Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

Elżbieta Remiszewska


Ostatnie publikacje
1.  Wasyłeczko M., Remiszewska E., Sikorska W., Dulnik J., Chwojnowski A., Scaffolds for Cartilage Tissue Engineering from a Blend of Polyethersulfone and Polyurethane Polymers, Molecules, ISSN: 1420-3049, DOI: 10.3390/molecules28073195, Vol.28, No.7, pp.3195-1-28, 2023

Streszczenie:
In recent years, one of the main goals of cartilage tissue engineering has been to find appropriate scaffolds for hyaline cartilage regeneration, which could serve as a matrix for chondrocytes or stem cell cultures. The study presents three types of scaffolds obtained from a blend of polyethersulfone (PES) and polyurethane (PUR) by a combination of wet-phase inversion and salt-leaching methods. The nonwovens made of gelatin and sodium chloride (NaCl) were used as precursors of macropores. Thus, obtained membranes were characterized by a suitable structure. The top layers were perforated, with pores over 20 µm, which allows cells to enter the membrane. The use of a nonwoven made it possible to develop a three-dimensional network of interconnected macropores that is required for cell activity and mobility. Examination of wettability (contact angle, swelling ratio) showed a hydrophilic nature of scaffolds. The mechanical test showed that the scaffolds were suitable for knee joint applications (stress above 10 MPa). Next, the scaffolds underwent a degradation study in simulated body fluid (SBF). Weight loss after four weeks and changes in structure were assessed using scanning electron microscopy (SEM) and MeMoExplorer Software, a program that estimates the size of pores. The porosity measurements after degradation confirmed an increase in pore size, as expected. Hydrolysis was confirmed by Fourier-transform infrared spectroscopy (FT-IR) analysis, where the disappearance of ester bonds at about 1730 cm −1 wavelength is noticeable after degradation. The obtained results showed that the scaffolds meet the requirements for cartilage tissue engineering membranes and should undergo further testing on an animal model.

Słowa kluczowe:
articular cartilage, cartilage tissue engineering, hydrolysis process, materials for scaffolds, partly degradable scaffolds, polyethersulfone–polyurethane scaffolds, polyurethane degradation, regenerative medicine, scaffold requirements, tissue engineering

Afiliacje autorów:
Wasyłeczko M. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
Remiszewska E. - inna afiliacja
Sikorska W. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
Dulnik J. - IPPT PAN
Chwojnowski A. - Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (PL)
140p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024