Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

M.J. Alava


Ostatnie publikacje
1.  Frydrych K., Dominguez-Gutierrez F., Alava M., Papanikolaou S., Multiscale nanoindentation modelling of concentrated solid solutions: A continuum plasticity model, MECHANICS OF MATERIALS, ISSN: 0167-6636, DOI: 10.1016/j.mechmat.2023.104644, Vol.181, No.104644, pp.1-12, 2023

Streszczenie:
Recently developed single-phase concentrated solid-solution alloys (CSAs) contain multiple elemental species in high concentrations with different elements randomly arranged on a crystalline lattice. These chemically disordered materials present excellent physical properties, including high-temperature thermal stability and hardness, with promising applications to industries at extreme operating environments. The aim of this paper is to present a continuum plasticity model accounting for the first time for the behaviour of a equiatomic five-element CSA, that forms a face-centred cubic lattice. The inherent disorder associated with the lattice distortions caused by an almost equiatomic distribution of atoms, is captured by a single parameter that quantifies the relative importance of an isotropic plastic contribution to the model. This results in multiple plasticity mechanisms that go beyond crystallographic symmetry-based ones, common in the case of conventional single element metals. We perform molecular dynamics simulations of equiatomic CSAs: NiFe, NiFeCr, NiFeCrCo, and Cantor alloys to validate the proposed continuum model which is implemented in the finite element method and applied to model nanoindentation tests for three different crystallographic orientations. We obtain the representative volume element model by tracking the combined model yield surface.

Słowa kluczowe:
High entropy alloys, Nanoindentation, Molecular dynamics, Finite element method, Crystal plasticity

Afiliacje autorów:
Frydrych K. - IPPT PAN
Dominguez-Gutierrez F. - inna afiliacja
Alava M. - inna afiliacja
Papanikolaou S. - inna afiliacja
100p.
2.  Dominguez-Gutierrez F.J., Ustrzycka A., Xu Q., Alvarez-Donado R., Papanikolaou S., Alava M.J., Dislocation nucleation mechanisms during nanoindentation of concentrated FeNiCr alloys: unveiling the effects of Cr through molecular simulations, MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, ISSN: 0965-0393, DOI: 10.1088/1361-651X/ac9d54, Vol.30, No.085010, pp.1-15, 2022

Streszczenie:
Fe-based alloys with high chromium and nickel concentrations are very attractive for efficient energy production in extreme operating conditions. We perform molecular dynamics (MD) simulations of nanoindentation on fcc FeNiCr multicomponent materials. Equiatomic FeNi, Fe55Ni19Cr26, and Fe74Ni8Cr18 are tested by using established interatomic potentials and similar conditions, for the elucidation of key dislocation nucleation mechanisms and interactions. Generally, we find that the presence of Cr in these alloys reduces the mobility of prismatic dislocation loops, and increases their area, regardless of crystallographic orientation. Dislocation nucleation and evolution is tracked during mechanical testing as a function of nanoindentation strain and Kocks–Mecking continuum modeling displays good agreement with MD findings. Furthermore, the analysis of geometrically necessary dislocations (GNDs) is consistent with the Ma–Clarke’s model at depths lower than 1.5 nm. The presence of Cr leads to a decrease of the GND density with respect to Cr-less FeNi samples, thus we find that Cr is critically responsible of increasing these alloys’ hardness. Post-indentation impression maps indicate that Ni–Fe–Cr compositions display strain localization and hardening due to high Cr concentration.

Afiliacje autorów:
Dominguez-Gutierrez F.J. - inna afiliacja
Ustrzycka A. - IPPT PAN
Xu Q. - inna afiliacja
Alvarez-Donado R. - inna afiliacja
Papanikolaou S. - inna afiliacja
Alava M.J. - inna afiliacja
70p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024