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A B S T R A C T

This study introduces a spatially distributed diffusion model based on a Navier–Stokes formulation with a
pseudo-velocity field, providing a framework for modelling cellular growth dynamics within diseased tissues.
Five coupled partial differential equations describe diseased cell development within a two-dimensional spatial
domain over time. A pseudo-velocity field mimics biomarker concentration increasing over time and space,
influencing tumour growth dynamics. An 𝑆-shape coupling functions for individual equations were assumed
to establish the mathematical relationship between parameters and variables. The parameters were identified
in a minimisation procedure to validate the model’s efficacy based on limited clinical data. While the model
draws inspiration from applications in oncology and could potentially be adopted for treatment planning and
evaluation, it can also be helpful in applications from developmental biology to tissue engineering in clinical
and experimental settings.
1. Introduction

Models of cancer development often focus on describing temporal
dynamics at a single spatial point where certain variables, like the
tumour size, are specified. They typically employ ordinary differential
equations (ODEs) or second-order parabolic partial differential equa-
tions (PDEs). The primary objective of ODE-based models involves
selecting the initial conditions and time-varying coefficients. These
models require a small number of parameters, which are relatively
straightforward to adjust and often provide explicit time-based so-
lutions. While these models illustrate cell growth through saturating
functions, they fail to account for the spatial distribution of cells
and processes such as blood vessel evolution, spatial heterogeneity
and others observed in clinical settings. The proposed model extends
these approaches by incorporating spatial distribution and dynamic
interactions specific to cancer progression.

Under certain assumptions, living tissues, including tumours, can
be modelled using fluid dynamics (Chaplain, 1996). Consequently,
some models use Navier–Stokes equations or their generalisations,
such as Darcy’s law, Stokes’ law, or Brinkman’s law, to govern cell
development dynamics (Lowengrub et al., 2010; Donatelli and Trivisa,
2015; Cai et al., 2016; Lefebvre et al., 2016). Cristini et al. used a
coupled system of PDEs to simulate tumour growth and angiogenesis,
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treating the tumour as an incompressible fluid with velocity governed
by Darcy’s law, accounting for fluid flow and pressure-driven cell
movement (Cristini et al., 2003). Hubbard and Byrne incorporated
mass and momentum conservation for tumour cells, blood vessels,
and extracellular material, including diffusible nutrients (Hubbard and
Byrne, 2013). Koomullil et al. employed Navier–Stokes equations and
diffusion models for transport processes (Koomullil et al., 2021), while
Bresch et al. combined three-dimensional Navier–Stokes equations with
spatial diffusion models to illustrate the cell cycle progression condi-
tioned by the tumour microenvironment (Bresch et al., 2010). Further
refinements incorporated bidirectional control processes, where tumour
cells and blood vessels mutually influence each other (Hahnfeldt et al.,
1999). Watanabe et al. (2016) proposed a simpler mathematical model
with three first-order ODEs, capturing growth saturation.

Building on these concepts, the model presented in this paper in-
corporates spatial and temporal dependencies related to tissue growth,
vascular development, and Ki-67 marker levels. It employs a Navier–
Stokes formulation with a pseudo-velocity field, using momentum
equations for protein propagation and additional equations for diffu-
sive processes. Coupling functions connect these processes, and their
parameters and shape coefficients are determined through minimi-
sation against available data. Such parameter identification enables
https://doi.org/10.1016/j.jbiomech.2025.112581
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Fig. 1. Full set of relations among system variables –(a) and the reduced variant –(b).
simulating disease progression and improving therapy selection. By
aligning the model with broader clinical observations, the authors aim
to improve its ability to predict treatment outcomes for diverse clinical
cases.

2. Methods

2.1. Mathematical model

Analysis of cell development reveals growth characteristics similar
to physical processes where mass diffuses from higher to lower poten-
tial regions. Therefore, fluid flow, propagation, and diffusion models
can effectively map relationships in disease-affected tissues. Conse-
quently, in our paper, tumour growth is modelled as a diffusion process
coupled with a modified Navier–Stokes equation for an incompressible
fluid and a pseudo-velocity field.

A two-dimensional model is introduced. The model considers four
variables emulating interactions influencing the cell growth dynamics
and an apparent velocity field vector, namely:

1. 𝑉𝑇 (𝑥, 𝑦, 𝑡) — tumour concentration representing the percentage
of diseased cells in a unit volume of tissue at time 𝑡,

2. 𝑉𝐾 (𝑥, 𝑦, 𝑡) — vascularised tissue concentration, representing the
percentage of tissue volume occupied by blood vessels,

3. 𝑝(𝑥, 𝑦, 𝑡) — protein Ki-67 concentration, serving as a marker for
tumour development,

4. 𝐯(𝑥, 𝑦, 𝑡) = {𝑣𝑥, 𝑣𝑦}T — apparent velocity field vector for protein
propagation.

Although the model could be extended into three dimensions, this
would significantly increase the computational effort. The relationships
among variables influencing cell growth dynamics suggest mutual in-
teractions, represented by arrows in Fig. 1a. These can be described
using coupling functions with specific shape parameters like 𝜅 , 𝑐 , 𝑧, 𝛽,
described later.

Variables in the model can be linked implicitly, through coeffi-
cient functions in the derivatives, or explicitly by shifting terms to
the right-hand side. Mixed couplings are also possible. In practice,
these methods produce similar results, although starting with explicit
couplings simplifies early development and testing. By focusing on
the Ki-67 protein concentration (𝑝), the complex system (Fig. 1a) was
reduced to a simpler form with fewer interconnections (Fig. 1b), easing
computational effort during minimisation.

A growing tumour increases the number and size of vessels formed
through vasculogenesis and angiogenesis (𝑉𝑇 → 𝑉𝐾 ), allowing blood
vessels to penetrate from primary locations into areas of high tumour
cell concentration. The fraction of actively dividing cancer cells, indi-
cated by the presence of the Ki-67 protein, correlates with enhanced
infiltration into surrounding tissues. Proliferation depends on vascular-
isation, as blood vessels supply nutrients and oxygen while removing
waste (𝑉 ↔ 𝑝, 𝑉 ↔ 𝑝). Tumour expansion, driven by proliferating
𝑇 𝑘

2 
and infiltrating cells, spreads as a diffuse front (𝑣𝑥, 𝑣𝑦T ↔ 𝑝) around the
tumour core and vessel formation zones.

The dynamics of cell development can be thus coupled as a set of
the following differential equations:
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(1)

The first two equations ((1a), (1b)) govern the diffusion of prolif-
erating cells and vascular tissue, with 𝛼𝑇 and 𝛼𝐾 as their respective
diffusion coefficients. The following three equations ((1c), (1d), (1e))
are modified Navier–Stokes equations. The momentum equations ((1c),
(1d)) describe the evolution of the velocity components 𝑣𝑥 and 𝑣𝑦, with
𝜇 as the apparent viscosity influencing flow propagation and 𝜌 as the
apparent inertia opposing the spread of Ki-67-producing cells. The con-
tinuity Eq. (1e) enforces incompressibility, ensuring that the variables
are coupled and cannot increase independently in both directions.

A square region 𝛺 of 40 mm edge was considered, with boundary
conditions equal to 0 for all variables at the edge 𝜕 𝛺
∀𝑡≥0(𝑉𝑇 , 𝑉𝐾 , 𝑣𝑥, 𝑣𝑦, 𝑝) = 0 on 𝜕 𝛺 .

The initial conditions were as follows

∀(𝑥,𝑦)∈𝛺 ,𝑡=0(𝑉𝑇 , 𝑉𝐾 , 𝑣𝑥, 𝑣𝑦, 𝑝) = 0 .

Functions 𝑓 introduce interdependence among unknowns, linking
each equation’s solution to the others. Each 𝑓 can be expressed as a sum
of 𝑆-type functions which capture initial slow growth, rapid increase,
and eventual saturation, described by

𝑓 (𝜒 , 𝜅 , 𝑐 , 𝑧, 𝛽) = 𝜅
(

𝑒−
1
𝑐 exp(−𝛽 𝑐 𝜒∕𝑧) − 𝑒−1∕𝑐

)

(1 − 𝑒−1∕𝑐 )−1 , (2)

where 𝜒 is the primary variable, 𝜅 scales the saturation, 𝑐 sets steep-
ness and compression, 𝑧 determines the input range for near-maximal
values, and 𝛽 influences the rate of change within the exponential
function. Examples of these function shapes are provided in the Sup-
plementary Material.

In Fig. 1a, each arrow indicating coupling via the 𝑆-function could
have its own parameters 𝜅, 𝛽, 𝑐, and 𝑧, requiring to minimise at least 48
coupling parameters. The reduced model presented in Fig. 1b requires a
maximum of 20 coupling function parameters and separate coefficients
for the Navier–Stokes equation. To further balance the computational
feasibility, it was assumed that the 𝑆-function shape for all couplings
remains the same (i.e. 𝛽, 𝑐 and 𝑧 are the same), differing only in scaling
factor value 𝜅.
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Fig. 2. Malignant tumour image and corresponding trapezoidal tumour shape defined by radii 𝑟1 and 𝑟2.
2.2. Solution

The system of equations was solved numerically using the finite
element method on a mesh of 3200 triangular elements. Due to non-
linear dependencies, a linear approximation of the variables was em-
ployed. Although a second-order Runge–Kutta method was used for
time integration, an Euler method would yield similar accuracy.

Fig. 2 shows an ultrasound image of a malignant tumour in a
47-year-old female patient, obtained from the Radiology Department
at Maria Sklodowska-Curie National Research Institute of Oncology,
Warsaw, Poland. Written consent was provided, and the single-centre
study adhered to the Declaration of Helsinki and was approved by the
MSCNRIO Ethics Committee.

An indistinct tumour boundary was assumed, transitioning from a
smaller radius 𝑟1 (fully occupied by malignant cells) to a larger radius
𝑟2 (marking the beginning of healthy tissue). As 𝑟1, 𝑟2, and trapezoid
heights change over time, the reference function forms a trapezoidal
shape (Fig. 2) representing tumour cell saturation. According to Mao
et al. (2019), Weedon-Fekjaer et al. (2008), tumour volume doubles in
about 280 days, while its linear dimension doubles in approximately
440 days. A series of trapezoidal profiles was thus created to illustrate
the tumour’s development over time.

The model comprises five unknowns and multiple parameters, ini-
tially treated as unknowns during error minimisation to align with
clinical data. Once identified, these parameters remain fixed in the
governing equations. Parameter selection and functional minimisation
involve iteratively modifying randomly chosen variables within a range
of zero to one (see Appendix for details). Some variables remain
unchanged, while others adopt values from the current best solution,
allowing exploration of neighbourhoods around it. Adjusting the num-
ber of altered variables shifts the approach between a Monte Carlo-like
search and a method resembling gradient-based optimisation.

The system defined by Eqs. (1a)–(1d) requires four parameters: 𝛼𝑇 ,
𝛼𝐾 , 𝜌, and 𝜇. The reduced interaction model (Fig. 1b) introduces eight
more: 𝑐, 𝑧, 𝛽, and 𝜅1 to 𝜅5. A threshold value 𝑇𝑣 for the relation 𝑝 → 𝑉𝑇
was also introduced. In total, thirteen parameters must be identified:

• 1–4: 𝛼𝑇 , 𝛼𝐾 , 𝜌 and 𝜇, being parameters of Eqs. (1a)–(1d),
• 5–9: being scaling factors 𝜅 of the coupling functions 𝑓 , in par-

ticular 𝜅1 for influencing 𝑉𝑇 → 𝑉𝐾 , 𝜅2 for 𝑉𝑇 → 𝑝, 𝜅3 for 𝑝 → 𝑉𝐾 ,
𝜅4 for 𝑉𝐾 → 𝑝, and 𝜅5 for 𝑝 → 𝑉𝑇 ,

• 10–12: 𝑐, 𝑧 and 𝛽, being shape coefficients of the 𝑆-functions
(Eq. (2)), assumed identical for all shape functions,
3 
• 13: 𝑇𝑣 being a threshold for the relation 𝑝 → 𝑉𝑇 , which sets the
maximum value for the concentration of cancer cells in the tissue;
this value is based on clinical data, specific for the type of tumour
and the degree of cell calcification.

Solving the initial boundary value problem with a grid of 1681
nodes and 3362 unknowns for a single dataset takes about eight min-
utes on a single thread of an Xeon W-2145 3.7 GHz processor. Given
this lengthy process, optimisation with many decision variables is
very time-consuming. Therefore, it is logical to separate variables with
minor impacts on the objective function from those with significant
impacts.

The objective functional 𝐼 , defined as the ‖ ⋅ ‖2 norm, represents
the difference between the assumed tumour profile 𝑉 *

𝑇 given at 𝑁
grid points (𝑥𝑖, 𝑦𝑖) located in the observed region, with 𝑖 indexing the
grid points, over four successive stages of evolution at time 𝑡𝑘, and the
profile obtained through simulation with fixed decision variables. In
our case, points located along the diameter of the tumour were assumed
for observation:

𝐼 =

√

√

√

√

4
∑

𝑘=1

𝑁
∑

𝑖=1

[

𝑉 *
𝑇 (𝑥𝑖, 𝑦𝑖, 𝑡𝑘) − 𝑉𝑇 (𝑥𝑖, 𝑦𝑖, 𝑡𝑘)

]2
. (3)

The error metric (3) can be extended to include additional model vari-
ables by adding terms to the sums and assigning appropriate weights
when clinical data are available.

3. Results

Due to the non-convex nature of the functional, multiple local op-
tima may occur, producing similar objective values at different points
in the feasible solution space. The top-left plot in Fig. 3 shows bar-
plotted error values for suboptimal cases, while exact error values
appear in the Supplementary Material Table.

Although the top four solutions differ by less than 6% in error value,
their parameter sets vary considerably. Thus, these results should be
viewed as illustrative, reflecting the specific literature data. The inverse
problem solutions are suboptimal and may represent widely differing
variable sets. Future improvements require gathering more clinical data
to improve the accuracy and predictive capabilities of the simulations,
ultimately assisting in personalised treatment planning and outcome as-
sessment. Nevertheless, including additional medical and model-related
parameters increases computational costs and complicates alignment
with clinical data. To address these challenges, several improvements
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can be recommended. First, replacing the traditional time-stepping
with a space–time finite element formulation using simplex-shaped
bases reduces computational costs proportionally to the number of
unknowns. Second, leveraging GPUs (Dyniewicz et al., 2023) enables
processing each time step as a sequence of matrix–vector operations,
maintaining efficiency as the number of unknowns grows. Finally,
introducing hybrid random-gradient methods for error minimisation
further decreases the computational burden when fitting the model to
clinical data.

Fig. 3 presents optimised model parameters as bar plots. The bars
on the left represent the most accurate solutions, which are more
reliable for analysis. Parameters with bars of similar height indicate
high sensitivity of solution, as small changes in their values signifi-
cantly affect the system’s behaviour, requiring precise determination.
In contrast, parameters with varied bar heights influence the solution
less, allowing similar results with differing values. These can be initially
estimated with lower accuracy since further refinement offers limited
improvement.

For example, the wide variability of variable 4 suggests minimal
impact on the final solution, allowing similar results over a broad
range of its values. In contrast, the consistent patterns of variables 5
and 8, even among suboptimal solutions, highlight their critical influ-
ence and prevent arbitrary selection of their values. Suboptimal cases
with lower fitting errors represent more accurate solutions, warranting
closer examination during analysis.

Thus, variables 1, 3, 5, and 7–11 strongly influence the solution,
while variables 2, 4, 6, 12, and 13 have minimal impact on the
objective function. In particular, variables 4, 6, and 13 can vary widely,
even reaching permissible extremes, without significantly altering the
objective function.

Fig. 4 shows the tumour’s simulated spatial progression, beginning
with a single central lesion. A second lesion was introduced, eventu-
ally fusing with the first, forming a transitional zone. As saturation
increases and then declines along a trapezoidal pattern (Fig. 2), the
model reflects multifocal breast cancer dynamics, observed in 6%–
60% of cases (Masannat et al., 2019). When tumours exceed 5 cm,
separate foci often merge into a single mass. This modelling approach
can simulate disease progression and predict tumour regression rates
under neoadjuvant therapies, where fragmentation into multiple foci
often indicates a positive treatment response.

Fig. 5 demonstrates close agreement between simulated trapezoidal
shapes and those derived from clinical and literature data. Fig. 6
presents the apparent diffusion rate of dividing cells |𝐯|, showing zero
velocity where tumour regions converge due to similar concentrations,
and thus no net flow. Incorporating tissue necrosis into the model is
possible, but additional clinical data is required.

Fig. 7 shows the spatial distribution of Ki-67 protein production,
which remains limited to initial tumour sites, spreading slowly. This
indicates that early intervention can be more effective, as the protein
source region remains localised even when the tumour has grown
substantially.

The model’s feasibility was evaluated using two scenarios. First,
reference data from Lundgren (1977), providing initial and observed
tumour sizes and doubling times, were used to validate one selected
case (Fig. 8, Case 1). A second scenario introduced a slower initial
growth phase followed by a rapid increase (Fig. 8, Case 2) to test the
model’s ability to capture altered dynamics.

Fig. 9 compares four successive cross-sectional profiles from the
reference case with simulated results, showing close alignment for both
Case 1 (Fig. 9a) and Case 2 (Fig. 9b).

Fig. 10 presents smoothed temporal distributions of cancer cell
concentrations, indicating that although Case 2’s growth pattern dif-
fers, both scenarios ultimately converge to the same distribution after
20 months. This confirms the model’s capability to represent various
growth trajectories.
4 
Fig. 3. Error values for sub-optimal solutions (top-left) and corresponding normalised
values of variables 1–13.

4. Conclusions

This study introduced a novel spatially distributed diffusion model
for simulating temporal cellular growth, implemented using a custom
finite element-based program combined with minimisation techniques.
A notable strength of the model is its low sensitivity to specific param-
eters, allowing these to be fixed as constants and thereby simplifying
the computations. This reduction effectively constrains the solution
space to those consistent with clinical data, enabling the acceptance of
sub-optimal solutions as final outcomes within the model’s framework.

The model successfully identifies significant factors influencing
treatment effectiveness, enhancing its potential to predict patient con-
ditions at various disease stages. Future enhancements will extend
the model to include treatment and post-treatment phases, integrating
patient-specific parameters and therapy characteristics.

Despite its promising capabilities, the current study is limited by
a small sample size. Addressing this limitation will involve collecting
a larger and more diverse set of clinical data and refining the pa-
rameter selection process. Ongoing research will focus on optimising
the number and types of parameters to improve the model’s accuracy
and reliability, strengthening its utility in clinical decision-making and
personalised treatment planning.
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Fig. 4. Successive stages of tumour concentration 𝑉𝑇 with metastasis evolution at 18, 24, 30, 36, 42, and 48 months.

Fig. 5. Comparison of tumour profile shapes from simulation and reference clinical data.

Fig. 6. Successive velocity stages |𝐯| distribution after 18, 24, 30, 36, 42, and 48 months.
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Fig. 7. Successive stages of protein concentration 𝑝 at 18, 24, 30, 36, 42, and 48 months.
Fig. 8. Two cases of tumour evolution, based on literature (Case 1) and an arbitrary
curve (Case 2).

Fig. 9. Comparison of tumour profile growth dynamics for Case 1 –(a) and Case 2
–(b).
6 
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Fig. 10. Temporal distribution of tumour intensity in cross-section for Case 1 –(a) and Case 2 –(b).
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