039
https://doi.org/10.3390/rs10111735
https://doi.org/10.5194/isprsannals-II-3-W4-135-2015
https://doi.org/10.5194/isprsannals-II-3-W4-135-2015
http://arxiv.org/abs/2212.09937
https://arxiv.org/abs/2309.01279
https://arxiv.org/abs/2405.02061
https://arxiv.org/abs/2405.02061
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/TVCG.2023.3307887

	Artificial Intelligence and Terrestrial Point Clouds for Forest Monitoring
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Overview of AI Methods for Point Cloud Processing
	Machine Learning Based on Handcrafted Features
	Point Geometric Features
	Tree-Level Features
	Deep Learning
	Convolutional Neural Networks
	Point-Based Methods
	Graph Neural Networks
	Transformers
	Aim of the Review

	Methodology
	Results and Discussion
	General view
	Point cloud semantic segmentation
	Feature-based machine learning

	Deep Learning
	Benchmarking
	Key takeaways

	Individual tree segmentation
	Hybrid approaches
	Instance segmentation with offset prediction
	Potential DL approaches
	Key takeaways

	Species classification
	Early work: bark classification
	Traditional machine learning
	Deep learning
	Key takeaways

	Other tasks
	Modelling tree structure
	Detecting defects and damage
	Identifying other forest elements
	Key takeaways

	Reproducibility analysis
	Code sharing
	Data sharing
	Benchmark datasets
	Evaluation metrics

	Perspective on AI Methods in Forestry
	Deep learning architectures
	Data preprocessing
	Expanding the datasets
	Alternatives to supervised learning
	Overlooked tasks


	Conclusion
	References


