Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Andrzej Pochanke

Politechnika Warszawska (PL)

Ostatnie publikacje
1.  Konowrocki R., Szolc T., Pochanke A., Pręgowska A., An influence of the stepping motor control and friction models on precise positioning of the complex mechanical system, MECHANICAL SYSTEMS AND SIGNAL PROCESSING, ISSN: 0888-3270, DOI: 10.1016/j.ymssp.2015.09.030, Vol.70-71, pp.397-413, 2016

Streszczenie:
This paper aims to investigate, both experimentally and theoretically, the electromechanical dynamic interaction between a driving stepping motor and a driven laboratory belt-transporter system. A test-rig imitates the operation of a robotic device in the form of a working tool-carrier under translational motion. The object under consideration is equipped with measurement systems, which enable the registration of electrical and mechanical quantities. Analytical considerations are performed by means of a circuit model of the electric motor and a discrete, non-linear model of the mechanical system. Various scenarios of the working tool-carrier motion and positioning by the belt-transporter are measured and simulated; in all cases the electric current control of the driving motor has been applied. The main goal of this study is to investigate the influence of the stepping motor control parameters along with various mechanical friction models on the precise positioning of a laboratory robotic device.

Słowa kluczowe:
Belt transporter system, Precise positioning, Stepping motor, Current control, Experimental verification

Afiliacje autorów:
Konowrocki R. - IPPT PAN
Szolc T. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Pręgowska A. - IPPT PAN
45p.
2.  Szolc T., Pochanke A., Dynamic investigations of electromechanical coupling effects in the mechanism driven by the stepping motor, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, Vol.50, No.2, pp.653-673, 2012

Streszczenie:
In the paper, an analysis of transient and steady-state electro-mechanical vibrations of a precise drive system driven by a stepping motor is performed. These theoretical investigations are based on a hybrid structural model of the mechanical system as well as on the classical circuit model of the stepping motor. The main purpose of these studies is to indicate essential differences between the torsional dynamic responses obtained for the considered object regarded respectively as electromechanically coupled and uncoupled. From the computational results, it follows that these differences are qualitatively and quantitatively essential from the viewpoint of possibly precise and reliable operation of the drive systems. Here, torsional vibrations of the drive system significantly influence the electro-mechanical coupling effects, which emphasizes the ir importance in dynamic analyses

Słowa kluczowe:
electro-mechanical vibrations, drive system, stepping motor,hybrid model

Afiliacje autorów:
Szolc T. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
15p.
3.  Pochanke A., Szolc T., Oddziaływanie elektromechaniczne w systemie napędowym z silnikiem skokowym, PRZEGLĄD ELEKTROTECHNICZNY, ISSN: 0033-2097, Vol.87, No.11, pp.64-67, 2011

Streszczenie:
W pracy przedstawiono model matematyczny do badania dynamicznego oddziaływania między częściami elektromechanicznymi w systemie napędowym z hybrydowym silnikiem skokowym. W przypadku takiego systemu musi być zapewniony precyzyjny ruch obrotowy, dlatego już w procesie projektowania trzeba przewidzieć i uwzględnić efekt sprzężenia elektromechanicznego, a można to uczynić jedynie z wykorzystaniem dostatecznie dokładnych modeli matematycznych układu mechanicznego i silnika napędowego. Z przeprowadzonych obliczeń symulacyjnych wynika, że wpływ oddziaływania elektromechanicznego na właściwości systemu napędowego z silnikiem skokowym może być znaczne.

Słowa kluczowe:
układ napędowy, silnik skokowy, oddziaływanie elektromechaniczne, modele matematyczne

Afiliacje autorów:
Pochanke A. - Politechnika Warszawska (PL)
Szolc T. - IPPT PAN
15p.
4.  Szolc T., Pochanke A., Transient and steady-state coupled elektro-mechanical vibration analysis of the micro-drive system, VIBRATIONS IN PHYSICAL SYSTEMS, ISSN: 0860-6897, Vol.24, pp.411-416, 2010

Streszczenie:
In the paper there is performed an analysis of transient and steady-state electro-mechanical vibration s of the laboratory micro-drive system driven by the stepping motor. The main purpose of these studies is to indicate significant differences between the dynamic responses obtained for the considered object regarded respectively as electro-mechanically coupled and uncoupled. These theoretical investigations are based on a hybrid structural model of the mechanical system as well as on the classical circuit model of the stepping motor. From the computational results it follows that these differences are qualitatively and quantitatively essential from the viewpoint of possibly precise and reliable operation of the micro-drive systems.

Słowa kluczowe:
Transient coupled elektromechanical, vibration analysis, micro-drive system

Afiliacje autorów:
Szolc T. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
6p.

Lista rozdziałów w ostatnich monografiach
1. 
Pręgowska A., Szolc T., Pochanke A., Konowrocki R., Recent Advances in Automation, Robotics and Measuring Techniques, rozdział: Modeling and dynamic analysis of the precise electromechanical systems driven by the stepping motors, Springer International Publishing, Series: Advances in Intelligent Systems and Computing, 267, Part I, pp.205-215, 2014

Prace konferencyjne
1.  Szolc T., Pochanke A., Konowrocki R., Pisarski D., Suppression and control of torsional vibrations of the turbo-generator shaft-lines using rotary magneto-rheological dampers, VIRM, 12th International Conference on Vibrations in Rotating Machinery: Proceedings of the 12th Virtual Conference on Vibrations in Rotating Machinery (VIRM), 2020-01-14/01-15, London (GB), DOI: 10.1201/9781003132639, pp.201-211, 2020

Streszczenie:
Torsional vibrations of steam turbo-generator rotor-shaft-lines coupled with bending vibrations of exhaust blades still constitute an important operational problem for this type of rotor-machines. Therefore, this work proposes a relatively simple approach for efficient suppression and control of transient and steady-state turbo-generator shaft torsional vibrations excited by short circuits in a generator or power-lines, faulty synchronization, negative sequence currents and by sub-synchronous resonances in the turbo-generator-electric network system. This target has been achieved by means of semi-actively controlled rotary dampers with the magneto-rheological fluid. Regular operation of such devices installed in a given turbo-generator rotor-shaft line enables suppression of dangerous torsional oscillations.

Słowa kluczowe:
control of torsional vibrations, the turbo-generator, rotary magneto-rheological dampers, Bi-directional active torsional vibration damper

Afiliacje autorów:
Szolc T. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Konowrocki R. - IPPT PAN
Pisarski D. - IPPT PAN
20p.
2.  Szolc T., Konowrocki R., Pochanke A., On dynamic interaction between mechanical systems and selected electric motors, DYNKON 2019, 16th Symposium of Structural Dynamics, 2019-05-22/05-24, Kombornia, Poland (PL), DOI: 10.1051/matecconf/201928500018, Vol.285, pp.00018-1-8, 2019

Streszczenie:
In the paper there is presented a reliable structural model of the rotating mechanical systems as well as mathematical models of the stepping, synchronous and asynchronous motors, by means of which electromechanical coupling effects can be thoroughly investigated. An importance and severity of these phenomena, not sufficiently explored till present, have been demonstrated by results obtained for transient and steady-state operational conditions in the computational examples concerning torsional vibrations of drive trains with various electric motors.

Słowa kluczowe:
structural model, electric motors, mechanical systems, electromechanical coupling

Afiliacje autorów:
Szolc T. - IPPT PAN
Konowrocki R. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
3.  Szolc T., Konowrocki R., Pisarski D., Pochanke A., Influence of Various Control Strategies on Transient Torsional Vibrations of Rotor-Machines Driven by Asynchronous Motors, IFToMM, 10th International Conference on Rotor Dynamics, 2018-01-23/01-27, Rio de Janeiro (BR), DOI: 10.1007/978-3-319-99272-3_15, No.4, pp.205-220, 2018

Streszczenie:
In the paper, a dynamic electromechanical interaction between the selected kind of rotating machines and their driving electric motors is investigated. These are the high-speed beater mills and crushers as well as blowers, pumps and compressors, all driven by the asynchronous motors through elastic couplings with linear and non-linear characteristics. In particular, there is considered an influence of negative electromagnetic damping generated by the motor on a possibility of excitation of resonant torsional vibrations. Moreover, for the asynchronous motor in transient and steady-state operating conditions, there are tested several control strategies which are based on the closed-loop vector and scalar principles. The theoretical calculations have been performed by means of the advanced structural mechanical models. Conclusions drawn from the computational results can be very useful during a design phase of these devices as well as helpful for their users during a regular maintenance.

Słowa kluczowe:
Rotor-machine, Asynchronous motor, Electromechanical interaction, Torsional vibrations, Control strategies

Afiliacje autorów:
Szolc T. - IPPT PAN
Konowrocki R. - IPPT PAN
Pisarski D. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
20p.
4.  Szolc T., Konowrocki R., Pochanke A., Michajłow M., Dynamic aspects of design and maintenance of the rotating machinery applied by the mining industry, MEC-2017, MINERAL ENGINEERING CONFERENCE, 2017-09-20/09-23, Wisła (PL), DOI: 10.1051/e3sconf/201712301010, Vol.18, pp.01010-1-10, 2017

Streszczenie:
In the paper a dynamic behaviour of the selected typical group of rotating machines applied in the mining industry is investigated. These are the beater mills and crushers as well as blowers and compressors, all driven by the asynchronous motors. In particular, there is considered an influence of various types of machine working tool loadings on the system lateral steady-state dynamic responses as well as a mutual torsional electromechanical interaction between the driving motor and the driven machine in transient operational conditions. The theoretical calculations have been performed by means of the advanced structural mechanical models. The conclusions drawn from computational results can be very useful during design phase of these devices as well as helpful for their users during regular maintenance.

Słowa kluczowe:
mining industry, electromechanic coupling, design and maintenance of mill, torsional vibrations

Afiliacje autorów:
Szolc T. - IPPT PAN
Konowrocki R. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Michajłow M. - inna afiliacja
20p.
5.  Konowrocki R., Pochanke A., Pręgowska A., Szolc T., An analysis of precise positioning scenarios of the electromechanical rotating system driven by a stepping motor, SIRM 2015, 11th International Conference on Vibrations in Rotating Machines, 2015-02-23/02-25, Magdeburg (DE), No.ID-40, pp.1-10, 2015

Streszczenie:
In the paper there is investigated experimentally and theoretically electromechanical dynamic interaction between the driving stepping motor and the driven laboratory belt-transporter system imitating an operation of the robotic device in the form of working tool-carrier under translational motion. The considered object is properly equipped with measurement systems enabling us a registration of studied electrical and mechanical quantities. The analytical considerations are performed by means of the circuit model of the electric motor and of the discrete, non-linear model of the mechanical system. In the investigated examples various scenarios of the working tool-carrier motion and positioning by the belt-transporter are measured and simulated, where in the all cases the electric current control of the driving motor has been applied.

Słowa kluczowe:
Belt transporter system, Precise positioning, Stepping motor, Current control, Experimental verification

Afiliacje autorów:
Konowrocki R. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Pręgowska A. - IPPT PAN
Szolc T. - IPPT PAN
6.  Szolc T., Jankowski Ł., Pochanke A., Michajłow M., Vibration control of the coal pulverizer geared drive system using linear actuators with the magneto-rheological fluid, SIRM 2011, 9th International Conference on Vibrations in Rotating Machines, 2011-02-21/02-23, Darmstadt (GE), pp.1-10, 2011

Streszczenie:
Torsional vibrations are in general rather troublesome to control from the viewpoint of proper control torque generation as well as because of difficulties of imposing the control torques on quickly rotating parts of the drive- or rotor-shaft systems. In this paper there is proposed an active control technique based on the linear actuators with the magneto-rheological fluid (MRF) connecting the drive system planetary gear housing with the immovable rigid support. Here, by means of the magneto-rheological fluid of adjustable viscosity control damping torques are generated. Such actuators can effectively suppress amplitudes of severe transient and steady-state rotational fluctuations of the gear housing position and in this way they are able to minimize dangerous oscillations of dynamic torques transmitted by successive shaft segments in the entire drive system. The general purpose of the considerations is to control torsional vibrations of the power-station coal-pulverizer drive system driven by means of the asynchronous motor and the single stage planetary gear. In the computational examples drive system transient torsional vibrations induced by the electromagnetic motor torques during start-ups as well as steady-state vibrations excited by the variable dynamic retarding torques generated by the coal pulverizer during nominal operation have been significantly attenuated.

Słowa kluczowe:
Torsional vibrations, rotational fluctuation, magneto-rheological fluid

Afiliacje autorów:
Szolc T. - IPPT PAN
Jankowski Ł. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Michajłow M. - inna afiliacja
7.  Szolc T., Jankowski Ł., Pochanke A., Magdziak A., An application of the magneto-rheological actuators to torsional vibration control of the rotating electro-mechanical systems, IFToMM, 8th International Conference on Rotor Dynamics, 2010-09-12/09-15, Seoul (KR), pp.488-495, 2010

Streszczenie:
In the paper control of transient and steady-state torsional vibrations of the driven by the asynchronous motor laboratory drive system of the imitated coal pulverizer is performed by means of actuators with the magneto-rheological fluid. The main purpose of these studies is a minimisation of vibration amplitudes in order to increase the fatigue durability of the most responsible elements. The theoretical investigations are based on a hybrid and finite element structural model of the vibrating mechanical system as well as on sensitivity analysis of the response with respect to the actuator damping characteristics. For suppression of transient torsional vibrations excited by electro-magnetic torques generated by the motor and by the coal pulverizer tool there is proposed a control strategy based on actuators in the form of rotary control dampers.

Słowa kluczowe:
Semi-active control, torsional vibrations, electro-mechanical drive system, control dampers, magneto-rheological fluid

Afiliacje autorów:
Szolc T. - IPPT PAN
Jankowski Ł. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Magdziak A. - inna afiliacja

Abstrakty konferencyjne
1.  Szolc T., Pochanke A., Konowrocki R., Pisarski D., Suppression and control of torsional vibrations of the turbo-generator shaft-lines using rotary magneto-rheological dampers, VIRM, 12th International Conference on Vibrations in Rotating Machinery, 2020-01-14/01-15, London (GB), No.1, pp.90-90, 2020

Streszczenie:
Torsional vibrations of steam turbo-generator rotor-shaft-lines coupled with bending vibrations of exhaust blades still constitute an important operational problem for this type of rotor-machines. Therefore, this work proposes a relatively simple approach for efficient suppression and control of transient and steady-state turbo-generator-shaft torsional vibrations excited by short circuits in a generator or power-lines, faulty synchronization, negative sequence currents and by sub-synchronous resonances in the turbo-generator-electric network system. This target has been achieved by means of semi-actively controlled rotary dampers with the magneto-rheological fluid. Regular operation of such devices installed in a given turbo-generator rotor-shaft-line enables suppression of dangerous torsional oscillations.

Słowa kluczowe:
control of torsional vibrations, turbo-generator, shaft-lines vibrations, rotary magneto-rheological dampers, new rotary dampers

Afiliacje autorów:
Szolc T. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Konowrocki R. - IPPT PAN
Pisarski D. - IPPT PAN
2.  Szolc T., Konowrocki R., Pochanke A., Michajłow M., Dynamic aspects of design and maintenance of the rotating machinery applied in the mining industry, MEC-2017, MINERAL ENGINEERING CONFERENCE, 2017-09-20/09-23, Wisła (PL), No.2, pp.14-15, 2017

Streszczenie:
In the paper a dynamic behaviour of the selected typical group of rotating machines applied in the mining industry is investigated. These are the beater mills and crushers as well as blowers and compressors, all driven by the asynchronous motors. In particular, there is considered an influence of various types of machine working tool loadings on the system lateral steady-state dynamic responses as well as a mutual torsional electromechanical interaction between the driving motor and the driven machine in transient operational conditions. The theoretical calculations have been performed by means of the advanced structural mechanical models. The conclusions drawn from computational results can be very useful during design phase of these devices as well as helpful for their users during regular maintenance.

Słowa kluczowe:
rotating mill machinery, electric motor interaction, electromechanical model, torsion vibration

Afiliacje autorów:
Szolc T. - IPPT PAN
Konowrocki R. - IPPT PAN
Pochanke A. - Politechnika Warszawska (PL)
Michajłow M. - inna afiliacja

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024