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Abstract: Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained
during the pressurized casting process of the aluminum alloy into the SiC foam. The foam
acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of
the paper is to describe the behavior of the material, considering its internal structure. The
composite’s structure is obtained by using X-ray computing tomography. The thorough
computer tomography analysis allows for the high-precision identification of the shape
and distribution of the pores in the matrix. The computational model prepared in the
framework of the peridynamics method takes into account the pores and their shape. The
pores in the structure appeared in the fabrication process. The impact of a steel ball is
studied employing the peridynamics method. The sample without any porosity and a
porous one were considered during the analyses. It has been found that the porosity of the
matrix influences the plastic strain development, but the damage parameter in the skeleton
is not affected significantly. The damage advancement in the skeleton during the process
is practically identical in both cases. The equivalent plastic strain field is much smoother
in a non-porous matrix than in a porous one. The porous matrix has high equivalent
plastic strain concentrations, much higher than the non-porous matrix. The shape of the
sample is affected by the porosity of the matrix. The sample with a porous matrix tends to
fragment, and it shows a tendency towards spallation when in close contact to the surface
with the base.

Keywords: interpenetrated composite; impact; damage; peridynamics

1. Introduction
Modern industrial demands constitute the driving force for the elaboration of novel

and innovative technologies allowing for manufacturing composites with complex internal
microstructure. Various types of composites can be fabricated, consisting of the following:

• Arbitrary ordered or homogenized phase distribution of the materials;
• Directionally oriented layered microstructures;
• One- or multidimensional gradation of the physical and mechanical properties.

Composites are mixtures of different components whose properties are strictly related
to the conditions of manufacturing processes. For example, brittle matrix composites and
classical ceramic composites are polycrystals made of conglomerates of different grains
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joined during various fabrication processes, e.g., [1–5]. In the case of ceramic matrix com-
posites, different internal structures were described in detail in [6–9]. A very complex
arbitrarily ordered internal structure has cement matrix materials, e.g., [10–14]. The first
problem is to estimate their behavior using various experimental testing methods for the
assessment of the physical and mechanical properties of brittle matrix composites [15–18],
including SEM, micro-CT observations, crack propagation at uniaxial or multiaxial mechan-
ical or thermal loadings, 3-point bending, and shear mode of fragmentation. The second
problem is the modeling of brittle materials with the application of a micromechanical
approach with the analytical model (e.g., [17,18]) or numerical method [19–26].

More complicated internal microstructures have nanoceramic materials and nanocom-
posite coatings made of nanoparticle powders sintered at high temperatures and pres-
sures [27–29].

Another composites class is functionally graded materials (FGMs), e.g., [30,31]. The
application of a plastic matrix essentially changes the composite response. Mixing a
metallic matrix and ceramic tough grains or other particles leads to forming a metal matrix
composite MMC, e.g., [32,33]. A classic example of an MMC is tungsten carbide/cobalt -
WC/Co- [34–38] or titanium/molybdenum carbides. More advanced models for estimating
the impact behavior, including the thermal effects of the MMCs, were presented in [39–42].

A fairly new type of novel material are the so-called interpenetrated phase composites
(IPCs) consisting of continuous reinforcement in the form of a skeleton (10–20% content),
which is filled by a plastic matrix using different technologies, e.g., [43]. The continuity of
both phases led to overcoming several performance defects existing in the conventional
composites, thus, keeping the virgin properties of both constituent materials. In general,
IPCs can be classified as metal/polymer [44,45], metal/metal, and metal/ceramic [46–50]
composites. Each type of IPC has a wide range of applications, including aerospace,
aviation, automotive, and other construction applications.

In this paper, we will focus on the metal/ceramic IPC Al-Si12/SiC consisting of an
aluminum alloy matrix and SiC foam. Kota et al. [48,49] classified various methods of
manufacturing IPCs, i.e., ways of filling the ceramic foam with a plastic matrix; the most
important are the following:

• Pressureless infiltration, e.g., [51,52];
• Extrusion infiltration;
• Gas pressure infiltration, e.g., [53,54];
• Vacuum infiltration;
• 3D printing, e.g., [55,56].

The mechanical properties of IPCs are related to the volume content of both phases,
their spatial distribution, interfacial bonding, and manufacturing methods. The other
important parameter for modeling is the interaction between the matrix phase and rein-
forcement. Due to the complex shape of the 3D ceramic skeleton of IPCs, the pressured
infiltration can trigger the destruction of the brittle ceramic reinforcement structure [54–56].
However, using open-cell SiC3D foam, which AlSi fills, allows for the creation of two
co-continuous internal networks of constituents in the IPC with excellent physical and
mechanical properties. This important problem of the interface properties and assessment
of the crack propagation was investigated by molecular dynamics for Al/SiC3D in [57,58].

The mechanical behavior of the IPCs strongly depends on the matrix’s porosities
spread and the ceramic skeleton’s internal defects. Moreover, the interphase continuity be-
tween the metal and ceramic significantly influences the properties of the IPCs, e.g., [59,60].
Their results indicate that the chemical system Al-SiC created at the interface reactive com-
pound Al4C3 leads to a degradation layer. Applying the high silicon content aluminum
alloy, e.g., Al-Si12, decreases these effects. However, the interphases are brittle and contain
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technological cracks after specimen manufacturing [59]. It turned out [61] that adding a
small amount of Mg to the aluminum alloy substantially increases the wettability of the in-
terface and finally, its mechanical properties. Additionally, an extension of the pressureless
infiltration process for up to 7 h of holding time reduces the porosity of the IPC.

So far, the description of the behavior of the IPCs under dynamic loading is very
limited, e.g., [62]. Several papers have been devoted to describing ceramic SiC foam
subjected to the crushing process under impact loading, e.g., [63,64]. Very few contributions
were related to the assessment of the ballistic properties of IPCs, e.g., [44], where the
application of the IPCs led to a reduction in the mechanical impedance mismatch between
ceramic plates and metallic ones in various ballistic protection systems.

The reviews presented in [48,65,66] point out that the manufacturing methods of
IPCs are still developing. Modifications to obtain a lack of processing-induced flaws and
perfect interphases are still required. Furthermore, IPCs with two co-continuous phases are
required for an innovative industry. Experimental knowledge of their mechanical, physical,
and thermal properties is necessary. In addition, one can observe a lack of advanced
numerical models for calculating the equivalent mechanical properties in the literature,
including processing-induced flaws under static and dynamic loadings. All of the above
data can improve the design of the technological process of IPC fabrication and the methods
of their modeling.

This work aims to describe the behavior of the Al-Si12/SiC composite, including
its actual internal structure. The elastic–plastic problem in the peridynamics frame is
given in Section 2. The composite’s structure is obtained by employing X-ray computing
tomography, described in Section 3. The numerical model and the simulation results are
presented in Section 4. The formulated numerical model takes into account the shape of
the ceramic skeleton and the distribution of voids in the matrix. The impact of a steel ball
is studied employing the peridynamics method. For the assessment of porosity influence
on the mechanical behavior, two cases were analyzed: the internal structure without
porosity and the composite containing voids in the matrix material. It has been found that
the porosity of the matrix influences plastic strain development. However, the damage
parameter is strongly affected in the skeleton. Further effects, like structure shape during
the loading process, spallation, and crack development, are demonstrated.

2. Problem Formulation
2.1. Elastic Plastic Model with Finite Strains

The material of the matrix is considered elastic plastic with hardening. The plasticity
model is Huber–Mises–Hencky [67]. The model is formulated in a finite strains frame. The
dynamic equation of equilibrium is of the following form:

ρ
..
u[x, t] = ∇·σI[x, t] + f[x, t]. (1)

In the equation above, ρ is the mass density,
..
u is the acceleration vector, x is the actual

position of the body, f is the loading vector, and σI is the first Piola–Kirchhof stress tensor.
Equation (1) is valid on the domain Ω at point x, Figure 1a.

In peridynamics, the equilibrium equation [68] is presented in the form of states [69].
The state-formulated equation of equilibrium in continuous form is as follows:

ρ
..
u[x, t] =

∫
Ω

{
T[x, t] < x′ − x > −T

[
x′, t

]
< x − x′ >

}
dΩ + f[x, t], (2)
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where T is the state of force, the brackets < > indicate the vector on which the force-state
acts, namely between points x and x’, and x’ and x. Point x’ lies in in the subdomain H,
denoted by the circle of radius h, later called horizon.
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The discrete form of Equation (2) is illustrated in Figure 1b. The summation is per-
formed over the subdomain H considering k points xj. The subdomain H is of the volume
Vj in the 3D case. Then, the summation is performed over n points in the domain Ω. The
equation reads as follows:

ρ
..
u[xi, t] =

k
∑

j=1

{
T[xi, t] < xj − xi > −T

[
xj, t

]
< xi − xj >

}
Vj + f[xi, t],

i = 1 . . . n
(3)

Figure 2 shows the geometrical relations between the undeformed Ω and deformed
body Ω’. The vector ξ represents the position of the point xj with respect to xi. The
displacement state with respect to the positions of points xi and xj is as follows:

η = u
(
xj, t

)
− u(xi, t). (4)Materials 2025, 18, x FOR PEER REVIEW 5 of 27 
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The deformation state takes the following form:

Y(x, t) < ξ >= y
(
xj, t

)
− y(xi, t) = ξ + η. (5)

The gradient definition reads as follows:

F = I + u∇x. (6)
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In finite deformation, the relations between the first Piola–Kirchhof stress tensor σI,
Cauchy stress tensor τ, and rotated Cauchy stress tensor τrot are necessary; namely, they
are as follows:

τrot = RτRT , (7)

σ I = det(F)τrotF−T, (8)

where R is the rotation matrix obtained from gradient decomposition.

F = RV = VR. (9)

The discrete form of the gradient definition, Equation (6), is expressed as follows:

F(xi, t) ≈
[

k

∑
j=1

ω(⌈ξ⌉)(Y < ξ > ⊗ξ)Vj

]
K−1, (10)

where K is the shape tensor:

K(xi, t) ≈
k

∑
j=1

ω(|ξ|)(ξ⊗ ξ)Vj, (11)

and ω is the influence function [70].
The deviatoric strain rate reads as follows:

.
e = d − 1

3
tr(d)I, (12)

where the deformation rate is the following:

d = RTDR, (13)

where D is obtained from the symmetric decomposition of the spatial velocity gradient:

D =
1
2

(
L + LT

)
, (14)

where
L =

.
FFT . (15)

The stress deviator depends on unrotated Cauchy stress tensor τ:

S = τ− 1
3

tr(τ)I. (16)

The total strain rate is decomposed into elastic and plastic parts:

.
e =

.
eel

+
.
epl . (17)

The elastic and plastic parts of the total strain rate are as follows:

.
eel

=

.
S
2µ

, (18)

.
epl

=
.
λQ, (19)

where µ is the shear modulus,
.
λ is the plastic multiplier, and Q is the unit vector normal to

the yield surface.
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The yield criterion is considered as the Huber–Mises–Hencky (HMH) one:

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2σ2

y . (20)

The yield function is written in terms of principal stress, and σy is the yield strength
in uniaxial tension.

2.2. Elastic Model with Damage

The case of the state-based model is an elastic brittle model [71–74]. In this case, a
force in a bond is of the following form:

f = ceζ(x, t, ξ). (21)

In Equation (21), c = 18 k/(πh4) where k is the bulk modulus, h is the horizon, and e is
the elongation. The force f reaches its maximum when e = ecr and drops to 0 when e > ecr.

f =

{
fmax

0
e = ecr

e > ecr
. (22)

This is because the function ζ reads as follows:

ζ =

{
1
0

f or e < ecr

f or e ≥ ecr
. (23)

The ecr depends on fracture energy GcI for mode I, and reads [75] as follows:

ecr =

√
5GcI
9kh

, (24)

where

GcI =

(
1 − ν2)KI

2E
. (25)

In Equation (25), ν is the Poisson’s ratio, KI is the fracture toughness, and E is the
Young’s modulus.

Finally, the definition of the damage variable reads as follows:

d(x, t) = 1 −
∫

Ω ς(x, t, ξ)dΩ∫
Ω dΩ

. (26)

If d = 1, the material is fully damaged, namely, the amount of microcracks causes zero
load carrying capacity. In case d > 0 and d < 1, the material is partially cracked. If d = 0, the
material is sound, and no cracks are there. The integration is performed over Ω (Figure 1).

3. CT Analysis
Industrial X-ray computed tomography (CT) is a 3D non-destructive measurement

technique that captures the outer and inner features of the sample being scanned. Figure 3
shows a CT setup used in the analysis.

The device comprises an X-ray source generating a cone beam on one end and a flat
panel X-ray detector on the other. The sample is placed on a high-precision rotary stage
between the source and detector, which can move farther or closer to the X-ray source.
During the scan, the object is rotated slowly over 360◦, and the detector captures several
thousand perspectives of the sample.
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The 2D images captured by the detectors, known as projections, are then fed into
a Feldkamp–Davis–Kress (FDK) reconstruction algorithm to generate a 3D sample vol-
ume [76]. If the sample is scanned closer to the X-ray source, the resolution increases, but
the field of view decreases. If scanned farther away, the resolution is lower, but a bigger
field of view is achieved. The sample size generally limits the position, as the sample must
be completely encompassed in the cone beam hitting the detector in all projections. The
reconstructed volume is given in Figure 4.
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For the scans presented in this work, the X-ray tube voltage was set to 210 kV and the
tube current to 3 µA. A 1 mm Al X-ray filter dampened the soft X-rays and prevented beam
hardening artifacts. The detector had a pixel size of 128 µm with 3200 × 2100 pixels. The
software processing was performed using VGStudio max 2022.4 [77]. The reconstructed 3D
volume was digitally filtered with a non-local means filter to reduce noise. The cross-section
at the mid-height of the sample is presented in Figure 5a. This filtered volume is then
segmented based on gray value into the two phases of SiC and AlSi2. The cross-section is
shown in Figure 5b. After the segmentation, both phases are used to generate a volumetric
tetrahedral mesh for the sample; Figure 6a. Then, the tetrahedra are converted into the
equivalent volume spheres; Figure 6b. The latter model is suitable for peridynamics.
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4. Results and Discussion
4.1. Numerical Model

The numerical model is prepared for peridynamics analysis. The scheme of the system
is given in Figure 7.

The system comprises a steel sphere, composite cylinder, and steel base. The base
supports the cylinder, which undergoes an impact of the steel object with velocities of
900 m/s. The cylinder is made of an interpenetrated composite. The composite comprises
two phases: silicon carbide (SiC) and an aluminium alloy (AlSi12). In addition, we consider
an existence of voids and initial cracks in the matrix. They happen due to an inaccurate
filling process.

Figure 8a,b shows the skeleton and the cloud of voids in the sample’s matrix, respectively.
Since two structure cases are analyzed, two discretizations of the sample are required.

In the ideal sample, the matrix counts 4,171,594 volumes and the skeleton 541,273. In the
porous sample, the matrix is discretized with 3,570,571 volumes. The skeleton possesses
the same number of volumes as in the ideal sample. Both models have the same base and
impactor discretizations, namely 500,000 and 277,247 volumes, respectively. The number of
volumes arises from applying the tetrahedra discretization of complex shape structures. In
particular, the existence of pores, of which the cloud is shown in Figure 8b, forces such a
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discretization to obtain compatible perfect and imperfect geometries. A system of pores in
the matrix is shown in Figure 9a, and the pores are presented in Figure 9b.
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The skeleton is made of ceramic SiC material [78]. The material properties of the elastic
brittle skeleton are as follows: Young’s modulus is 409.9 GPa, mass density is 3200 kg/m3,
and Poisson’s ratio is 0.16. Fracture toughness is assumed to be 3.8 MPaxm1/2. The ecr is
4.234 × 10−4. The elastic–plastic aluminum alloy (AlSi12) matrix has the following material
properties: Young’s modulus is 67.0 GPa, mass density is 2700 kg/m3, Poisson’s ratio
is 0.35, yield limit is 100.0 MPa, and hardening modulus is 1.25 GPa [50]. Based on the
derived from CT models, the porosity is 7.9%. The porosity value appeared during the
fabrication process of the sample. The base and the impactor are steel with the following
elastic properties: Young’s modulus is 210 GPa, mass density is 7850 kg/m3, and Poisson’s
ratio is 0.3. Aiming to find the influence of porosity, the numerical model undergoes
simplifications, assuming the elastic properties of the impactor and the base only.
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The simulations are performed using the Peridigm program [70,79]. The explicit time
integration technique is applied. The process is followed up to 3 µs with a time step of
1.0 × 10−5 µs. The chosen time step is well below the initial stable time step 8.85 ns. The
solution is obtained in 30,000 steps. The horizon value is taken as 0.0003 m. A general
contact algorithm with a penalty number 1.0 × 1012 has been applied. The program is
built on a Linux computer cluster with Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90 GHz
processors. Each processor has 48 cores and 192 GB memory. The solutions were obtained
using 40 processors. The production runs took about 43,000 s, slightly varying due to the
current loading of the machine.

The processing of the initial mesh was performed using GiD 16 and MSc Patran
2024 programs [80,81]. The postprocessing and visualization was performed using GiD
16 program.

4.2. Damage Analysis of the Skeleton

This section presents a detailed analysis of damage development in the SiC skeleton.
It attempts to evaluate the skeleton’s behavior by comparing a fabricated aluminum alloy
matrix with the porous one, as shown in Figures 8 and 9.

In general, porosity in the matrix does not affect the skeleton very strongly. Figure 10
shows the Huber–Mises–Hencky stress distribution in the skeleton. The stress distribution
in the skeletons of the ideal and porous matrices are very similar. The maximum HMH
stress in the skeletons appears in Points UU and WW, which lie in the same surroundings.
The maximum HMH stress is higher in Point WW than in Point UU by 8.1%.
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Figure 10. Huber–Mises–Hencky stress distribution in the skeleton; time instance 3.0 µs: (a) ideal
matrix; (b) porous matrix.

Figure 11 shows the damage variable field patterns in the skeletons, which are practi-
cally the same. In both cases, the skeletons’ structures are almost damaged. The comparison
of HMH stress at Points UU and WW shown in Figure 12a indicates that the curves fol-
low the path up to 2.0 µs. Then, the difference starts to become visible, growing to the
above-mentioned 8.1% at the end of the process.

Regarding the damage variability at Points UU and WW, it can be noted that the
curves grow along the same path steeply up to 0.25 µs. Then, the damage parameter grows
slower at Point UU (ideal matrix case) than at Point WW up to 1.0 µs. Further, the curves
meet and follow the same path up to 3.0 µs (Figure 12b).

Figure 13 presents the percentage of damaged volume of the skeletons in the ideal and
porous samples. The calculation point is considered “damaged” if the damage parameter
exceeds 0.8. The curves practically fit each other.
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Figure 13. Percentage of damaged volume (d > 80%) of the skeleton in time.

Figure 14 shows the damage evolution in the skeleton at four time instances. Due to
the similarity of the damage fields in the ideal and porous structures, the skeleton of the
ideal matrix has been chosen to present. Four snapshots have been taken.

The damage appears close to the upper surface of the skeleton (Figure 14a) and propa-
gates down towards the lower surface along the branches of the skeleton (Figure 14b,c).
The damage follows the stress wave triggered by the impact. The skeleton is practically
damaged at time 1.14 µs (Figure 14d). Namely, the damage reached the bottom of the
skeleton, and practically, the damage parameter is greater than zero at all points.



Materials 2025, 18, 290 12 of 25

Materials 2025, 18, x FOR PEER REVIEW 12 of 27 
 

 

  
(a) (b) 

Figure 12. Comparison of Huber–Mises–Hencky stress variability and damage parameter at points 

UU and WW: (a) damage parameter; (b) Huber–Mises–Hencky stress. 

Figure 13 presents the percentage of damaged volume of the skeletons in the ideal 

and porous samples. The calculation point is considered “damaged” if the damage pa-

rameter exceeds 0.8. The curves practically fit each other. 

 

Figure 13. Percentage of damaged volume (d > 80%) of the skeleton in time. 

Figure 14 shows the damage evolution in the skeleton at four time instances. Due to 

the similarity of the damage fields in the ideal and porous structures, the skeleton of the 

ideal matrix has been chosen to present. Four snapshots have been taken. 

  

(a) (b) 

Materials 2025, 18, x FOR PEER REVIEW 13 of 27 
 

 

  
(c) (d) 

Figure 14. Damage parameter distribution at time instances: (a) time 0.24 µs; (b) time 0.54 µs; (c) 

time 0.84 µs; (d) time 1.14 µs. 

The damage appears close to the upper surface of the skeleton (Figure 14a) and prop-

agates down towards the lower surface along the branches of the skeleton (Figure 14b,c). 

The damage follows the stress wave triggered by the impact. The skeleton is practically 

damaged at time 1.14 µs (Figure 14d). Namely, the damage reached the bottom of the 

skeleton, and practically, the damage parameter is greater than zero at all points. 

Figure 15 shows the points where the damage parameter is greater than 0.8 to confirm 

the similarity of the damage variable fields in both skeletons. The similarity of the distri-

bution of such points in both skeletons is clearly visible. 

  
(a) (b) 

Figure 15. Points where the damage parameter is greater than 08, time 1.14 µs: (a) ideal matrix; (b) 

porous matrix. 

Figure 16 shows the steel ball’s initial (Figure 16a) and final position at the end of the 

process (Figure 16b). The distribution of the damage parameter is also given there. The 
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Figure 14. Damage parameter distribution at time instances: (a) time 0.24 µs; (b) time 0.54 µs; (c) time
0.84 µs; (d) time 1.14 µs.

Figure 15 shows the points where the damage parameter is greater than 0.8 to con-
firm the similarity of the damage variable fields in both skeletons. The similarity of the
distribution of such points in both skeletons is clearly visible.
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Figure 16 shows the steel ball’s initial (Figure 16a) and final position at the end of the
process (Figure 16b). The distribution of the damage parameter is also given there. The
entire skeleton is damaged, and the damage parameter is close to 1.0.
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Figure 16. Mid-section in the plane xz: (a) initial position of the sphere; (b) position of the sphere,
shape of the skeleton, and damage distribution at time instance 3.0 µs.

4.3. Analysis of the Matrix

In the aluminum alloy matrix analysis, the effect of porosity appeared significant.
The porosity effect is visible in the equivalent plastic strain distribution. The maximum
equivalent plastic strain is concentrated around the sample’s center, where the ball hits the
target. The distribution of the equivalent plastic strain is shown in Figure 17. The fields of
the equivalent plastic strain are shown in the undeformed configuration for brevity. Points
VV and ZZ indicate the places with the highest equivalent plastic strain values. Both points
lie close to each other. The dependences of the equivalent plastic strain in time in the spots
where they are highest are given in Figure 18. The strain is always higher in the porous
sample than in the ideal one. The values are 41.204 and 8.529, respectively, and the ratio
is 4.8.
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VV and ZZ), time instance 3.0 µs: (a) ideal matrix; (b) porous matrix.

Figure 19 shows the samples’ deformed configurations. The displacement range in the
porous case (Figure 19b) is set the same as in the ideal case (Figure 19a). The maximum
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displacement is 0.00414 m in the porous sample. The porous sample is more deformed than
the ideal sample. In addition, the fragmented particles are flying off the structure.
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Figure 19. Deformation of the sample and the displacement field distribution, time instance 3.0 µs:
(a) ideal matrix; (b) porous matrix.

Equivalent plastic strain distribution on deformed samples is presented in Figure 20.
The logarithmic scale is used because of high plastic strain gradients. The scale is established
following the ideal structure’s minimum and maximum values. It can be noted that the
area of the plastic strain of which the decimal logarithm is higher than 0.93087 (8.53) is
much larger on the porous sample than on the ideal one.
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matrix; (b) porous matrix.
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4.4. Analysis of the Cross-Sections
4.4.1. Horizontal Cross-Sections

Analyzing the samples’ internal structure is necessary to assess and compare their
behavior. Following Figure 7b, we consider the horizontal mid-cross-section (A-A) and a
cross-section B-B lying close to the upper struck surface. In addition, a vertical cross-section
in the middle of the sample in the plane x-z is chosen. A detailed view of the horizontal
cross-sections is shown in Figures 21 and 22.
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In Figures 21 and 22, selected groups of points have the same position. Namely, Points
A, B, and C in the skeleton in Figure 21a correspond to Points Ap, Bp, and Cp in the
skeleton, but the sample possesses a porous matrix (Figure 21b). In an analogy, Points G,
H, and L in the skeleton in Figure 22a conform to Points Gp, Hp, and Ip in the skeleton in
Figure 22b. The same key is used for the points in the matrix. In cross-section A, Points D,
E, and F are relevant to Points Dp, Ep, and Fp in Figure 21a,b, respectively. Points in the
matrix in Figure 22a,b, namely, J, K, and L, suit Points Jp, Kp, and Lp.

Figures 23 and 24 show the damage parameter dependency on time in Points A, B,
and C in the ideal sample and in the relevant points Ap, Bp, and Cp in the porous one. The
pair of curves appear to follow practically the same path, which means that the damage
parameter is not affected by the sample’s porosity.
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The equivalent plastic strain evolution is followed in Points D, E, and F and Points Dp,
Ep, and Fp (Figures 25 and 26). At the end of the observed time interval, the equivalent
plastic strain is always more significant in the porous sample than in the ideal one.
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The equivalent plastic strain values in Points Dp, Ep, and Fp are 26%, 38%, and 17%
higher than in relevant points in the ideal sample.

In cross-section B-B, the dependence of the damage parameter on time is similar to
that in cross-section A-A in the sense that the curves run practically along the same paths
(Figure 27a). All curves tend to approach 1.0 within 2.5 µs.
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Figure 27b presents a comparison of equivalent plastic strain evolution in Points J, K,
and L and in Points Jp, Kp, and Lp. The difference in the values at time 3.0 µs is significant.
Namely, it reads 97%, 214%, and 218%.
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Figure 27. Variable dependency in selected points in the cross-section (B-B) in selected points:
(a) damage parameter; (b) equivalent plastic strain.

The distribution of the equivalent plastic strain in the cross-sections A-A and B-B is
presented in Figures 28 and 29. The colors blue to red denote the values between zero
and 3.0. The ranges and scales of colors are set common for both figures. This is done
because the higher values are intensely concentrated. Therefore, the equivalent plastic
strain higher than 3.0 is marked in black. The most intense plastic strain concentration in
cross-section A-A is close to the skeleton in the sample with the ideal matrix (Figure 28a).
In the case of cross-section B-B, the plastic region of high plastic strain is focused on the
center since the cross-section B-B lies close to the impacted surface (Figure 29b). The highest
equivalent plastic strains in the ideal sample in the cross-sections A-A and B-B are 1.644 and
2.14, respectively. In the porous sample, the picture of the equivalent plastic strain differs
from the ideal one. Observing Figures 28b and 29b, one notes more extensive areas of the
equivalent plastic strain higher than 1.2 (yellow to red colors) than in Figures 27a and 28a.
The maximum equivalent plastic strains in the cross-sections A-A and B-B are 6.234 and
9.222, respectively. The values are 3.8 and 4.3 times higher than in the ideal structure. The
equivalent plastic strain is the highest close to the pores (Figure 29b).
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4.4.2. Vertical Cross-Sections

The analysis of vertical cross-sections shown in Figure 30 gives insight into the depth of
the sample. Points V and Vp are chosen in the spots of the skeleton where the HMH stress is
the highest at the end of the process. They have the same positions. Points W and Wp are in
the place where the equivalent plastic strain is the highest in the porous sample. The spot is
close to a void, and Point W has the same position in the sample as the ideal matrix.
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Figure 31a presents the equivalent plastic strain development at Points W and Wp,
which have a high plastic strain concentration. The equivalent plastic strain rapidly grows
starting from 1.5 µs up to 15.0 in the porous sample, while in the ideal sample, it grows
up to 2.0, giving the ratio 7.5. The damage parameter at Points V and Vp grows to 1.0 at
the end of the time interval along practically the same path with minor deviation close to
2.0 µs (Figure 31b).
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Figure 31. Variable comparison in ideal and porous samples at Points U, Wp, and V, Vp: (a) equivalent
plastic strain; (b) damage parameter.

Further, Figure 32 compares the distribution of the equivalent plastic strain in the
vertical cross-section in an undeformed configuration. It is noted that the plastic strain
is concentrated close to the surface of the samples and around the pores in the imperfect
sample. The region where the plastic strain is higher than 3.0 is much more significant in
the porous sample than in the ideal one.
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Figure 32. Equivalent plastic strain distribution in vertical cross-section (matrix only), undeformed
configuration: (a) ideal; (b) porous.

Finally, the deformed configuration of the cross-section is shown in Figure 33. The
shapes of the ideal and porous cross-sections are different. Moreover, fragmentation is
visible in the porous sample. The area where the equivalent plastic strain is higher than 3.0
is more significant in the porous sample than in the ideal one. The high equivalent plastic
strain in the sample with the ideal matrix is concentrated very closely to the surface of the
deformed cross-section. The picture of the porous sample is different. Namely, the high
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equivalent plastic strain distinctly reaches the sample’s interior, which is also compatible
with Figure 32b. The white areas that appear horizontally close to the base in both samples
are more significant in the porous sample. This shows a tendency to spallation.
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4.5. Study Limitations

The study is directed to evaluate porosity’s effect on the composite sample’s behavior
under impact conditions. Therefore, several simplifying assumptions have been imposed
to limit the number of parameters affecting the process. The simplifications concern the
materials and the modeling. Namely, the impactor and the base are considered ideally
elastic. The skeleton is without pores. There is no transition zone between the phases.
The simplifications enhanced the porosity effect, showing the quantitative and qualitative
differences between the ideal and the porous samples.

4.6. Further Directions

The research will aim to fill the gaps pointed out in Section 4.5. Further research will
focus on evaluating imperfections’ influence on the load-carrying capacity of the IPCs. In
particular, the porosity of the skeleton will be considered. Then, a viscous-elastic-plastic
model of the matrix with shear banding will be introduced [82,83], and the interphase
properties will be considered [57,84,85]. The last predicted development step will be
introducing the inelastic properties of the impactor and the base.

5. Conclusions
To our knowledge, only a few authors were interested in three-dimensional computa-

tions of voided media under dynamic loading carried out by a finite element analysis. For
example, the impact velocity creates inside material plastic shock velocity, which depends
on material parameters and the initial porosity (cylindrical voids) [86,87]. The experimental
and numerical models of defective rocks (initially fractured, porous, and with faults) were
investigated in [88–90]. A static analysis of IPC structures based on a variety of periodic
cells was examined in [43,91]. The hypervelocity impact testing of open porosity cast AlSi
cellular structures was investigated in [92]. The ballistic resistance of aluminum foam in
the sandwich panel considering porosity was experimentally and numerically analyzed
in [93]. The ballistic limit velocity strongly depends on the density and thickness of the
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foam core. Contrary to the above analyses, the description of the IPC’s behavior under
impact loading is very limited.

Therefore, the paper’s primary goal is to present the effect of the matrix’s initial
porosity in an interpenetrated composite. The internal structure of the sample is obtained
by employing computational tomography, which can also be used to obtain the distribution
of porosity in the matrix of realistic samples. Then, an image of the samples’ behavior
is obtained by employing numerical simulations. A comparison of the behavior of the
samples with the ideal and porous matrices is presented.

In the brittle skeleton, the damage parameter and Huber–Mises–Hencky stress are
observed. The equivalent plastic strain is the main parameter characterizing the response
of the elastic–plastic matrix. The shape of the sample is also observed.

It is found that the matrix’s porosity does not strongly affect the skeleton’s behavior. The
matrix’s porosity does not influence the damage parameter distribution and its variability in
time in the selected points. This also concerns the Huber–Mises–Hencky stress.

The matrix’s porosity significantly affects its behavior. The maximum equivalent
plastic strain is higher in the porous sample than in the ideal one. The distribution of the
equivalent plastic strain is smoother in the ideal sample than in the porous sample. The
equivalent plastic strain is concentrated close to the pores in the porous sample.

The shape of the ideal and porous samples at the end of the observed time interval
also differs. The displacements of the porous sample are more significant than the ideal
one. The porous sample tends to be fragmented. At the bottom of the sample, the tendency
to spallation is also visible.
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50. Maj, J.; Basista, M.; Węglewski, W.; Bochenek, K.; Strojny-Nędza, A.; Naplocha, K.; Panzner, T.; Tatarková, M.; Fiori, F. Effect of

microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by
squeeze casting. Mater. Sci. Eng. A 2018, 715, 154–162. [CrossRef]

51. Chang, H.; Higginson, R.L.; Binner, J.G.P. Interface study by dual-beam FIB TEM in a pressureless infiltrated Al(Mg)-Al2O3

interpenetrating composite. J. Microsc. 2009, 233, 132–139. [CrossRef]
52. Chang, H.; Higginson, R.; Binner, J. Microstructure and property characterisation of 3-3 Al(Mg)/Al2O3 interpenetrating compos-

ites produced by a pressureless infiltration technique. J. Mater. Sci. 2010, 45, 662–668. [CrossRef]
53. Vijayan, K.; Ramalingam, S.; Sadik, M.R.A.; Prasanth, A.S.; Nampoothiri, J.; Escobedo-Diaz, J.P.; Shankar, K. Fabrication of

Co-Continuous ceramic composite (C4) through gas pressure infiltration technique. Mater. Today Proc. 2021, 46, 1013–1016.
[CrossRef]

54. Gil, R.; Jinnapat, A.; Kennedy, A.R. Pressure-assisted infiltration of molten aluminium into open cell ceramic foams: Experimental
observations and infiltration modelling. Compos. Part A 2012, 43, 880–884. [CrossRef]

55. Li, T.; Chen, Y.; Wang, L. Enhanced fracture toughness in architected interpenetrating phase composites by 3D printing. Compos.
Sci. Technol. 2018, 167, 251–259. [CrossRef]

56. Zhang, Y.; Hsieh, M.-T.; Valdevit, L. Mechanical performance of 3D printed interpenetrating phase composites with spinodal
topologies. Compos. Struct. 2021, 263, 113693. [CrossRef]

57. Tahani, M.; Postek, E.; Sadowski, T. Investigating the Influence of Diffusion on the Cohesive Zone Model of the SiC/Al Composite
Interface. Molecules 2023, 28, 6757. [CrossRef]

58. Fathalian, M.; Postek, E.; Tahani, M.; Sadowski, T. A comprehensive study of Al2O3 mechanical behaviour using density
functional theory and molecular dynamics. Molecules 2024, 29, 1165. [CrossRef]

59. Liu, Q.; Ye, F.; Gao, Y.; Liu, S.; Yang, H.; Zhou, Z. Fabrication of a new SiC/2024Al co-continuous composite with lamellar
microstructure and high mechanical properties. J. Alloys Compd. 2014, 585, 146–153. [CrossRef]

60. Shorowordi, K.M.; Laoui, T.; Haseeb, A.S.M.A.; Celis, J.P.; Froyen, L. Microstructure and interface characteristics of B4C, SiC and
Al2O3 reinforced Al matrix composites: A comparative study. J. Mater. Process. Technol. 2003, 142, 738–743. [CrossRef]

https://doi.org/10.1016/S0927-0256(98)00045-7
https://doi.org/10.1016/j.commatsci.2004.10.005
https://doi.org/10.1163/092764410X554049
https://doi.org/10.1080/21663831.2016.1208300
https://doi.org/10.1016/j.mechmat.2016.11.007
https://doi.org/10.1016/j.compstruct.2019.01.084
https://doi.org/10.1016/j.compstruct.2020.112054
https://doi.org/10.1016/j.ijimpeng.2020.103670
https://doi.org/10.1063/5.0084540
https://doi.org/10.1016/j.compositesa.2018.10.026
https://doi.org/10.3390/ma14133523
https://www.ncbi.nlm.nih.gov/pubmed/34202679
https://doi.org/10.1007/s11837-006-0235-1
https://doi.org/10.1016/j.msea.2009.09.063
https://doi.org/10.1016/j.matpr.2021.01.923
https://doi.org/10.1016/j.ceramint.2021.09.232
https://doi.org/10.1016/j.msea.2017.12.091
https://doi.org/10.1111/j.1365-2818.2008.03103.x
https://doi.org/10.1007/s10853-009-3983-9
https://doi.org/10.1016/j.matpr.2021.01.212
https://doi.org/10.1016/j.compositesa.2012.02.001
https://doi.org/10.1016/j.compscitech.2018.08.009
https://doi.org/10.1016/j.compstruct.2021.113693
https://doi.org/10.3390/molecules28196757
https://doi.org/10.3390/molecules29051165
https://doi.org/10.1016/j.jallcom.2013.09.140
https://doi.org/10.1016/S0924-0136(03)00815-X


Materials 2025, 18, 290 24 of 25

61. Jiang, G.; Ding, L.; Liu, Y.; Xiong, W.; Ni, Y.; Yao, X.; Xu, J.; Li, W. Study on the SiC-Al Co-continuous Phase. J. Mater. Process.
Technol. 2013, 745–746, 577–581. [CrossRef]

62. Chang, H.; Binner, J.; Higgins, R. Preparation and characterisation of ceramic-faced metal–ceramic interpenetrating composites
for impact applications. J. Mater. Sci. 2011, 46, 5237–5244. [CrossRef]
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