Instytut Podstawowych Problemów Techniki
Polskiej Akademii Nauk

Partnerzy

M.M. Natile


Ostatnie publikacje
1.  Alvi S., Jarząbek D.M., Kohan M.G., Hedman D., Jenczyk P., Natile M.M., Vomiero A., Akhtar F., Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering, ACS Applied Materials and Interfaces, ISSN: 1944-8244, DOI: 10.1021/acsami.0c02156, Vol.12, No.18, pp.21070-21079, 2020

Streszczenie:
Development of high-entropy alloy (HEA) films is a promising and cost-effective way to incorporate these materials of superior properties in harsh environments. In this work, a refractory high-entropy alloy (RHEA) film of equimolar CuMoTaWV was deposited on silicon and 304 stainless-steel substrates using DC-magnetron sputtering. A sputtering target was developed by partial sintering of an equimolar powder mixture of Cu, Mo, Ta, W, and V using spark plasma sintering. The target was used to sputter a nanocrystalline RHEA film with a thickness of ~900 nm and an average grain size of 18 nm. X-ray diffraction of the film revealed a body-centered cubic solid solution with preferred orientation in the (110) directional plane. The nanocrystalline nature of the RHEA film resulted in a hardness of 19 ± 2.3 GPa and an elastic modulus of 259 ± 19.2 GPa. A high compressive strength of 10 ± 0.8 GPa was obtained in nanopillar compression due to solid solution hardening and grain boundary strengthening. The adhesion between the RHEA film and 304 stainless-steel substrates was increased on annealing. For the wear test against the E52100 alloy steel (Grade 25, 700-880 HV) at 1 N load, the RHEA film showed an average coefficient of friction (COF) and wear rate of 0.25 (RT) and 1.5 (300 °C), and 6.4 × 10^–6 mm^3/N m (RT) and 2.5 × 10^–5 mm^3/N m (300 °C), respectively. The COF was found to be 2 times lower at RT and wear rate 10^2 times lower at RT and 300 °C than those of 304 stainless steel. This study may lead to the processing of high-entropy alloy films for large-scale industrial applications.

Słowa kluczowe:
high-entropy alloys, magnetron sputtering, spark plasma sintering, mechanical properties, wear

Afiliacje autorów:
Alvi S. - Luleå University of Technology (SE)
Jarząbek D.M. - IPPT PAN
Kohan M.G. - Luleå University of Technology (SE)
Hedman D. - Luleå University of Technology (SE)
Jenczyk P. - IPPT PAN
Natile M.M. - inna afiliacja
Vomiero A. - Luleå University of Technology (SE)
Akhtar F. - Luleå University of Technology (SE)
200p.

Kategoria A Plus

IPPT PAN

logo ippt            ul. Pawińskiego 5B, 02-106 Warszawa
  +48 22 826 12 81 (centrala)
  +48 22 826 98 15
 

Znajdź nas

mapka
© Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 2024