1. |
Krajewski M., Liou S.C.♦, Chiou W.A.♦, Tokarczyk M.♦, Małolepszy A.♦, Płocińska M.♦, Witecka A., Lewińska S.♦, Ślawska-Waniewska A.♦, Amorphous FexCo1–x wire-like nanostructures manufactured through surfactant-free magnetic-field-induced synthesis,
Crystal Growth and Design, ISSN: 1528-7483, DOI: 10.1021/acs.cgd.0c00070, Vol.20, No.5, pp.3208-3216, 2020Streszczenie: So far, it has been proven that the magnetic-field-induced (MFI) synthesis is a process which mainly leads to the formation of magnetic metallic one-dimensional nanostructures. Taking advantage of this method, the new procedures which allow manufacture of the magnetic bimetallic iron–cobalt wire-like nanochains with Fe0.75 Co0.25, Fe0.50 Co0.50, and Fe0.25 Co0.75 compositions are demonstrated in this work. They were produced through a simple one-step magnetic-field-induced (MFI) chemical co-reduction of three different mixtures containing a proper amount of Fe2+ and Co2+ ions with aqueous sodium borohydride solution as the reducing agent. The synthesis process was carried out at room temperature without the use of templates, surfactants, complexing agents, and organic solvents. The morphological and structural studies indicated that all as-prepared materials were amorphous, and they were composed of nanoparticles aligned in almost straight chains. Moreover, they revealed the core–shell structures with bimetallic alloy cores containing desired iron-to-cobalt ratios and very thin oxide shells. Furthermore, the obtained nanostructures behaved as ferromagnetic materials. Their magnetic properties were correlated with their structural properties and chemical compositions. It was observed that their saturation magnetization decreased significantly with increasing content of cobalt in the chains, whereas the variation of their coercivity was less pronounced. Afiliacje autorów:
Krajewski M. | - | IPPT PAN | Liou S.C. | - | University of Maryland (US) | Chiou W.A. | - | University of Maryland (US) | Tokarczyk M. | - | Uniwersytet Warszawski (PL) | Małolepszy A. | - | Politechnika Warszawska (PL) | Płocińska M. | - | Politechnika Warszawska (PL) | Witecka A. | - | IPPT PAN | Lewińska S. | - | Institute of Physics, Polish Academy of Sciences (PL) | Ślawska-Waniewska A. | - | inna afiliacja |
| | 100p. |
2. |
Krajewski M., Tokarczyk M.♦, Witecka A., Lewińska S.♦, Ślawska-Waniewska A.♦, Płocińska M.♦, Towards magnetic bimetallic wire-like nanostructures ‒ magnetic field as growth parameter,
ACTA PHYSICA POLONICA A, ISSN: 0587-4246, DOI: 10.12693/APhysPolA.137.59, Vol.137, No.1, pp.59-61, 2020Streszczenie: The magnetically-assisted growth of the amorphous bimetallic iron–nickel wire-like nanostructures is presented in this work. The applied process is based on a simple reduction reaction of aqueous solutions containing Fe2+ and Ni2+ ions with NaBH4 in the presence of an external magnetic field of about 0.05 T. The morphology, chemical composition, and magnetic properties of as-prepared Fe–Ni nanostructures have been determined by means of scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The obtained experimental data indicate that the as-prepared samples exhibit quite complex architectures i.e., they comprise of nanoparticles aligned in almost straight lines. In addition, they reveal the typical core-shell structures where the amorphous bimetallic alloy cores are covered by thin amorphous oxide shells. In turn, the magnetic measurements show that the Fe–Ni wire-like nanostructures behave as typical ferromagnetic nanomaterials and their magnetic parameters like saturation magnetizations and coercivities are strictly dependent on their sizes and chemical compositions. Słowa kluczowe: amorphous materials, bimetallic nanostructures, magnetic-field-induced synthesis, magneticmaterials, wire-like nanostructures Afiliacje autorów:
Krajewski M. | - | IPPT PAN | Tokarczyk M. | - | Uniwersytet Warszawski (PL) | Witecka A. | - | IPPT PAN | Lewińska S. | - | Institute of Physics, Polish Academy of Sciences (PL) | Ślawska-Waniewska A. | - | inna afiliacja | Płocińska M. | - | Politechnika Warszawska (PL) |
| | 40p. |