1. |
Zia Muhammad A.♦, Sohail M.♦, Minhas Muhammad U.♦, Sarfraz Rai M.♦, Khan S.♦, de Matas M.♦, Hussain Z.♦, Abbasi M.♦, Shah S. A.♦, Kousar M.♦, Ahmad N.♦, HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen,
Drug Development and Industrial Pharmacy, ISSN: 0363-9045, DOI: 10.1080/03639045.2020.1716378, Vol.46, No.2, pp.272-282, 2020Streszczenie: Objectives: The study aimed to develop safe, effective, and targeted drug delivery system for administration of nonsteroidal anti-inflammatory drugs (NSAIDs) in the form of microgels. We developed pH responsive microgels to overcome the mucosal damage caused by traditional immediate release dosage forms. Colon targeting and controlled release formulations have the potential to improve efficacy and reduce undesirable effects associated with NSAIDs.
Methods: The pH sensitive oral hydrogel demonstrates the potential to target the colon. Cellulose acetate phthalate (CAP) and hydroxyethyl methacrylate (HEMA) based microgel particles were produced using a free radical polymerization technique using ammonium persulfate (APS) initiator and methylenebisacrylamide (MBA) as the crosslinking agent. Swelling and in-vitro drug release studies were performed at a range of pH conditions. The produced formulations were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy (SEM), and X-ray diffraction. Biocompatibility of the microgels was analyzed in cytotoxicity studies.
Key findings: The swelling and release rate were negligible at pH 1.2, which confirmed the pH-responsiveness of CAP-co-poly(HEMA). The co-polymeric system prevents the release of ketoprofen sodium in the stomach owing to limited swelling at gastric pH, whilst promoting release at the basic pH observed in the colon. SEM images confirmed porous nature of the microgels that facilitate effective drug diffusion through the polymeric matrix. Cytotoxicity studies revealed biocompatibility of hydrogels.
Conclusion: These investigations showed that that the controlled drug release and gastro-protective drug delivery of NSAIDS was achieved using CAP-co-poly(HEMA) microgel particles. Słowa kluczowe: Biomaterials, microgels, cellulose acetate phthalate, hydrogel, pH sensitive Afiliacje autorów:
Zia Muhammad A. | - | inna afiliacja | Sohail M. | - | inna afiliacja | Minhas Muhammad U. | - | inna afiliacja | Sarfraz Rai M. | - | inna afiliacja | Khan S. | - | inna afiliacja | de Matas M. | - | inna afiliacja | Hussain Z. | - | inna afiliacja | Abbasi M. | - | inna afiliacja | Shah S. A. | - | inna afiliacja | Kousar M. | - | inna afiliacja | Ahmad N. | - | inna afiliacja |
| |
2. |
Sohail M.♦, Mudassir A.♦, Minhas Muhammad U.♦, Khan S.♦, Hussain Z.♦, De Matas M.♦, Shah S. A.♦, Khan S.♦, Kousar M.♦, Ullah K.♦, Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects,
Drug Delivery and Translational Research, ISSN: 2190-393X, DOI: 10.1007/s13346-018-0512-x, Vol.9, pp.595-614, 2019Streszczenie: Ulcerative colitis (UC) is an inflammatory disease of the colon that severely affects the quality of life of patients and usually responds well to anti-inflammatory agents for symptomatic relief; however, many patients need colectomy, a surgical procedure to remove whole or part of the colon. Though various types of pharmacological agents have been employed for the management of UC, the lack of effectiveness is usually predisposed to various reasons including lack of target-specific delivery of drugs and insufficient drug accumulation at the target site. To overcome these glitches, many researchers have designed and characterized various types of versatile polymeric biomaterials to achieve target-specific delivery of drugs via oral route to optimize their targeting efficiency to the colon, to improve drug accumulation at the target site, as well as to ameliorate off-target effects of chemotherapy. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to colon and rationalized treatment of UC. Among various types of biomaterials, natural and synthetic polymer-based hydrogels have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the colon to release the encapsulated drug moieties. These characteristic features make natural and synthetic polymer-based hydrogels superior to conventional pharmacological strategies for the management of UC. Słowa kluczowe: Ulcerative colitis, Biomaterials, Hydrogels, Biomedical applications , Ulcerative colitis Afiliacje autorów:
Sohail M. | - | inna afiliacja | Mudassir A. | - | inna afiliacja | Minhas Muhammad U. | - | inna afiliacja | Khan S. | - | inna afiliacja | Hussain Z. | - | inna afiliacja | De Matas M. | - | inna afiliacja | Shah S. A. | - | inna afiliacja | Khan S. | - | inna afiliacja | Kousar M. | - | inna afiliacja | Ullah K. | - | inna afiliacja |
| |
3. |
Shah S. A.♦, Sohail M.♦, Khan S.♦, Minhas Muhammad U.♦, De Matas M.♦, Sikstone V.♦, Hussain Z.♦, Abbasi M.♦, Kousar M.♦, Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review,
International Journal of Biological Macromolecules, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2019.08.007, Vol.139, pp.975-993, 2019Streszczenie: Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing. Słowa kluczowe: Biomaterials, Diabetes, Diabetic wound healing, Hydrogels, Polymers Afiliacje autorów:
Shah S. A. | - | inna afiliacja | Sohail M. | - | inna afiliacja | Khan S. | - | inna afiliacja | Minhas Muhammad U. | - | inna afiliacja | De Matas M. | - | inna afiliacja | Sikstone V. | - | inna afiliacja | Hussain Z. | - | inna afiliacja | Abbasi M. | - | inna afiliacja | Kousar M. | - | inna afiliacja |
| |