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1. Introduction

Multiwalled carbon nanotube (MWCNT)[1,2] is a system consist-
ing of several interlinked single-walled carbon nanotubes
(SWCNTs)[3] with a diameter reaching more than 100 nm.
Each shell of a MWCNT is a SWCNT, which is itself a rolled
sheet of graphene.[4] For this system, the theoretical description
is well known and established[5,6]: one-third of them will be
metallic, potentially susceptible to minigap opening due to
curvature[7,8] and spin–orbit effects,[9,10] while the two-thirds
are wide-gap semiconductors.[11,12] Although SWCNT is harder
to produce, its theoretical description is more straightforward.
On the other hand, MWCNT is easier to synthesize and
produce[13] on the industrial scale, but quite difficult to model
theoretically.

Nanotubes are one of the best examples
of a 1D system where the motion of carriers
is confined to one direction only; thus, they
cannot avoid each other in their motion.
They form a collective state known as
Tomonaga–Luttinger liquid (TLL),[14,15] an
intriguing state of matter that is nowadays
still a subject of intense experimental
research.[16–18] Instead of an effective mass
of the Fermi liquid’s quasiparticle, in TLL,
the central quantity of interest is compres-
sibilities of Bosonic modes, the TLL param-
eters Kν, and substantial effort is being
made to find them.[19–21] For MWCNTs,
a set of 1D systems, the situation is more
unclear and obviously the theoretical
description is going to be more complex
but still in terms of a set of Kνs.

To be specific, our aim here is to derive an
effective theory for MWNT not at zero
temperature, but at experimentally (and tech-

nically) relevant finite temperatures.[22,23] At the lowest temperatures,
one expects Coulomb blockade effects and weak-localization many-
paths interference to dominate the physics.[24] However, at higher
temperatures when T> EC, the electrons can start to jump freely
between the large quantum dots and, based on the quasi-1D cross-
over model, we know that only the strongest paths will allow for
coherent states. This is the regime where collective Bosonic modes
(the TLL modes) can dominate the MWNT properties, a postulate
supported by recent experimental findings.[25,26]

When there are several coaxial tubes, as in MWCNT, their the-
oretical description should be a combination of SWCNT micro-
scopic theories.[27] If they do not interact, it would be a simple
linear combination: once hybridization is allowed, it becomes
a tensor product of the constituents. Extracting properties of
MWCNT become an extremely difficult task already on the
single-particle level. From the SWCNT, we know that there
are two valleys: K and K 0. Therefore, the effective description will
consider the two ladders, which, in the case of Luttinger liquid,
will correspond to the fluctuations of not only spin and charge
but also valley degree of freedom.[23,28]

One needs to construct an effective theory for these lowest
band carriers. This is our first task, in Section 2. In Section 3,
we review the TLL parameters in SWCNTs. The main results
are introduced in Section 4: in Section 4.1, we calculate the values
of the parameter for the holon mode. Therefore, in Section 4.2,
we analyze the three neutral modes and in Section 4.3, we
discuss how these parameters can be measured experimentally.
The article concludes with Section 5, where we discuss the
validity of our approximation.
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Tomonaga–Luttinger liquid (TLL) theory is a canonical formalism used to
describe 1D metals, where the low-energy physics is determined by collective
Bosonic excitations. Herein, a theoretical model to compute the parameters
of Tomonaga–Luttinger liquid (TLL) in multiwalled nanotubes (MWNTs) is
presented. MWNTs introduce additional complexity to the usual Fermionic
chains due to interactions and hybridization between their multiple coaxial shells.
A model in which conducting paths along the length of the MWNTs are randomly
distributed among the shells is considered. Since the valley degree of freedom
remains a good quantum number, the TLL description in addition to spin and
charge contains also valley degree of freedom and hence four-mode description
applies. The values of all four TLL parameters are obtained for this model. A
surprising outcome is that the compressibility of the holon mode becomes a
universal quantity, while the parameters of neutral modes will depend on the
details of intershell coupling. Finally, experiments where predictions can be
tested are proposed.
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2. The Model

The theoretical description of a SWCNT on a single-particle level
is well known and is derived from periodic boundary conditions
applied to a graphene ribbon. When a graphene ribbon is rolled
into a SWCNT, periodic boundary conditions are applied along
the circumference of the tube.[29] The construction of a SWCNT
is determined by its chiral vector~Ch, which is defined in terms of
the graphene lattice vectors ~a1 and ~a2.

~Ch ¼ n~a1 þm~a2 (1)

where n and m are the chiral indices. The chiral vector describes
how the graphene sheet is rolled to form the nanotube. If (n–m)
mod 3= 0, the nanotube is metallic; otherwise, the nanotube is
semiconducting.[6] SWCNTs have two valleys, K and K 0. These
valleys correspond to the two points in the Brillouin zone of gra-
phene, which are preserved when the graphene sheet is rolled
into a nanotube. The nanotube is a metal or a semiconductor
depending on whether any of the quantized bands crosses the
K, K 0 points. Further improvements of the single-particle theory
included spin–orbit,[9] curvature,[7,8] and strain[30,31] effects.

We are now ready to add electron–electron interactions to our
model, that is, to move to the TLL description in terms of collec-
tive modes. The interaction term, the two-body interactions
between electrons in a nanotube, reads in general

HCoul ¼
X
k, q, μ

c†μ kð Þcμ kð Þ� �
Vμμ0

Coul k, k
0ð Þ c†μ0 kþ qð Þcμ0 kþ qð Þ
h i

(2)

which we have expressed here in the Fermionic second-
quantization language as that makes the physical content of
the interaction transparent: one sees that there is a summation
over all μ valley, spin, and sublattice states and the interaction
may depend on these. In 1D, we can apply the Bosonization
method, whereby all Fermionic operators are expressed in terms
of Bosonic fields.

The collective mode Hamiltonian is

H1D ¼
XN
ν

Z
dx
2π

vνKνð Þ πΠνð Þ2 þ vν
Kν

� �
∂xϕνð Þ2

� �
(3)

where ∇ϕv(x) gives the local density of fluctuations, while vν and
Kν are respectively the velocity and the TLL parameter (≈com-
pressibility) of a given Bosonic mode ν that depends on
electron–electron interactions with small momentum exchange.

The SWNT’s description in terms of TLL modes will have
important implications for intershell tunneling. It is known that
the hybridization between 1D systems is renormalized by inter-
actions.[32]

teff⊥ ¼ VFπ=að Þ t⊥
VFπ=a

� � 1
2�ς

(4)

where a is an effective lattice constant (along the tube), and ς is a
single-particle Greens’ function exponent.

ς ¼
XNν

ν

Kν þ K�1
νð Þ

2Nν
(5)

where the summation goes over all Bosonic modes and in our
case of Kpþ≪ 1, this will be a strong renormalization of t⊥ down-
ward. The bare value of intershell hopping, for a convenient rel-
ative orientation of respective chiral angles, may reach values[33]

up to t⊥ ¼ 0.31 eV, but we see that this value is reduced by both
strong interactions and large unit cells a, especially for the shell
with largest chiral vector. In general, teff⊥ will be smaller than
most single-particle gaps Δsp in semiconducting SWNTs, espe-
cially in the narrowest tubes in the core of MWNT. This is
because Δsp ∝ 1=R; thus, these tubes will conduct only when
metallic (or when strongly distorted). On the other hand, the out-
ermost shells will be the most affected by interaction with the
environment.

We can now move to the theoretical description of MWNT.
Obviously, the theoretical description ought to be based on
SWNT. With a nonhybridized, noninteracting shells, we will
obtain a band structure that is a simple sum of constituting
shells, but this situation is not physically relevant since some cou-
pling must be present.

In the presence of weak intershell interactions, one can con-
sider SWNT spectra produced for strained and twisted
shells.[30,31] Band structure remains qualitatively the same, except
for the minigaps that may open due to emergent backscatter-
ing terms. Hybridization is a more complicated problem.
Qualitatively, it is easy to imagine that there is a system of
single-particle bands that cross each other due to their relative
shifts, varying chiralities, andminigaps. In the presence of hybrid-
ization, one expects bands of anticrossing to appear (see Figure 2).
The more shells, the higher the density of such anticrossing
points. Here, we shall assume that such anticrossing is in fact
a normal state of affairs in the system, that is, the lowest energy
band is in fact a sequence of close consecutive anticrossings. This
picture immediately explains the reduced Fermi velocity fre-
quently observed in MWCNT, for example, in another study.[34]

SWNT bands are orthogonal and they never cross. Thus, the
above given reciprocal space picture of consecutive anticrossings
translates into a random sequence of intershell hoppings in real
space. One can define the following Hamiltonian.

H⊥ ¼
Z

dx
X
k

X
n, n0

t⊥ x, n, n0; vn xð Þ, vn0 xð Þð Þc†μ x, n, kð Þcμ x, n0, kð Þ

(6)

where we assume that the momentum k and other quantum
numbers μ are conserved during the hopping event. It should
be noted that in our model, we admit the dependence vn xð Þ, that
is, the velocity of carriers depends on the position along the tube.
In MWNT, there are several factors that can induce such depen-
dence: 1) the local strain/twist due to intertube interactions; 2) a
local atomic defect that changes tubes chirality and thus the rela-
tive position of carbon atoms of neighboring tubes; and 3) inho-
mogeneity of electron–electron interaction due to the varying
environment. The last contribution was already identified in
ref. [35] as the one responsible for an interaction-induced dimer-
ization in SWCNT. In MWNT, this effect is expected to be much
stronger and, with several available periodicities, it will lead to
Aubry–Andree-type complicated renormalization of ν(x). From
a more general point of view, one expects that the intertube
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interactions for two shells of different chiralities will be governed
by an emergent Moire pattern and hence a feature that varies
along the MWNT length.

Crucially, the hopping probability t⊥ x, n, n0; vn, vn0ð Þ is not only
a function that decays very quickly with jn� n0j (which is physi-
cally reasonable, since the carrier should be able to jump only to
the nearest-neighboring shell), but also it is a conditional quan-
tity. The hopping is accepted only when vn xð Þ > vn0 xð Þ, that is,
when the mobility of a carrier in the new shell is larger than
in the past shell. In this way, the model is quite restrictive in
the sense that it is not so easy to reach the conditions favorable
for hopping. In a way, the above-described procedure resembles
closely the Monte Carlo algorithm where the propagation of the
system is accepted only when it is advantageous energetically. It
is known that Monte Carlo works well for large sample systems
with normal, random distribution of scattering events; thus, by
inverting argument we deduce that our system is applicable for a
large set of long SWNT shells with normal random distributions
of intershell hopping paths among them. The randomness is in
jumps between shells, while the motion along the MWNT is
coherent.

To understand this regime in more detail, we can look at the
microscopic origin of the t⊥. To this end, we introduce an elec-
tronic wave function in a given n�th shellΨn ~rð Þ. We assume that
the process of perpendicular hopping spans over a finite time τ,
and that during this time the waves in the two involved shells are
copropagating, which allows us to define the t⊥ n, n0ð Þ as the fol-
lowing integral.

t⊥ n, n0ð Þ ¼
Z

xþv xð Þτ=2

x�v xð Þτ=2
dxd~r⊥Ψ�

n x,~r⊥ð ÞΨn0 x,~r⊥ð Þ (7)

~r⊥ is the coordinate along the circumference of the shell and
the dependence Ψ ~r⊥ð Þ will be discussed in detail in the later sec-
tion. Here, we focus on the dependence along the nanotubes’
axis Ψ xð Þ which, based on observations of Friedel oscillations
in similar systems,[36,37] are expected to be a plane wave. We
aim to compute their overlap along the tube. We take two plane
waves and integrate over a finite overlap distance r jj (and over a
possible phase shift between the two waves). The result is
presented in Figure 1.

In the obtained results, we observe that as time of copropaga-
tion τ ¼ r jj=VF xð Þ increases, the peak in the vicinity of Δkjj
increases and narrows. This narrowing implies that momentum
is effectively conserved during each hybridization event.
For larger Δkjj, we observe decaying oscillatory behavior.
Furthermore, anticipating the many-body approach, in the
TLL formalism the misfit momenta Δkjj will be redistributed
among Boosonic modes; thus, including many-body effects will
lead to a convolution with Lorentzians with a width ∝ Δkjj, thus
erasing these higher-order peaks.

We now wish to incorporate electron–electron interactions in
this description. Since we have weak and extended perturbation,
the valley degree of freedom remains a good quantum number
also in MWNT. Thus, the TLL description is expected to be just as
before, however with unknown values of TLL Kν parameters. The
aim of the article is thus as follows: based on the past estimates of
TLL parameters in SWNT, to derive the value of TLL parameters

for MWNT for our model with a random normal distribution of
conducting paths among the shells along the length of the tube.

3. Values of TLL Parameters in SWCNT

There is rich literature discussing the problem of how to theo-
retically obtain the values of the TLL parameters in SWCNT.
The most comprehensive study was performed in ref. [38] and
we review these results here.

The density–density long-range Coulomb-type interactions
between electrons in a SWNT can be expressed as

HCoul ¼
X
k, q, μ

c†μ kð Þcμ kð Þ� �
VCoul k, k0ð Þ c†μ kþ qð Þcμ kþ qð Þ� �

¼
Z

dxdx0∇ϕρþ xð ÞVCoul x � x0ð Þ∇ϕρþ x0ð Þ
(8)

which we have now expressed both in the Fermionic second-
quantization language and in the Bosonic field language. In
SWNT, the interaction amplitude Vcoul(k, k 0) does not depend
on ν which is in fact a manifestation of a perfect C∞ cylindrical
symmetry of wave functions in SWNT. In the Bosonic language,
it is clear that only the ρþ mode is affected, which is due to the
fact that this mode contains the electric charge.

Ref. [38] provides an extensive derivation of Coulomb interac-
tions in a nanotube. It has been found that upon integrating out
(evenly) all degrees of freedom along the SWCNT circumference,
the following formula for interaction is obtained.

V0 xð Þ ¼ 2e2

κπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z þ x2 þ 4R2

p K
2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2z þ x2 þ 4R2
p

 !
(9)

where K() is an elliptic integral of the first kind, R is the radius of
given SWNT, and following the ref. [38], az ≃ aB ≈ a (with the
Bohr radius aB ¼ ≈ 2=me2 ¼ 0.529 Å) denotes the average dis-
tance between a pz electron and the nucleus. In reciprocal space
of the long-wavelength limit, its form is

Figure 1. The normalized perpendicular (intershell) hybridization t⊥ as a
function of a momentum misfit Δkjj of two plane waves and their interac-
tion span r jj (components along the tubes axis for both quantities) given in
units of lattice constant ajj and its inverse, respectively.
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VCoul qð Þ ¼ 2e2

κ
jln qRð Þj þ c0ð Þ (10)

where κ is electric permittivity of the nanotube and
c0 ¼ γ þ π=2ln2 ¼ 0.51 is a constant, with γ as Euler’s constant.
This led the authors to the desired formula for Kρþ

Kρþ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

π
⋅ 2.7 ⋅ ln R=Lð Þ

r
(11)

where the numerical parameter 2e2
vρþκ

¼ 2.7 was found by the

authors through comparison with experimental data for
SWCNT. They suggested value Kρþ ≈ 0.18 for SWCNT.
Clearly, Kρþ≪ 1, so it is in a strongly correlated regime and it
does depend on the geometrical parameters of the tube. One
expects quite substantial variation as a function of these
parameters which is indeed observed in SWCNT.

As for the other Bosonic modes, in ref. [38], the authors
showed that

Kν xið Þ ≈ 1�
X
yi

νf xi, yið Þ (12)

where ν=�1 for ν= σþ, ρ�, respectively. xi are some micro-
scopic parameters that determine the geometry of the electron
wave function. f is a function, proportional to a deviation from
a perfect circumferential symmetry (C∞ symmetry w.r.t. nano-
tube axis). Therein, the authors considered only deviations
due to atomic positions (xi, yi), assuming that otherwise the wave
function is perfectly spread over the circumference of the tube.
Here, we shall abandon this assumption (see Section 4.2).

4. Values of TLL Parameters in MWNT

4.1. The Holon Mode

However, in MWCNT, the situation is different. As mentioned in
Section 2, the MWCNT was introduced as a multishell system,
with electrons randomly jumping from one SWNT to another
within the MWCNT, always choosing the most conducting shell
in a given region (Equation (6)). This model is in agreement with
the previous experimental[39–42] and theoretical[43–47] studies.
Thus, R is a random variable, and in fact, the propagation length
L is random as well, and the variance can be as large as R itself,
δR/R∝ 1. One expects a normal, Gaussian distribution of these
radii. Therefore, in Equtaion (10), one has to take a logarithm of a
Gaussian distribution G Rð Þ with variance δR. The solution
to this problem is known from the theory of normal distribu-
tions. In the q! 0 limit, the case contributing to Kρþ, we have
ln G Rð Þð Þ ! ln 2πð Þ ¼ 1.84, which, upon substitution to formula
for Kρþ, gives

Kρþ ! 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

π
⋅ 2.7 ⋅

vswntρþ
vmwnt
ρþ

⋅ 1.84

s
¼ 0.225 (13)

where, like in Equation (11), we substituted 2e2
vswntρþ κ ¼ 2.7. The ratio

vswntρþ
vmwnt
ρþ

¼ 1.48 can be estimated from the experimentally

measured[34] ratio of thermal conductivities Kswnt
th =Kmwnt

th ¼
6600=3000 if one remembers that Kth ∝ v2ρþ. This is a quasiuni-
versal value due to large variations of shell radius, in the sense
that it can be modified only if the velocity of carriers vmwnt

ρþ
changes, for instance, at higher temperature due to easier acti-
vation of intershell hopping the vmwnt

ρþ Tð Þ will increase bringing
the value even closer to Kρþ= 0.25. The value Kρþ= 0.25 is a crit-
ical value for quarter-filling 1DMott insulator (see below). On the
other hand, moving towards lower temperatures, one then
expects that gradually vmwnt

ρþ T ! 0ð Þ ! 0, thus rapidly decreasing
value Kρþ(T ). Thus, it enhances the propensity of the system
towards any-order charge localization. Further examples of such
localization are, such as pinning or Wigner crystalization. All
these are potential mechanisms behind the intrinsic Coulomb
blockade (ICB).

A further correction to VCoul due to variance reads

δVCoul qð Þ ¼ �ln δRð Þ (14)

and is momentum independent. The next order correction ≈q2 is
expected to be smaller (when δR is substantial) and will also be
counteracted by Fock exchange corrections proportional to gra-
dients of density (so-called generalized gradient approximma-
tion, corrections), thus also ∝q2, but with a minus sign.

The momentum-independent component, Equation (14), will
introduce both small and large momentum contributions, the
former one modifies the TLL parameter by ΔKρþ. To make
further progress, we note that the large momentum exchange
component of electron–electron interactions (which has been
neglected so far) leads to nonlinear terms ≈cosϕv, the most
relevant of which are quarter-filling (two-site unit cell) umklapp
terms.

Humkl ¼
Z

dxg3 xð Þ cos 2ϕρþ (15)

where g3 is the amplitude of umklapp (LL! RR) scattering.
These terms are not captured by the TLL, but can be incorporated
in low energies by gradually averaging higher energies. This is
the so-called renormalization group procedure, a method the
canonical result of which, the Kosterlitz–Thouless flow, is well
known.[48–51]

Without going into details of the method, which is beyond the
scope of this work dedicated more to applications of 1D materi-
als, we note that the K�

ρ ¼ 0.25 is a special point of this flow—the
system flows toward it in a straight line. To be precise, whenever
the deviation of Kρþ is from K�

ρ, the ΔKρþ and the value of g3 are
close to each other, then we are in the vicinity of the straight line
of the RG flow, thus indeed flowing toward K�

ρþ ¼ 0.25. It should
be emphasized here that in our problem the high energy is the
bandwidth of carbon pz orbitals, which in SWCNT is above 3 eV,
while in MWCNT, it is reduced, for instance, by half (it can be
more, each situation can be captured by our theory). At the same
time, the energies/temperatures at which MWNT devices work
are around 30meV which is smaller by a factor of 50. Thus, what
one measures is the value of Kρþ during the RG flow. From the
analysis of logarithmic corrections to correlation functions in
TLL, ref. [52], it is known that the measured value will be indeed
Kρþ= 0.25. There are, of course, also Coulomb interactions
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between the nanotubes. The “other-than-the-metallic” shells of
MWCNTs will provide screening, which makes the problem
immensely complicated. However, two definite statements can
be made: 1) Following the argument given by Schulz in
ref. [53], again only the ϕρþ Bosonic mode will be affected,
and the entire effect can be captured by minor modification
of Kρþ; and 2) Due to variations of the metal shell positions (that
is, how deep inside MWCNT the metallic shell is), the screening
is also random, which brings us back to the central limit theorem
argument given above.

Overall, a very nontrivial result has been obtained here:
although the Kρþ parameter is the most affected by interactions
and naively has the strongest dependence on geometry, due to
the generic disorder present in MWCNT, it is possible to simplify
the problem of computing it. Contrary to the case of SWCNT, in
MWCT in the random hopping regime, the measured value of
this parameter turns out to be universal.

4.2. The Three Neutral Modes

This distinction between SWCNT and MWCNT prevails also in
values of parameters of other TLL modes. Any deviation from a
perfectly symmetric situation—even summation over all μ in
Equation (8)—will modify the other three TLL parameters.
While SWCNT was generically very symmetric, in MWCNT,
the interactions between shells can break the central axis rota-
tional symmetry. The neutral Kν modes, ν= σ�, ρ�, can be mod-
ified by external fields, which are defined as fields external to the
metallic shell. They can be either generated outside MWCNT in
the laboratory or induced due to the presence of other shells. For
instance, to modify the spin channel compressibility Kσþ, a field
that couples with total spin density—namely, the local magnetic
field—is required. To modify the relative charge mode TLL
parameter (i.e., the compressibility of this mode) Kρ�, a force
acting differently on two sites of bipartite lattice is needed, such
as a local strain or local dipolar moment. Recent numerical exper-
imental findings[30,54] show that such forces can indeed be
induced in a double-walled CNT.

The density–density long-range Coulomb-type interactions
between electrons in a MWNT need to be expressed in a more
general form.

HCoul ¼
X
k, q, μ

c†μ kð Þcμ kð Þ� �
Vνν0

Coul k, k
0ð Þ c†μ kþ qð Þcμ kþ qð Þ� �

¼
Z

dxdx0
"
ϕρþ xð ÞVνν0

Coul x � x0ð Þ∇ϕρþ x0ð Þ

þ
X

ν¼r�, σþ
∇ϕν xð ÞδVCoul x � x0ð Þ∇ϕν x0ð Þ

# (16)

where Vνν0
Coul x � x0ð Þ is an interaction averaged over all spin-valley

degrees of freedom, while δVCoul x � x0ð Þ ¼ δVνν0
Coul x � x0ð Þ �

Vνν0
Coul x � x0ð Þ is a deviation from this value. In the following,

we shall take

Vνν0
Coul x � x0ð Þ ¼ VC∞ x � x0ð Þ (17)

That is, the perfectly symmetric case gives a good approximation
for the average. The expression for the Coulomb interactions in
the perfectly symmetric case is the one that was derived in
ref. [38] for SWCNT; it has been given before, in Equation (9).

In order to predict how the neutral TLL parameters depend on
the characteristic features of the material, a deeper understand-
ing of the interactions is required. As already mentioned in the
previous section in ref. [38], the authors showed that values of the
neutral parameters depend on the circumferential symmetry
breaking; however, now it will be due to the shape of the
MWNT wave function Ψ ~rð Þ.

Kν Ψ ~rð Þ½ � ≈ 1�
X
~r

νf Ψ ϰið Þ½ � (18)

where ν=�1 for ν= σþ, ρ�, respectively. ϰi are some micro-
scopic parameters that effectively determine the geometry of
electron wave function Ψ. f is a dimensionless functional propor-
tional to a deviation from a perfect circumferential symmetry, the
C∞. It is a ratio.

f ϰið Þ ¼ V real q ! 0; ϰið Þ=VC∞ q ! 0ð Þ � 1 (19)

We aim to evaluate it now. To this end, we need to carefully
examine how the interaction amplitudes are computed when
one moves to the second quantization description,[55] the first
line in Equation (16). The scattering amplitude (i.e., a quantity
that enters into the second quantization Hamiltonian) of the
Hartree-type interaction is given by an integral over the
elementary cell.

Vμμ0
Coul ~r,~r

0ð Þ ¼
Z

d~rΨ�
μ ~rð ÞΨ�

μ0 ~r
0ð ÞVCoul ~r �~r 0ð ÞΨμ ~rð ÞΨμ0 ~r 0ð Þ (20)

where the bare Coulomb potential in a nanotube of radius R and
thickness dz reads

VCoul ~r �~r 0ð Þ ¼ e2=κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x0ð Þ2 þ 4R2sin2 y � y0ð Þ=2Rð Þ þ d2z

p (21)

where dz is the thickness of the toroid (here we shall consider a
physical nanotube as a geometrical, stereometric solid figure, a
toroid).

Ψ�
μ ~rð Þ,Ψ�

μ0 ~r
0ð Þ are the wave functions of interacting electrons;

they are Bloch waves along the x-direction. In a perpendicular
plane, the density, ρμ ~rð Þ ¼ Ψ�

μ ~rð ÞΨ�
μ ~rð Þ, can be approximated

as a section of a toroid of a varying thickness (the charge density
in MWNT is, in general, spread over a section of a distorted
toroid). This can be inferred based on Figure 2, where we see
an electron hopping from one shell to another with a charge dis-
tribution localized only in a section of the circumference.
Furthermore, there will be interference phenomena of waves
of different chiral vectors. We then add an extra parameter ζ that
accounts for inhomogeneity along the circumference of the
toroid, where ζ ¼ 0 corresponds to a symmetric homogeneous
distribution (or constant radius), like in a SWCNT. Hence, we
shall generalize the expression given by Egger and Gogolin in
ref. [38] for the symmetric SWCNT. We integrate over perpen-
dicular coordinates to get an interaction amplitude along the
b-axis V(x).
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V real xð Þ ¼
Z

2πR

ϕR

Z
2πR

ϕR

dy
2πR

dy0

2πR
VCoul ~r �~r 0ð Þ

1� ζ sin y � y0=2Rð Þ (22)

where the denominator accounts for different weights intro-
duced by the uneven distributions ρμ ~rð Þ. The case ζ ¼ 0 corre-
sponds to scattering independent on μ, μ 0 (only the uniform
component of all circumferential harmonics is present), while
ζ 6¼ 0 corresponds to an appearance of higher circumferential
harmonics, as ζ 6¼ 0 introduces an extra term proportional to
sin y � y0ð Þ=2Rð Þ. In the language of ref. [38], the authors pro-
posed the asymmetry due to different atomic positions xi of
two different graphene sublattices; here, such difference between
sublattices appears due to the presence of such higher harmonic
components (note: if the distribution is uniform, ζ ¼ 0, it
remains the same on both sublattices). The integral,
Equation (22), can be performed in a closed form also in this
more general case.

V real x � x0ð Þ ¼ U
ϕ2 þ 1ð ÞΠ ϕ; ζ

				 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þ4R2þ x�x0ð Þ2

p
� �

2
� �

ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4R2 þ x � x0ð Þ2

p
 � (23)

where U is a prefactor that quantifies the strength of local
electron–electron interactions, and Π ϕ; ζj1=x̃ð Þ is the incomplete
elliptic integral of the third kind, x̃ ¼ x � x0ð Þ=R, the relative dis-
tance in R units. The integral is parameterized by U (chosen
appropriately depending on screening in a given MWNT). The
parameters ϕ (angle of the sector of the toroid) and ζ (distortion
of the toroid), which are in fact ϰi in Equation (19), can be deter-
mined by material-specific considerations, namely the following:
1) Parameter ζ captures the situation shown in Figure 3, where
the density of electrons along the circumference, related to
Ψ y, zð Þ, is not constant. This may be either a static effect induced
by Moire-type potential from other shells or a dynamic effect
induced by exciting a phonon (or both). In this second case, there
is a possibility to tune the amplitude of ζ by adjusting the ampli-
tude of IR applied to the emitter. In general, it can be modified by
a local stress field; and 2) Parameter ϕ is related to the fact that
electrons can move only within a part of the nanotube’s

circumference. One can easily imagine that such a phenomenon
will be induced by impurities evaporated on the surface of
MWCNT. Then, by adjusting the concentration of impurity
atoms, experimentalists and engineers should be able to decrease
the average ϕ, thereby decreasing the sector of the toroid avail-
able for mobile electrons ∝ Ψ y, zð Þ. Importantly, this effect
depends on the chirality of the nanotubes.

When the metallic nanotube (shell of MWCNT) is armchair
(achiral), its wave function Ψ y, zð Þ forms a simple standing wave
with a node on the circumference, meaning that the equation
Ψ y0, z0ð Þ ¼ 0 can be fulfilled. The position of the node can be
adjusted to the position of the impurity, so for small concentra-
tions of impurities, there will be no effect.

When the metallic nanotube (shell) is zigzag (achiral), it
features a uniform wave on the circumference Ψ y, zð Þ but allows
for the degenerate standing wave solution along the nanotube
that could admit Ψ x � a=2ð Þ ¼ 0. The atomistic disorder may
thus be avoided (by the same argument as above), but the
Fermionic velocity νF can be reduced.

For the chiral tubes, the wave function Ψ x, y, zð Þ is a plane
wave running in a screw motion along the nanotube. The impu-
rity cannot be generally avoided (although for armchair-like tubes
with two K, K 0 points located at finite �q0, there is some adjust-
ment possible, so the influence of atomistic disorder can be
weaker). In general, we expect that the smaller the chiral angle,
the closer the plane wave will move to the nanotube axis. Thus,

Figure 3. Cross-sectional schematic representation of a carbon nanotube
with deformation characterized by parameters ζ andϕ.

Figure 2. Multiwalled carbon nanotube, illustrating electron hopping process between shells: Left, in real space with intershell hopping (blue arrows), and
resulting wave functionΨð~rÞ spread only over a finite section (purple parallelogram) on the shell’s circumference; dark brown arrows indicate the Ri radius
of given shell. Right, in reciprocal space, where we observe a sequence of anticrossings between bands from different shells. Please note that both on
horizontal and vertical axes we use arbitrary units (in the former case, it is, in fact, a discrete state index).
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the “shadow” of impurity will extend along a longer section of the
nanotube.

Of course, as the electron jumps from one least conducting
shell to another, then the ϕwill vary, but only up to a limited extent
because the electron–electron interactions forbid squeezing the
wave function Ψ ~rð Þ (and thus the density ρ ~rð Þ ¼ Ψ� ~rð ÞΨ ~rð Þ) too
much. The same applies for the ζ parameter.

Finally, we note that by definition, (Equation (19)), the f ζ,ϕð Þ,
any variation of interaction induced by δζ or δϕ is proportional to
∂VCoul=VCoul ≡ ∂ Ln VCoul½ �½ �; thus, they are logarithmically
suppressed. It thus suffices to take the average values of both
parameters in the above formula, Equation (22).

Equation (10), which was used to estimate Kρþ, is in fact a
long-wavelength approximation for a Fourier transform of the
elliptic integral of the first kind K(x), the result of reasoning
in ref. [38] done for the symmetric case ζ ¼ 0. Thus, parameter
f in Equation (18) is in fact a ratio of the elliptic function of the
third and of the first kind, namely

f ϕ, ζð Þ ¼ 1� Kρþ
� Π ϕ; ζj1=x̃ð Þ

K x̃ð Þ

					
x̃¼a0

� 1 (24)

where a0 is the size of the unit cell along the nanotube (in the
conducting shell). In order to fix the value of prefactor U in
Equation (23), we multiply the expression by 1�Kρþ to ensure
that all Kν parameters deviate proportionally from the noninter-
acting value Kν= 1. The results are presented in Figure 4 and 5.

In Figure 4, we observe that Kρ� decreases, thus moving away
from the noninteracting value K= 1, as ϕ angle deviates from π:
in other words, when the wave function spreads only over a finite
sector on shell’s circumference, the repulsive interactions inside
the squeezed wave-packet manifest as a decreasing value of Kρ�.
The influence of ζ on Kρ� is the opposite: adding a finite value of
ζ, thus modulating the charge distribution on the circumference,
increases the value of Kρ� pushing it above K= 1. The modula-
tion of charge can be thought of as an emergence of a correlation
hole, which is now allowed thanks to the lower symmetry of
MWNT. Thus, the emergence of the exchange interaction can
indeed raise the value of charge Kρ� (and at the same time favor
an in-plane spin configuration, thus breaking spin’s SU(2) invari-
ance and pushing the value of Kσþ parameter below one). The last

parameter, a0, is essentially the length of the unit cell along the
length (the axis of the nanotube), and its role is shown in
Figure 5. This parameter cannot be freely modified, it actually
depends on the structure (chirality) of a given shell. We see that
this has influence mostly on the intermediate value of the angu-
lar sector ϕ, namely, for shorter lengths of the unit cell, the
squeezing effect is thenmore pronounced. Upon increasing tem-
perature, one expects that the electronic wavefunction will
become less localized; namely, ζ Tð Þ will decrease, and at the
same time, ϕ(T ) will increase. By tracing the constant value lines
in Figure 4, we deduce that they will change only a little, with the
exception of larger temperatures, when ϕ(T ) will already reach its
maximum value, while ζ Tð Þ will keep decreasing. Then the
decreasing value Kρ� will be observed.

4.3. Measuring Kρ�

The main result of this article is the prediction of the values
of neutral parameters Kν as a function of disorder or strain
field. It would be desirable to be able to test this prediction

Figure 4. The “neutral”, chargeless TLL parameter Kρ� from Equation (24), plotted as a function of the angular span ϕ (in radians) of the CNT electronic

wave function and its inhomogeneity parameter ζ. In panel a), we use a0 ¼ R 1� 1ffiffi
5

p

 �

þ 1

 �

and in b), a0 ¼ R 3 1� 1ffiffi
5

p

 �

þ 1

 �

where R is an average

radius of the MWCNT.

Figure 5. The “neutral”, chargeless TLL parameter Kρ� from
Equation (24), plotted as a function of the angular span ϕ (in radians)
of the CNT electronic wave function and its inhomogeneity parameter

ζ. We show them here together to visualize the role of a0 ¼
R j 1� 1ffiffi

5
p


 �
þ 1


 �
variations; orange: j= 1, blue: j= 2, green j= 3.
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experimentally. Of course, in the 1D regime, the combinations of
Kν will influence all measurable quantities, such as the tempera-
ture dependence of transport coefficients. The challenge is to
find the quantity that will depend only on Kρ�, that is, will be
able to directly manifest the variation of this parameter.

In this regard, an interesting quantity is the frequency of opti-
cal phonons measured in Raman experiments. It is known that
the frequency of the phonon in the Jelliummodel depends on the
electronic susceptibility of the environment χρ q ≈ 0ð Þ, namely

ωph q ! 0ð Þ ¼ Ωph
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ερ q ! 0ð Þ

q
¼ Ωph

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χρ� q ! 0ð Þ

q
(25)

where we used the fact that in the random phase approximation
(which, following Dzyaloshinskii–Larkin theorem, is exact in
TLL), the environment’s dielectric function ε ¼ 1þ χTLL (we
drop subscript TLL in the following and assume that close to
the singularity χ q ! 0ð Þ ≫ 1) and we took a uniform response
because we probe with photons.

Within the TLL formalism, the uniform part of the density
is expressed as a gradient of a respective Bosonic field
ρν x, t; q ! 0ð Þ ¼ ∇ϕν x, tð Þ. Then the susceptibility, the correla-
tion function of densities reads

χρ� x, t; q ≈ 0ð Þ ¼ ∇ϕρ� x, tð Þ∇ϕρ� 0, 0ð Þ� �¼ Kρ�
2π2

x2 � y2

x2 þ y2ð Þ2
					
y≡ivρ�t

(26)

We thus observe that the prefactor that enters in front of
susceptibility is simply equal to Kν. Using well-known conformal
transformation, we can move to finite temperature case, β= 1/T.

χρ� x, t;T , q ≈ 0ð Þ

¼ Kρ�
2π2

Sinh π
β x þ yp

 �
 �

Sinh π
β x � y�p


 �
 �
Sinh π

β x þ yp

 �
 �

Sinh π
β x þ y�p


 �
 �h i
2

							
y≡ipvρ�t

(27)

where p=�1, to observe that this statement remains valid also in
the physically relevant situation of nonzero temperature. The last
expression can be Fourier transformed to obtain a finite value
χρ� ωph, q ≈ 0;T
� 

in the form of a combination of hyperbolic
Beta functions.

Irrespective of details, the following statement can be made: if
upon adding an external force f (e.g., strain ∝ ζ) only the Kν

parameters are changing, the frequency shift reads

Δωi
ph q ≈ 0ð Þ ¼ Ωph

0

χ2ρ� ωph, q ≈ 0
�  χ0ρ� ωph, q ≈ 0

� 
ΔKρ� fð Þ (28)

where the χ is the susceptibility without the K prefactor and thus
quantity independent of f. We thus see that by measuring
Δωph fð Þ, one can have direct access to the ΔKρ� ζð Þ, that is,
the quantity computed in the current work.

Thus, the measurement of Raman phonon frequency shift
offers an opportunity to see how the compressibility Kρ� changes
as a function of a strain f ≡ ε or by the presence of atomistic
impurities. In most cases, particularly for most phonon

branches, the response will be that of the total charge mode,
the holon Kρþ which does not depend on ζ in our model.
There could be however some further lattice effects that perturb
single-particle dispersion; thus, these branches can serve as our
baseline. However, there is one optical Raman-active mode in
which the atoms of opposite sublattices (A and B in an underly-
ing bipartite graphene lattice) will move in the opposite direction.
For this special mode, through Δωodd

ph , one will measure the

desired response of the Kρ�. An example of such a Raman exper-
iment with distinct frequencies’ shifts of different modes mea-
sured as a function of MWCNT perturbation is presented in
ref. [56,57].

A subtle point in the above reasoning is that while the uniform
χ does not depend on Kν, it will depend on velocities vν. Following
the discussion below Equation (13) we know that these velocities
will depend on temperature. Furthermore, all the modifications,
renormalizations of velocities, are due to single-particle backscat-
tering effects, that affect evenly all modes. To cancel out these
T-dependencies of velocities one can apply the abovedescribed
baseline procedure of measuring the relative shift of different
modes: the quantity

A f,Tð Þ ¼ Δωodd
ph

.
Δωeven

ph (29)

should allow to exclude this effect and focus on Kν only. Thus,
the A fð Þ dependence gives a direct experimental access to the
Kρ� ζð Þ, while the A Tð Þ dependence will appear mostly due to
Kρþ Tð Þ (following discussion below Equation (13)). In particular,
because Kρþ T ! 0ð Þ ! 0, the Kρ� ζð Þ will be more pronounced
at lower temperatures.

5. Discussion and Conclusion

It is worth noting that the postulated dependence of neutral TLL
parameter values Kρ�,σþ on the external field is stronger when
the carriers keep changing the shells during their motion. In
a chiral tube, when a carrier stays for a very long distance on
one shell, its wave function will unavoidably spread over the
entire circumference. Upon changing the shell at a given point,
a new cycle of spreading begins but never finishes.

Previously, the most advanced effective model of MWNT was
the one in ref. [24], where the authors put forward the idea of ICB
and solved the postulated model numerically. Our solution,
which starts from more itinerant carriers, does not rely on
numerics: instead, it provides analytical expressions that can
be easily benchmarked against external perturbations. It should
be emphasized that our model is not in contradiction with ICB. It
can happen that at the lowest temperatures, the Coulomb charg-
ing energy or minigaps open in the spectrum. In the higher tem-
peratures, the itinerant picture postulated here is applicable.

The assumption that we used in this study is that there exists
only one, albeit fluctuating path of the highest conductivity in
MWNT. The multishell system does not enter the 2D regime.
This can be justified by the fact that the percolation thresholds
for bcc slabs with N= 3,4 layers are pc= 0.35 and pc= 0.32,
respectively.[58] On average, one-third of shells are metallic, so
by assuming that we have hopping only between the nearest
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shells, we see that the system is right at the edge of conductivity.
At the lowest temperatures, the 2D crossover is suppressed by
the ICB.

Themain outcome of this work is that we have shown what the
implications of the proposed model are, where the description of
MWNT is given as a series of coaxial SWNT, with the most con-
ducting shell dominating the parallel transport. We derived an
effective theory of TLL parameters in such a case. Finally, we
showed the behavior of a measurable quantity, the chemical
potential drop, that could serve as a confirmation of our model.
From a broader perspective, the advantage of our model is that it
allows us to reconcile two experimental facts: 1) the TLL proper-
ties observed in MWCNT, being in agreement with two leg-
ladder modeling of SWNT; and 2) the short scattering length
which can be interpreted as a short distance between consecutive
jumps in between the shells. This last feature also explains the
nonzero effects observed for the magnetic field applied along the
nanotube axis, which is expected to be exactly zero for a single-
shell system. Moreover, the presence of a single-conducting path
explains why the Thouless scale is not observed in transport
experiments.
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